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We explore probabilistic lexico-syntactic pattern matching, also known as soft pattern matching, in

a definitional question answering system. Most current systems use regular expression-based hard

matching patterns to identify definition sentences. Such rigid surface matching often fares poorly

when faced with language variations. We propose two soft matching models to address this problem:

one based on bigrams and the other on the Profile Hidden Markov Model (PHMM). Both models

provide a theoretically sound method to model pattern matching as a probabilistic process that

generates token sequences. We demonstrate the effectiveness of the models on definition sentence

retrieval for definitional question answering. We show that both models significantly outperform

the state-of-the-art manually constructed hard matching patterns on recent TREC data.

A critical difference between the two models is that the PHMM has a more complex topology. We

experimentally show that the PHMM can handle language variations more effectively but requires

more training data to converge.

While we evaluate soft pattern models only on definitional question answering, we believe that

both models are generic and can be extended to other areas where lexico-syntactic pattern matching

can be applied.
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1. INTRODUCTION

Definition questions such as questions like “What is TB?” or “Who is Aaron
Copland?” account for a significant number of queries submitted to Web search
engines [Voorhees 2001].

The most straightforward way to answer such questions is to look up the
appropriate definition in a dictionary or an encyclopedia. Many current search
engines, such as Google and Yahoo, adopt such an approach to defining terms,
relying on existing online definitional resources. However, the public’s interest
is often focused on recent development of events and people. New terms, orga-
nizations, and personalities, such as Enron, Clay Aiken, and SARS, which are
of great interest to the public, are often first described in news. Descriptions
for these newly minted terms of interest are not found in authoritative sources
such as dictionaries or encyclopedias, but their descriptions can often be found
in breaking news Web sites. Moreover, definitions of people and organizations
often change over time; thus, even with a suitably large pool of human editors,
it is impossible for manually edited resources to keep all definitions up-to-date.

Therefore, automatic definitional question answering (QA) systems have
been developed. They complement the use of such manually edited definitions
as they accumulate and produce definitions for these types of terms that are
not covered by standard authoritative resources. In response to such questions,
a typical definitional QA system extracts definition sentences that contain de-
scriptive information about the search term from multiple documents and sum-
marizes these sentences into definitions.

Traditional IR systems are only part of the solution: given a topic, search
engines can only retrieve relevant documents, but do not distill these documents
down to a single, coherent definition. The synthesis of a complete definition of
such new terms requires the identification and collation of definition sentences
(as opposed to whole documents or Web pages) across multiple relevant articles.

The construction of complete and fluent definitions for terms incorporates
many technologies. In this article, we focus on a core component of this task:
namely, the identification of definition sentences from relevant documents for a
specified search target. A definition sentence contains descriptive information
that can be included in an extended definition of the term. Such an extended defi-
nition answers not only “what/who is X?” but also “what/who is X like?” [Lannon
1991], that is, the extended definition aggregates all relevant information about
the target.

Definitional QA systems are based on either sentence retrieval or linguistic
construct extraction (e.g., BBN [Xu et al. 2003] and Columbia [Blair-Goldensohn
et al. 2004] systems). In this study, we focus on sentence retrieval for answer-
ing definition questions due to two reasons: first, the diversity of definition
sentences makes definition sentence retrieval a difficult problem. Sentences
are longer units than linguistic constructs and thus provide better coverage of
relevant information and context which aids comprehension. Generally, recall
is considered more important than precision for a corpus-based definitional QA
system. Second, we believe that a QA system based on sentence retrieval and
summarization provides an adaptable testbed for experimenting with various
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techniques. Other modules, such as the one to find fine-grained definition units,
can be easily integrated into this system.

Definition questions are about event and nonevent targets. Definitions of
events such as “The return of Hong Kong to Chinese sovereignty” require
information to be extracted and ordered chronologically. Suitable techniques
have been developed in the event-based summarization community [Mani et al.
2004], and thus we deal with definitions of nonevent targets, such as people,
organizations, and other terms.

