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Digital Libraries

Computational Literary Analysis, 
Duplicate and Plagiarism Detection
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Outline

� Literary Analysis

� Authorship detection

� Genre classification

� Duplicate Detection

� Web pages

� Plagiarism Detection

� In text 

� In programs
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The Federalist papers

� A series of 85 
papers written by 
Jay, Hamilton and 
Madison 

� Intended to help 
persuade voters to 
ratify the US 
constitution
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Disputed papers of the Federalist

� Most of the papers 
have attribution but 
the authorship of 12 
papers are disputed

� Either Hamilton or 

Madison

� Want to determine 
who wrote these 
papers

� Also known as 

textual forensics

Madison

Hamilton
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Wordprint and Stylistics

� Claim: Authors leave a unique 
wordprint in the documents which 
they author 

� Claim: Authors also exhibit certain 
stylistic patterns in their 
publications
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Feature Selection

� Content-specific features (Foster 90) 
� key words, special characters

� Style markers 
� Word- or character-based features

� length of words, vocabulary richness

� Function words (Mosteller & Wallace 64)

� Structural features
� Email: Title or signature, paragraph separators 

(de Vel et al. 01)
� Can generalize to HTML tags
� To think about: artifact of authoring software?



11 Oct 2005

CS 5244 - Computational 

Document Analysis 7

Bayes Theorem on function words

� M & W examined the frequency of 100 function words

� Used Bayes’ theorem and linear regression to find 

weights to fit for observed data

� Sample words:
as do has is no or than this

at down have it not our that to

be even her its now shall the up

.184.07582

.368.3031

.368.6070

MadisonHamiltonFrequency
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A Funeral Elegy and Primary Colors

“Give anonymous offenders enough verbal rope and column inches, and they will hang themselves 
for you, every time” – Donald Foster in Author Unknown

� A Funeral Elegy: Foster attributed this 
poem to W.S.

� Initially rejected, but identified his anonymous 
reviewer 

� Forster also attributed Primary Colors to 
Newsweek columnist Joe Klein

� Analyzes text mainly by hand
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Foster’s features

� Very large feature space, look for 
distinguishing features:
� Topic words

� Punctuation 

� Misused common words

� Irregular spelling and grammar

� Some specific features (most compound):
� Adverbs ending with “y”: talky

� Parenthetical connectives: … , then, …

� Nouns ending with “mode”, “style”: crisis 
mode, outdoor-stadium style



11 Oct 2005

CS 5244 - Computational 

Document Analysis 10

Typology of English texts

� Five dimensions …

1. Involved vs. 

informational 
production

2. Narrative?

3. Explicit vs. 
situation-dependent

4. Persuasive?

5. Abstract?

… targeting these genres

1. Intimate, 

interpersonal 
interactions

2. Face-to-face 

conversations

3. Scientific exposition

4. Imaginative 

narrative

5. General narrative 

exposition

� Biber (89) typed different genres of texts
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Features used (e.g., Dimension 1)

� Biber also gives a 
feature inventory for 
each dimension 

THAT deletion

Contractions

BE as main verb

WH questions

1st person pronouns

2nd person pronouns

General hedges

Nouns

Word Length

Prepositions

Type/Token Ratio

35 Face to face conversations

30

25

20 Personal Letters 

Interviews

15

10

5

Prepared speeches

0

General fiction

-5

-10 Editorials

-15 Academic prose; Press reportage

Official Documents

-20

+

¯
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Discriminant analysis for text genres

� Karlgren and Cutting (94) 
� Same text genre categories as Biber

� Simple count and average metrics 

� Discriminant analysis (using SPSS software)

� 64% precision over four categories

• Adverb 

• Character

• Long word (> 6 chars) 

• Preposition 

• 2nd person pronoun

• “Therefore”

• 1st person pronoun

• “Me”

• “I”

• Sentence

S
o
m
e
 c
o
u
n
t fe
a
tu
re
s

O
th
e
r fe
a
tu
re
s

• Words per sentence

• Characters per word

• Characters per sentence

• Type / Token Ratio
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Genre vs. Subject (Lee & Myaeng 02)

� Genre: style and purpose of text
� Subject: content of text

What about the interaction between the two?

