

# **Digital Libraries**

## Evaluation of Library Services Week 11 Min-Yen KAN



# Why Evaluation?

- Run as a business, need to justify costs and expenditure
- Quantitative data analysis necessitated by evolution into automated and digital libraries

### Need benchmarks to evaluate effectiveness of library



# Quantitative metrics

- Circulation per capita
- Library visits per capita
- Program attendance per capita
- Turnover rate
- Registration as % of population

- Output measures for public libraries Zweizig and Rodger (1982)



# **Evaluation types**

### Macroevaluation

- Quantitative
- Degree of exposure

### Microevaluation

- Diagnostic
- Gives rationale for performance



## Macroevaluation

o Axiom

- The more a book in a library is exposed, the more effective the library.
- Defining "an exposure" as a simple count
  - Pros

Easy; can different levels of granularity

- Cons
  - $\circ$  5  $\times$  1 day borrowing is five times more exposure than 1  $\times$  5 day borrowing
  - Shorter circulation would increase counts

### More exact ways to quantify exposure

### o Item-use days: Meier (61)

- A book borrowed for five days may not be used at all
- Effective user hours: De Prospo *et al.* (73)
  - Sample users in library



# Bang for the buck?

The more aware the public is The more assistance given The more liberal the usage period The more branch locations The more titles provided The more index methods available The more copies provided

the greater the exposure.

# Macroevaluation - Conclusions

 In general, more exact measures require sampling and tend towards microevaluation

• So it's a continuum after all

 Administrators use a battery of measures; not a single one, to measure effectiveness – Spray (76)



# **Microevaluation Axes**

- Quality
- o Time
- Costs (including human effort)
- User satisfaction (ultimately, they are bearing the library's operating costs)

# Microevaluation

- The more concrete the need, the easier to evaluate
- Failure is harder to measure than success
  - Case 1: Got a sub-optimal resource
  - Case 2: Got some material but not all

|         | Technical Services                                                                                                                                                                   | Public Services                                                                                                                                                                                                                                                                                                                                               |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Quality | <ol> <li>Select and acquisition<br/>Size, appropriateness, and<br/>balance of collection</li> <li>Cataloging and Indexing<br/>Accuracy, consistency, and<br/>completeness</li> </ol> | <ol> <li>Range of services offered</li> <li>Helpfulness of shelf order and<br/>guidance</li> <li>Catalog         <ul> <li>Completeness, accuracy and<br/>ease of use</li> </ul> </li> <li>Reference and retrieval         <ul> <li>Completeness, accuracy and<br/>percentage success</li> <li>Document Delivery<br/>Percentage Success</li> </ul> </li> </ol> |  |  |
| Time    | <ol> <li>Delays in Acquisition</li> <li>Delays in Cataloging</li> <li>Productivity of Staff</li> </ol>                                                                               | <ol> <li>Hours of Service</li> <li>Response Time</li> <li>Loan Periods</li> </ol>                                                                                                                                                                                                                                                                             |  |  |
| Cost    | <ol> <li>Unit cost to purchase</li> <li>Unit cost to process         Accession         Classify         Catalog     </li> </ol>                                                      | <ol> <li>Effort of use<br/>Location of library<br/>Physical accessibility of collection<br/>Assistance from staff</li> <li>Charges Levied</li> </ol>                                                                                                                                                                                                          |  |  |

- From Baker & Lancaster (91) p 21



# Material-centered collection evaluation

What's the purpose...

... of the collection

 $\circ$  Who's the readership – academic, public?

... of the evaluation

o Document change in demand?

o Justify funding?

Select areas to weed materials?

o Adjust shelving/organization?



# Principled methods for material-based evaluations

### Checklist

- Use standard reference bibliographies to check against
- Citation
  - Use an initial seed of resources to search for resources that cite and are cited by them

### Are these methods really distinct?

 How do people compile bibliographies in the first place?



# Use-centered collection evaluation

Circulation

- o General
- Interlibrary Loan (ILL)

In-house uses

- o Stack
- Catalog

# **Effectiveness as Circulation**

Need a minimal size to function at all
The larger the collection the better...
... to a point



- From Hodowanec (78)

# **Collection Mapping**

### o Idea: Build the collection in parts

- Prioritize and budget specific subjects
   Shrink, grow, keep constant
- Evaluate subjects according to specific use

 Which courses it serves, what are each courses' needs

#### To think about:

• Which of these approaches are **micro** and which are **macro**?



### **Use Factors**

- o Age
- o Language
- Subject
- Shelf Arrangement
- Quality
- Expected Use
  - Popularity
  - Information Chain placement



# In-House Use Evaluation Methods

### Mostly done by sampling

- Table Counting
- o Slip
- o Interviews
- Observation



Seen this notice before?

It's not because you can't remember where it goes...



# Material Availability

The myth: If we have it, you can get it.