Most approaches applicable to definition sentence retrieval use pattern
matching. Many systems create patterns manually: Harabagiu et al. [2003] em-
ployed 38 manually constructed definition patterns for plain text news articles;
Liu et al. [2003] mined topic-specific definitions using hand-crafted rules from
Web pages. However, we find that the manually constructed lexico-syntactic
rules are too rigid to cover the notion of extended definitions, as such sentences
exhibit diversity in patterns [Cui et al. 2004a], and rigid rules often fail to
match definition sentences due to inserted or deleted tokens. Such mismatches
are common in natural language texts because authors often use diverse ex-
pressions to convey the same meaning. A similar problem occurs in other appli-
cations that make use of lexico-syntactic pattern matching, such as information
extraction.

One promising technique to address this is soft pattern (SP) matching. In our
previous work, we have shown that soft patterns are able to significantly outper-
form hard patterns in extracting definition sentences as they model language
variations probabilistically [Cui et al. 2004a, 2005]. Different from regular ex-
pression based hard-matching patterns employed in existing systems, we treat
definition patterns as sequences of lexical and syntactic tokens. Therefore, pat-
tern matching can be considered as probabilistic generation of test sequences
based on training sequences. In this article, we develop a definitional QA system
around soft pattern matching and formalize two soft pattern matching models.
The first model is derived from the bigram language model with linear inter-
polation of unigram and bigram probabilities. The second model is based on
the Profile Hidden Markov Model (PHMM). While the language model and the
PHMM have been studied in other areas, their use in modeling lexico-syntactic
pattern matching is a novel contribution of our work. Note that we constrain our
focus on soft matching models for lexico-syntactic patterns on plain text. While
the corpus we use for evaluation was constructed from online news, all HTML
tags and hyperlinking information for the documents have been removed. Tack-
ling patterns in other structures, such as parsing trees and nonlinear structures
of Web pages involving hyperlinks, is beyond the scope of this study.

In summary, the main contributions of this article are the following:

—We propose two soft pattern models that significantly improve the perfor-
mance of the baseline definitional QA system that uses hard patterns in F3

scores on both TREC-13 and -14 test sets. Such improvement indicates that
definition sentences exhibit diversified language patterns that are not cap-
tured well by hard matching of manually constructed rules. While we only
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demonstrate soft pattern models on definitional QA, both soft pattern mod-
els can be extended to other applications that employ lexico-syntactic pattern
matching.

—We validate the hypothesis drawn in our previous study [Cui et al. 2005] that,
given more training data, the PHMM outperforms the simple bigram model.
In this study, we complete the verification of the hypothesis experimentally
by employing more labeled definition sentences from previous years’ TREC
data for training the soft pattern models. We further analyze the results
produced by the PHMM and find that only a small proportion of definition
sentences retrieved by the PHMM but missed by the bigram model actually
benefit from editing operations in the PHMM. We conjecture that noisy data
sets will benefit more from the PHMM.

We first review the background of definition extraction in Section 2. In Sec-
tion 3, we present the architecture of our definitional QA systems and discuss
the specific implementation details. In Section 4, we discuss our core work on the
two formal soft matching models. In Section 5, we then show empirical evidence
that bear-out the effectiveness of the soft pattern approach on TREC datasets
and discuss the results and limitations of our work. In Section 6, we present
our conclusions and examine future directions for soft pattern matching. In the
Appendix, we compare and summarize the techniques employed by the current
definitional QA systems in Table VII. In addition, we list the commonly used
regular-expression-based rules for definition extraction in Table VIII.

2. BACKGROUND

In this section, we review related work on automatic definition extraction. We
categorize the definition extraction systems into two groups—domain-specific
definition extraction systems and open-domain definition extraction (or defini-
tional QA) systems. We classify our own soft pattern-based system in the latter
category.

2.1 Domain-Specific Definition Extraction

There has been much work aiming to extract definitions for terms from struc-
tured or unstructured text. Identifying expansion forms for abbreviations
or acronyms is perhaps the simplest form of definition extraction. Schwartz
and Hearst [2003] presented an algorithm that searches expanded forms for
acronyms in biomedical text. The algorithm searches for the form “short form
(long form)” or “long form (short form)” and examines whether each letter
in the short term comes from each word in the long form. Such definitions
for abbreviations are relatively simple to identify, and thus it is sufficient to
apply only string processing techniques. Zahariev [2003] introduced dynamic
programming in matching definitions to handle more complicated acronyms,
which may have multiple letters from a single word in the expansion form.

