Digital Libraries

Collaborative Filtering and Recommender Systems

Week 12 Min-Yen KAN

1

26 Oct 2004

Information Seeking, recap

- In information seeking, we may seek others' opinion:
- Recommender systems may use collaborative filtering algorithms to generate their recommendations

Is it IR? Clustering?

- Information Retrieval:
 - Uses content of document
- Recommendation Systems:
 - Uses item's metadata
 Item item recommendation
 - Collaborative Filtering User – user recommendation
 - 1. Find similar users to current user,
 - 2. Then return their recommendations

Clustering can be used to find recommendations

Collaborative Filtering

- Effective when untainted data is available
- Typically have to deal with sparse data
 - Users will only vote over a subset of all items they've seen
- Data:
 - Explicit: recommendations, reviews, ratings
 - Implicit: query, browser, past purchases, session logs
- Approaches
 - Model based derive a user model and use for prediction
 - Memory based use entire database
- Functions
 - Predict predict ranking for an item
 - Recommend produce *ordered* list of items of interest to the user.
 Why are these two considered distinct?

Assume active user a has ranked I items:

• Mean ranking given by:

$$\overline{v}_i = \frac{1}{|I_i|} \sum_{j \in I_i} v_{i,j}$$

A specific vote for an item j

o Expected ranking of a new item given by: $p_{a,j} = \overline{v}_a + \kappa \sum_{i=1}^n w(a,i)(v_{i,j} - \overline{v}_i)$ normalization factor Correlation of past user with active one

5

• How to find similar users?

- Check correlation between active user's ratings and yours
- Use Pearson correlation:

$$w(a,i) = \frac{\sum_{j} (v_{a,j} - \overline{v}_a)(v_{i,j} - \overline{v}_i)}{\sqrt{\sum_{j} (v_{a,j} - \overline{v}_a)^2 \sum_{j} (v_{i,j} - \overline{v}_i)^2}}$$

- Generates a value between 1 and -1
- 1 (perfect agreement), 0 (random)

Similarity can also be done in terms of vector space. What are some ways of applying this method to this problem?

Two modifications Sparse data

- - **Default Voting**
 - Users would agree on some items that they didn't get a chance to rank
 - Assume all unobserved items have neutral or negative ranking.
 - Smoothes correlation values in sparse data
- Balancing Votes:
 - Inverse User Frequency
 - Universally liked items not important to correlation
 - Weight (j) = ln (# users/# users voting for item j)

Model-based methods: NB Clustering

Assume all users belong to several different types $C = \{C_1, C_2, ..., C_n\}$

- Find the model (class) of active user
 - Eg. Horror movie lovers
 - This class is hidden
- Then apply model to predict vote

$$\Pr(C = c, v_1, \dots, v_n) = \Pr(C = c) \prod_{i=1}^{n} \Pr(v_i | C = c)$$

Class probability
Class probability

Detecting untainted data Shill = a decoy who acts

 Shill = a decoy who acts enthusiastically in order to stimulate the participation of others

• Push: cause an item's rating to rise• Nuke: cause an item's rating to fall

Properties of shilling

Given current user-user recommender systems:

- An item with more variable recommendations is easier to shill
- An item with less recommendations is easier to shill
- An item farther away from the mean value is easier to shill towards the same direction

How would you attack a recommender system?

Attacking a recommender system

 Introduce new users who rate target item with high/low value

Shilling, continued

- Recommendation *is* different from prediction
 - Recommendation produces ordered list, most people only look at first n items
- Obtain recommendation of new items before releasing item
 - Default Value

To think about... How would you combine user-user and

- item-item recommendation systems?
- How does the type of product influence the recommendation algorithm you might choose?
- What are the key differences in a modelbased versus a memory-based system?

References A good survey paper to start with:

Breese Heckerman and Kadie (1998) Empirical Analysis of Predictive Algorithms for Collaborative Filtering, In Proc. of Uncertainty in AI.

Shilling

Lam and Riedl (2004) Shilling Recommender Systems for Fun and Profit. In Proc. WWW 2004.

Collaborative Filtering Research Papers

http://jamesthornton.com/cf/

Digital Libraries

Computational Literary Analysis

Week 12 Min-Yen KAN

The Federalist papers

A series of 85
 papers written by
 Jay, Hamilton and
 Madison

 Intended to help persuade voters to ratify the US constitution

Disputed papers of the Federalist

- Most of the papers have attribution but the authorship of 12 papers are disputed
 - Either Hamilton or Madison
- Want to determine who wrote these papers
 - Also known as textual forensics

Hamilton

Madison

Wordprint and Stylistics

 Claim: Authors leave a unique wordprint in the documents which they author

 Claim: Authors also exhibit certain *stylistic patterns* in their publications

Feature Selection

Content-specific features (Foster 90)

• key words, special characters

• Style markers

- Word- or character-based features (Yule 38)
 o length of words, vocabulary richness
- Function words (Mosteller & Wallace 64)

• Structural features

- Email: Title or signature, paragraph separators (de Vel et al. 01)
- Can generalize to HTML tags
- To think about: artifact of authoring software?

Bayes Theorem on function words

- M & W examined the frequency of 100 function words
- Smoothed these frequencies using negative binomial (not Poisson) distribution

Frequency	Hamilton	Madison
0	.607	.368
1	.303	.368
2	.0758	.184

 Used Bayes' theorem and linear regression to find weights to fit for observed data

• Sample words:

as	do	has	is	no	or	than	this
at	down	have	it	not	our	that	to
be	even	her	its	now	shall	the	up

A Funeral Elegy and Primary Colors

"Give anonymous offenders enough verbal rope and column inches, and they will hang themselves for you, every time" – Donald Foster in *Author Unknown*

A Funeral Elegy: Foster attributed this poem to W.S.