Study found that certain genres overlap signficantly
in subject vocabulary

� So, want to use terms that cover more subjects 
represented by a genre 

� Do this by selecting terms that:
1. Appear in a large ratio of documents belonging to 

the genre

2. Appear evenly distributed among the subject 
classes that represent the genre

3. Discriminate this genre from others
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Putting the constraints together

g
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Use these to define the weight

Where σ is a penalty 

(“deviation”) factor for 

terms that are spread 

widely over different 

subjects

What are some 

negative aspects of 

this approach?

What are some 

negative aspects of 

this approach?
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In summary…

Genre and authorship analysis relies on highly frequent evidence that is 
portable across document subjects.

Contrast with subject/text classification which looks for specific keywords 
as evidence.

References:

� Mosteller & Wallace (63) Inference in an authorship problem, J 
American Statistical Association 58(3)

� Karlgren & Cutting (94) Recognizing Text Genres with Simple 
Metrics Using Discriminant Analysis, Proc. of COLING-94.

� de Vel, Anderson, Corney & Mohay (01) Mining Email Content for 
Author Identification Forensics, SIGMOD Record 

� Foster (00) Author Unknown. Owl Books PE1421 Fos

� Biber (89) A typology of English texts, Linguistics, 27(3)
� Lee and Myaeng (02)
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To think about…

� The Mosteller-Wallace method examines 
function words while Foster’s method 
uses key words. What are the advantages 
and disadvantages of these two different 
methods? 

� What are the implications of an 
application that would emulate the 
wordprint of another author?

� What are some of the potential effects of 
being able to undo anonymity?
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Water Break

� See you in five 
minutes!

I will hold a short 
tutorial for HW #2 
at the end of class 
today.
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Copy detection
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Duplicate detection characteristics

� Plagiarism

� copies intentionally

� may obfuscate

� target and source 
relation

� Self-plagiarism*
� copy from one’s own 

work

� Often to offer for 
background of work 
in incremental 
research

� (near) Clone/duplicate 

� same functionality in 
code / citation data

� but in different 
modules by different 
developers 

� Fragment
� web page content 

generated by content 
manager

� interferes with 
spiders’ re-sampling 
rate



11 Oct 2005

CS 5244 - Computational 

Document Analysis 20

Signature method

1. Register signature of authority doc

2. Check a query doc against existing 
signature

3. Flag down very similar documents

Some design choices have to be made:

� How to compute a signature

� How to judge similarity between 
signatures



11 Oct 2005

CS 5244 - Computational 

Document Analysis 21

Effect of granularity

Divide the document into smaller chunks 
document – no division
sentence
window of n words

� Large chunks 
� Lower probability of match, higher threshold

� Small chunks
� Smaller number of unique chunks
� Lower search complexity
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Signature methods

For text documents

� Checksum 

� Keywords 

� N-gram (usually 
character) inventory

� Grammatical phrases

For source code

� Words, characters 
and lines

� Halstead profile

(Ignores comments)

� Operator histogram

� e.g., frequency 
of each type 
sorted

� Operand histogram
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Distance calculations

Calculate distance between p1, p2

� VSM: L1 distance Σf|Pf1-Pf2|
� VSM: L2 Euclidean distance (Σf|Pf1-Pf2|

2)1/2

� Weighted feature combinations
� For text features, can use edit distance

� Calculate using dynamic programming

Detect and flag copies
� Assume top n% as possible plagiarisms
� Use a tuned similarity threshold 
� Other way: do tuning on supervised set

(learn weights for features: Bilenko and Mooney)

What are some problems with these approaches?What are some problems with these approaches?
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Subset problem