DEFINDER [Klavans and Muresan 2001] is part of a digital library project
and aims to provide readable definitions of medical terms to patients. While de-
veloped for a specific domain, the two primary techniques it employs are largely
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domain-independent: (1) shallow text pattern analysis—patterns such as “is
called” and “is the term used to describe”—and (2) syntactic analysis for
recognizing more complex structures like appositive and apposition. In their
evaluation, Klavans and Muresan [2001] showed that online medical dictio-
naries have lower coverage compared to the results automatically extracted by
DEFINDER. Their results show that automatic definition extraction systems
complement manually constructed dictionaries. We believe that the coverage
of standard authoritative sources is lower in the open-domain context as new
terms are coined frequently. Therefore, developing automatic systems for defi-
nition extraction is indispensable.

As both the accuracy of manually constructed definitions and the coverage
of automatically extracted definitions are positive qualities, researchers often
combine both types of resources. For instance, in Muresan et al. [2003], glos-
saries identified from existing Web sites and definitions extracted from unstruc-
tured text by DEFINDER are integrated to determine conceptual connections
between different term databases.

Schiffman et al. [2001] produced biographical summaries (i.e., to answer “who
is” questions). They combined a data-driven statistical method with machine-
learned rules to generate definitions. The biographical information was identi-
fied by appositives and special predicates led by verbs associated with typical
actions of people.

More recently, the ubiquity of the Web has generated interest in finding defi-
nitions. Liu et al. [2003] proposed mining topic-specific definitions from the Web.
The basic idea is to utilize a set of hand-crafted rules to find definition sentences
on Web pages. They also tried to utilize the structure of Web pages to identify
subtopics of each main topic, which could be considered part of the extended
definition of the main topic. KnowItAll, a large-scale QA system developed by
Etzioni et al. [2004], relies on the scale of the Web to find simple, parseable nat-
ural language sentences that clearly indicate answers to factual list questions.
KnowItAll uses a bootstrapping approach where generic natural language tem-
plates are specialized with particular noun phrases (e.g., “countries”) to create
queries to find instances of the entities (e.g., “China, Spain, Germany...”). It
expands the inventory of templates to be used in subsequent bootstrapping
rounds. KnowItAll focuses on using the multiplicity of evidence on the Web to
find many individual simple extraction patterns and requires syntactic analy-
sis. In contrast, our objective is to build a single, flexible representation of the
context of a search to encompass the variation in natural language found in
definitions. Likewise, Agichtein and Gravano [2000] presented a system Snow-
ball, which aimed to extract relations between named entities from the Web
data. They also adopted a bootstrapping strategy to increase the coverage of
the extracted tuples and the extraction patterns. Their pattern matching de-
gree depended on the cosine similarity of the context. The work is relevant
to soft pattern matching because it does not enforce hard matching. However,
their matching function does not take into account any sequential information
of the contextual tokens.

The above systems automatically extract definitions from plain text or Web
pages, but are domain-specific. Our aim is to present a comprehensive definition
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Fig. 1. A sample definition question and answer nuggets from TREC.

extraction system that works on news articles and for a wide spectrum of terms.
Many such systems have been showcased at TREC’s question-answering com-
petition, which we review next.

2.2 TREC Definitional Question Answering

The Text REtrieval Conference (TREC), a yearly research competition spon-
sored by the U.S. government, has had a separate competition track on defi-
nitional question answering since 2003. Entrants’ systems are evaluated over
a corpus of over one million news articles from various news agencies. The
definitional QA task requires the participating systems to extract and return
interesting information about a particular person or term, such as “Who is Vlad
the Impaler?” or “What is a prion?” The evaluation of definition questions is
based on a manual check of how many answer nuggets (determined by the
human assessor) are covered by system responses and allows partial credit for
incomplete answers [Voorhees 2003a]. Figure 1 illustrates an example question
from TREC and its corresponding answer nuggets.