Initially rejected, but identified his anonymous reviewer

 Forster also attributed *Primary Colors* to Newsweek columnist Joe Klein

Analyzes text mainly by hand

Foster's features

- Very large feature space, look for distinguishing features:
 - Topic words
 - Punctuation
 - Misused common words
 - Irregular spelling and grammar

Some specific features (most compound):

- Adverbs ending with "y": *talky*
- Parenthetical connectives: ..., then, ...
- Nouns ending with "mode", "style": crisis mode, outdoor-stadium style

Typology of English texts

Biber (89) typed different genres of texts

- Five dimensions ...
 - 1. Involved vs. informational production
 - 2. Narrative?
 - 3. Explicit vs. situation-dependent
 - 4. Persuasive?
 - 5. Abstract?

- ... targeting these genres
 - 1. Intimate, interpersonal interactions
 - 2. Face-to-face conversations
 - 3. Scientific exposition
 - 4. Imaginative narrative
 - 5. General narrative exposition

Features used (*e.g.*, Dimension 1)

 Biber also gives a feature inventory for each dimension

THAT deletionContractionsBE as main verbWH questions1st person pronouns2nd person pronouns2nd person pronounsCeneral hedgesNounsWord LengthPrepositionsType/Token Ratio

35	Face to face conversations
30	
25	
20	Personal Letters Interviews
15	
10	
5	
0	Prepared speeches
-5	General fiction
-10	Editorials
-15	Academic prose; Press reportage
-20	

Discriminant analysis for text genres

• Karlgren and Cutting (94)

- Same text genre categories as Biber
- Simple count and average metrics
- Discriminant analysis (in SPSS)
- 64% precision over four categories
- Adverb
- Character
- Long word (> 6 chars)
- Preposition
- 2nd person pronoun
- "Therefore"
- 1st person pronoun
- "Me"
- "I"
- Sentence

- Words per sentence
- Characters per word
- Characters per sentence
- Type / Token Ratio

26 Oct 2004

Some

count features

Recent developments

- Using machine learning techniques to assist genre analysis and authorship detection
 - Fung & Mangasarian (03) use SVMs and Bosch & Smith (98) use LP to confirm claim that the disputed papers are Madison's
 - They use counts of up to three sets of function words as their features

 $-0.5242as + 0.8895our + 4.9235upon \ge 4.7368$

• Many other studies out there...

Copy detection

Prevention – stop or disable copying process Detection – decide if one source is the same as another

Copy / duplicate detection

Compute signature for documents

- Register signature of authority doc
- Check a query doc against existing signature

\circ Variations:

- Length: document / sentence* / window
- Signature: checksum / keywords / phrases

R-measure

 Normalized sum of lengths of all suffixes of the text repeated in other documents

$$R^{2}(T \mid T_{1}, \dots T_{m}) = \frac{2}{l(l+1)} \sum_{i=1}^{l} Q(T[i..l] \mid T_{1}, \dots T_{m}),$$

where $Q(S|T_1...T_n) = \text{length of longest prefix of S}$ repeated in any one document

- Computed easily using suffix array data structure
- More effective than simple longest common substring

Granularity

- Large chunks
 - Lower probability of match, higher threshold

Small chunks

- Smaller number of unique chunks
- Lower search complexity

Subset problem

- If a document consists of just a subset of another document, standard VS model may show low similarity
 - Example: Cosine (D₁, D₂) = .61
 D₁: <A, B, C>,
 D₂: <A, B, C, D, E, F, G, H>
- Shivakumar and Garcia-Molina (95): use only *close* words in VSM
 - Close = comparable frequency, defined by a tunable ε distance.

Computer program plagiarism

- Use stylistic rules to compile fingerprint:
 - Commenting
 - Variable names
 - Formatting
 - Style (e.g., K&R)
- Use this along with program structure
 - Edit distance
 - What about hypertext structure?

```
/********
```

```
/*
 * concatenate s2 to s1 into s3.
 * Enough memory for s3 must already be
    allocated. No checks !!!!!!
 */
mysc(s1, s2, s3)
    char *s1, *s2, *s3;
{
    while (*s1)
      *s3++ = *s1++;
    while (*s2)
      *s3++ = *s2++;
}
```

Conclusion

 Find attributes that are stable between (low variance) texts for a collection, but differ across different collections

 Difficult to scale up to many authors and many sources

- Most work only does pairwise comparison
- Clustering may help as a first pass for plagiarism detection

To think about...

- The Mosteller-Wallace method examines function words while Foster's method uses key words. What are the advantages and disadvantages of these two different methods?
- What are the implications of an application that would emulate the wordprint of another author?
- What are some of the potential effects of being able to undo anonymity?
- Self-plagiarism is common in the scientific community. Should we condone this practice?

References

- Foster (00) Author Unknown. Owl Books <u>PE1421</u>
 Fos
- Biber (89) A typology of English texts, Linguistics, 27(3)
- Shivakumar & Garcia-Molina (95) SCAM: A copy detection mechanism for digital documents, Proc. of DL 95
- Mosteller & Wallace (63) Inference in an authorship problem, J American Statistical Association 58(3)
- Karlgren & Cutting (94) Recognizing Text Genres with Simple Metrics Using Discriminant Analysis, Proc. of COLING-94.
- de Vel, Anderson, Corney & Mohay (01) Mining Email Content for Author Identification Forensics, SIGMOD Record