� Problem: If a document consists is just a 
subset of another document, standard VS 
model may show low similarity

� Example: cosine (D1,D2) = .61
D1: <A, B, C>, 
D2: <A, B, C, D, E, F, G, H>

� Shivakumar and Garcia-Molina (95): use 
only close words in VSM

� Close = comparable frequency, defined by a 
tunable ε distance.
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R-measure: amount repeated in other 
documents (Khmelev and Teahan)

� Normalized sum of lengths of all suffixes 
of the text repeated in other documents

where Q(S|T1…Tn) = length of longest prefix of S 

repeated in any one document

� Computed easily using suffix array data 
structure

� More effective than simple longest common 
substring
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R-measure example

T = cat_sat_on

T1 = the_cat_on_a_mat

T2 = the_cat_sat

((7+6+5+4+3) + (5+4+3+2+1))R2(T|T1,T2) =
2

10 x (10 + 1)

cat_sat

at_sat

t_sat

_sat

sat

at_on

t_on

_on

on

n

Can R-measure identify 

which document is 

associated with the R-

score?

Can R-measure identify 

which document is 

associated with the R-

score?
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Computer program plagiarism

� Use stylistic rules to 
compile fingerprint:

� Commenting

� Variable names

� Formatting

� Style (e.g., K&R)

� Use this along with 
program structure

� Edit distance

/***********************************
* This function concatenates the first and
* second string into the third string.
*************************************
void strcat(char *string1, char *string2, char 

*string3)
{
char *ptr1, *ptr2;
ptr2 = string3;

/*
* Copy first string
*/

for(ptr1=string1;*ptr1;ptr1++) {
*(ptr2++) = *ptr1;
}

/*
* concatenate s2 to s1 into s3.
* Enough memory for s3 must already be 

allocated. No checks !!!!!!
*/

mysc(s1, s2, s3)
char *s1, *s2, *s3;

{
while (*s1)
*s3++ = *s1++;

while (*s2)
*s3++ = *s2++;

}
What about hypertext structure 

in the web?

What about hypertext structure 

in the web?
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Design-based methods 

� Idea: capture syntactic and semantic flow rather 
than token identity (for source code)

� Replace variable names with IDs correlated with 
symbol table and data type

� Decompose each p into regions of 
� sequential statements

� conditionals

� looping blocks – recurse on these

� Calculate similarity from root node downwards
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Recursive 
region 
coding
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Fragments of a web page

Which are duplicated?  Changed?
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Defining fragments

� Base case: each web page is a 
fragment

� Inductive step: each part of a 
fragment is also a fragment if

� Shared: it is shared among at least n 

other fragments (n > 1) and is not 
subsumed by a parent fragment

� Different: it changes at a different rate 
than fragments containing it
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Conclusion

� Signature-based methods common, design-based assumes domain 
knowledge.
� The importance of granularity and ordering changes between domains

� Difficult to scale up
� Most work only does pairwise comparison

� Low complexity clustering may help as a first pass

References
� Belkouche et al. (04) Plagiarism Detection in Software Designs, ACM 

Southeast Conference
� Shivakumar & Garcia-Molina (95) SCAM: A copy detection mechanism 

for digital documents, Proc. of DL 95.
� Bilenko and Mooney (03) Adaptive duplicate detection using learnable 

string similarity measures, Proc. of KDD 03.
� Khmelev and Teahan (03) A repetition based measure for verification 

of text collections and for text categorization, Proc. SIGIR 03
� Ramaswamy et al. (04) Automatic detection of fragments in 

dynamically generated web pages, Proc. WWW 04.
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To think about…

� How to free duplicate detection 
algorithms from needing to do pairwise 
comparisons?

� What size chunk would you use for 
signature based methods for images, 
music, video? Would you encode a 
structural dependency as well (ordering 
using edit distance) or not (bag of chunks 
using VSM) for these other media types?