TREC assesses definitional QA systems with respect to content precision
and recall and does not attempt to judge definitions with respect to fluency
or coherence. This is in line with the focus on our work in retrieving relevant
definition sentences but differs from the general task of definition generation
in which such stylistic criteria matter. As seen in Figure 1, content nuggets
are categorized into vital pieces of information and okay ones that would be
desirable to include in such extended definitions.

In early TREC, definition questions are mixed with factoid questions and
are answered by a phrase as a short definition. As such, the systems, such as
the FALCON system [Harabagiu et al. 2000] and IBM system [Prager et al.
2001], employ simple manually constructed patterns to extract proper phrases
or hypernyms from WordNet to define the search target.

However, extended definitions are thought to be more useful to users as they
incorporate more description and context of the target term, which may better
facilitate comprehension. Recent definitional QA systems have applied sophis-
ticated analyses to retrieve such descriptive sentences. Table I summarizes the
techniques employed by some representative TREC systems that perform well
in the official evaluations. An exhaustive listing of techniques on a per system
basis is presented in Table VII of the Appendix.
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Table I. Summary of Techniques Employed by TREC Systems

TREC

Systems Definitional Linguistic Constructs Statistical Ranking

Patterns Appositives Predicates Centroid Mining

Surface on Parsing and Relative and Verb Vector or External

Patternsa Treesb Copulasc Clausesd Phrasese Profile f Definitionsg

NUSh [Yang

et al. 2003]

× × × ×

BBN [Xu

et al. 2003,

2004]

× × × × × × ×

Columbia

[Blair-

Goldensohn

et al. 2003]

× × × ×

LCC

[Harabagiu

et al. 2003]

× ×

MIT [Katz

et al. 2004]

× × × × × ×

IBM

PIQUANT

[Chu-

Carroll

et al. 2004;

Prager

et al. 2003]

× × × × ×

Amsterdam

[Ahn et al.

2004]

× × × ×

Sheffield

[Gaizauskas

et al. 2004]

× × × × ×

Korea

University

[Han et al.

2004]

× × × × × ×

aLexico-syntactic surface patterns, such as “<TARGET> , the $NNP”.
bPattern rules for extracting specified constructs from syntactic parsing trees for sentences.
cAppositives—for example, “Gunter Blobel, a cellular and molecular biologist, . . . ”; copulas—for example, “Stem
cell is a cell from which other types of cells can develop.”
d For example, “ . . . Gunter Blobel who won the Nobel Prize for . . . .”
ePredicates and verb phrases are mainly for describing a person or special relations. They are identified by a set

of specialized verbs, which are often coupled with people’s behaviors, such as “born” and “vote.”
f To construct a centroid vector or profile for each target and then use it to rank the relevance of candidate sentences

or constructs. The centroid vector contains a set of highly relevant words to the target, which could be selected by

frequent words in external definitions/biographies or extracted candidate sentences or constructs.
g To use other definitions obtained from definitional Web sites, such as online biographies and encyclopedias. The

weights of the relevant words to the target are augmented if they also appear in external definitions.
hThis system refers to our system used in TREC-12, before we proposed the soft pattern models.
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From Table I, it is clear that definitional QA systems mainly rely on two
types of information to identify definitions: definitional linguistic constructs
and statistical ranking. Let us examine these two components in more detail.

2.2.1 Definitional Linguistic Constructs. All systems try to identify specific
definitional linguistic constructs that mark definition sentences. Examples of
such definitional linguistic constructs include appositives and copulas. Appos-
itives, such as “Gunter Blobel, a cellular and molecular biologist, . . . ,”
are mostly used in news to introduce a person or a new term. To recognize
such linguistic constructs, the systems employ precompiled patterns, either on
surface text (e.g., BBN, MIT, and LCC) or on syntactic parsing trees (e.g., Ams-
terdam, Columbia, and Korea University). According to component evaluations
[Xu et al. 2004; Cui et al. 2004a], definition pattern matching is the most im-
portant component in a definitional QA system. Definition patterns can also be
defined based on specific question patterns and entity classes [Harabagiu et al.
2005]. Since surface patterns are more adaptable and easier to deploy without
the requirement of task-specific parsing, we discuss only surface textual pat-
terns that are represented in lexical/syntactic tokens. We list some definition
patterns in Table VIII in the Appendix.

