CS5244 Digital Libraries

Rin FAQ System

Raymond Jun ZHENGHT050659YZheng LUHT055495R

Research Background

- QA System:
 - Find the most similar question-answer pairs with respect to user's queries.
 - Rule-based, statistical, and mixed approaches.
- FAQ System
 - Retrieving information from a set of semi structured texts
 - Designed for the retrieval of the very frequent, popular, and highly reusable question-answer pairs, called QA pairs
 - QA pairs are usually provided or verified by domain experts
 - Domain-specific and adopts inference and reasoning to retrieve a more accurate QA pair for a query.
- Traditional information retrieval does not use semantic representation and knowledge

Literature Review and Objective

- There are three prominent parts of the FAQ system: Query Processing Techniques, Knowledge Base Structure and FAQ Retrieval Techniques.
- FAQ Retrieval Techniques
 - Statistical similarity approach with keyword match,
 - Statistical similarity approach with prioritized keyword match,
 - Statistical similarity approach with case based reasoning,
 - Statistical similarity approach with vector model,
 - Semantic similarity approach and
 - Database query
- Objective of this study:
 - Discuss and compare the FAQ system answer retrieval techniques based on *statistical similarity approach* and *semantic similarity approach*.

Use of the Statistical Similarity Approach with Vector Model

VSM similarity measurement

Performance of VSM (Baseline)

- The shortfall of VSM Similarity Measure
 - Documents with similar content but different vocabularies may result in a poor inner product. This is a limitation of keyword-driven IR systems.

Use of Improved Statistical Similarity Approach with Vector Model with Stop-words Removal and Stemming

Evaluation

- NN→ stop-words removal feature *Not available* stemming feature *Not available*
- YN → stop-words removal feature *available* stemming feature *Not available*
- NY→ stop-words removal feature *Not available* stemming feature *available*
- YY → stop-words removal feature *available* stemming feature *available*

• Result

- stop-words removal does not help
- Stemming helps

	Mean Reciprocal Rank		MRR improvement
NINI	0.450005	NN -> NY	6.3%
ININ	0.452885	NN -> YN	-2.2%
NY	0.481566	NN -> YY	11.4%
YN	0.442715	YN -> YY	14.0%
ΥY	0.504562	NY -> YY	4.8%

Use of the Semantic Similarity Approach

- The implementation of the semantic similarity approach
 - Method
 - 1. Category specific keywords
 - 2. documents specific keywords
 - Formula

Score = $P_1 M_1 + P_2 M_2 + M_{vsm}$

Performance with respect to P₁

Findings: Best if $P_1 = 4$ and $P_2 = 20$

Comparison between the improved model and the baseline model

• Result

1 0.9 • Further Improvement 0.8 Using Query Expansion - Baseline 0.7 -• 0.6 Improved 0.5 0.4 Improved with Query 0.3 Expansion 0.2 0.1 0 top2 top5 top10 top1 top3 top4

Conclusion

- Mere Statistical Similarity Approach is not enough.
- Use of the Stemming Feature helps.
- Semantic Similarity Approach with addition of category keywords and sentence keywords help.
- Semantic Similarity Approach with addition of query expansion does not help with regard to the performance.