The reality: If we have it, you have a chance of getting it.



$$P_{S} = P_{A} \times P_{C} \times P_{L} \times P_{S} = .66$$



## **Dried Squid Break**

### o Yay! See you later...





# **Digital Libraries**

### IR Evaluation Metrics Week 11 Min-Yen KAN

\* - Parts of this lecture come from Lilian Tang's lecture material at the Univ. of Surrey

19 Oct 2004

CS 5244: Evaluation



# **Evaluation Contingency Table**

|                                       | System says<br>is <b>relevant</b> | System says<br>is <b>irrelevant</b> |
|---------------------------------------|-----------------------------------|-------------------------------------|
| Document is<br>actually<br>relevant   | TP<br>(True Positive)             | <b>FN</b><br>(False Negative)       |
| Document is<br>actually<br>irrelevant | <b>FP</b><br>(False Positive)     | <b>TN</b><br>(True Negative)        |



# Sensitivity, specificity, positive and negative predictive value

|                                   |   | Relevant                            |                                     |                                                                                                  |                                                             |
|-----------------------------------|---|-------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                   |   | +                                   | -                                   |                                                                                                  |                                                             |
| Test<br>(System<br>)              | + | True<br>Positive<br>(TP)            | False<br>Positive<br>(FP)           | All with<br>Positive<br>Test<br>TP+FP                                                            | <i>Positive Predictive<br/>Value</i><br>=<br>TP / (TP+FP)   |
|                                   | - | False<br>Negative<br>(FN)           | True<br>Negative<br>(TN)            | All with<br>Negative<br>Test<br>FN+TN                                                            | <i>Negative Predictive<br/>Value<br/>=<br/>TN / (FN+TN)</i> |
| All All non-<br>Relevant relevant |   |                                     | All documents =<br>TP+FP+FN+TN      |                                                                                                  |                                                             |
|                                   |   | Sensitivity<br>=<br>TP /<br>(TP+FN) | Specificity<br>=<br>TN /<br>(FP+TN) | Pre-Test Probability of Relevance<br>=<br>(TP+FN) / (TP+FP+FN+TN)<br>(in this case = prevalence) |                                                             |



## **Evaluation Metrics**

- Precision = Positive Predictive Value
  - "ratio of the number of relevant documents retrieved over the total number of documents retrieved"
    - how much extra stuff did you get?

• Recall = Sensitivity

ΤP

TP

TP + FP

- TP + FN
- "ratio of relevant documents retrieved for a given query over the number of relevant documents for that query in the database"
- how much did you miss?



# P/R: an example

| Rank | Decision | R <sub>@r</sub> | P <sub>@r</sub> |
|------|----------|-----------------|-----------------|
| 1    | R        | 10%             | 100%            |
| 2    |          | 10%             | 50%             |
| 3    |          | 10%             | 33%             |
| 4    | R        | 20%             | 50%             |
| 5    | R        | 30%             | 60%             |
| 6    |          | 30%             | 50%             |
| 7    | R        | 40%             | 57%             |
| 8    |          | 40%             | 50%             |
| 9    |          | 40%             | 44%             |
| 10   |          | 40%             | 40%             |
| 11   |          | 40%             | 36%             |
| 12   | R        | 50%             | 42%             |
| 13   | R        | 60%             | 46%             |
| 14   | R        | 70%             | 50%             |
|      |          |                 |                 |
| 22   | R        | 100%            | 45%             |



From: Managing Gigabytes

Recall (%)



# **Precision / Recall**

- Interpolated precision gives a non-increasing curve
- But doesn't factor in the size of the corpus
  - Previous example on a corpus of 25 docs = 40% precision
  - On a corpus of
     2.5 M docs = also 40%





# Factoring in size of a corpus

- Look at how P/R or Sn/Sp varies as a function of rank:
- Choose a number of different ranks and calculate P/R or Sn/Sp
  - Correspond to vertical lines on graphs at right
  - Plot Sn vs. 1-Sp to get points for ROC curve. Interpolate curve.



Which of these examples is which from the previous slide?



## **ROC Curve**



# Getting a single number

- o 11 pt average
  - Average precision at each .1 interval in recall

• Precision at recall point (% or absolute)

#### • F Measure

• Ratio of precision to recall:

(e.g., 
$$F_3$$
 = weight precision heavier)

$$F_{b} = \frac{(b^{2}+1) PR}{b^{2}P + R}$$

- Area under ROC curve (Accuracy)
  - 1 = perfect, .9 excellent, .5 worthless

• What's the difference between these measures?

• Which measures are best suited to which scenarios?

# **References for Today**

- Witten, Moffat and Bell (99)
   Managing Gigabytes, Section 4.5
- Lesk (1997), Chapter 7, Usability and Retrieval Evaluation, Sections 7.6

 Baker and Lancaster (91) The Measurement and Evaluation of Library Services, Information Resources Press