It is worth noting that the patterns employed by current definitional QA sys-
tems are equivalent to those that have been used by information extraction (IE)
systems in the past. Traditional IE systems rely on a set of textual rules which
are generalized from training examples. Muslea [1999] surveyed three kinds of
pattern learning algorithms that perform extraction pattern generalization on
free text and online documents, as well as automatic wrapper induction. These
algorithms generalize the context around the target of interest, in terms of syn-
tax and semantics, and abstract such contextual constraints as rules. A pattern
is matched if each surrounding word of the candidate extraction matches its cor-
responding constraint in the pattern. Therefore, we deem the pattern matching
using generalized rules as hard matching, as it requires an exact, slot-by-slot
match. A pattern is not matched if any slot is not matched. Virtually all defini-
tional QA systems that employ manual patterns (e.g., Harabagiu et al. [2003];
Hildebrandt et al. [2004]) or automatic rule induction algorithms (e.g., Peng
et al. [2005]; Cui et al. [2004a]) are thus hard pattern matching systems, as
their patterns perform slot-by-slot matching.

We identify two drawbacks of using such generalized pattern rules for ex-
tracting definitions:

(1) Inflexibility in Matching. As stated, hard matching rules fail to match when
there are even small variations between the training instances and the test
text, such as extra or missing tokens. Such variations in natural language
text are common in extended definition sentences and are a hallmark of
fluent, well-crafted articles. Similar problems occur in information extrac-
tion, but are usually less serious as IE tends to extract domain-specific and
task-specific information.

(2) Inconsistent Weighting of Patterns. Most systems use statistical metrics
to rank the importance of retrieved constructs, but treat each definitional
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pattern with the same level of importance. However, different definition
patterns should be weighted differently. For instance, appositives are the
most popular syntactic pattern for definitions, and thus should be weighted
heavily. Many systems lack a consistent method to determine the impor-
tance of the various definition patterns. The fertility of each pattern can
then be utilized when ranking extracted definition candidates.

To circumvent the above problems, we proposed an alternative pattern gen-
eration and matching technique, soft pattern matching, for definition sentence
identification [Cui et al. 2004a, 2005]. Unlike current definition patterns, soft
pattern matching learns a holistic definition pattern from all training instances
and assigns a weight to a pattern instance according to the distribution of to-
kens in each slot in the training data. More importantly, it does not treat pattern
matching simply as a binary decision, but allows partial matching by calculat-
ing a generative degree-of-match probability between the test instance and the
set of training instances.

The definition of soft patterns encompasses several existing approaches to
information extraction. Several graphical models for IE can thus be viewed as
soft pattern matching in this framework, but they perform more than surface
pattern matching. Skounakis et al. [2003] applied hierarchical HMMs to the
task of extracting binary relations in biomedical texts. They constructed two
types of HMMs to represent words and phrases, which are two levels of emission
units. Earlier work by McCallum et al. [2000] demonstrated the application of
the Maximum Entropy Markov Model (MEMM) to segmentation and extraction
of FAQs from Web documents. These variations of HMMs also model pattern
matching as token sequence generation and are able to deal with variations in
test instances. However, they cannot be applied to definition pattern matching
directly because the topologies they employ are task-specific.

In this article, we focus our discussion on lexico-syntactic patterns used in
definitional QA systems. There are other patterns beyond textual patterns. For
instance in TREC 2005, LCC [Harabagiu et al. 2005] employed two additional
types of precompiled patterns—question patterns and entity classes. Question
patterns comprise a list of factoid questions whose answers are considered
essential nuggets according to the type of the target. Entity classes indicate
named entities relevant to the target in the corpus. These two types of patterns
could be considered as predefined templates for searching for definitions for
different targets. Since such template-like patterns need intense manual labor
and expertise to construct, we do not consider them in this article.

2.2.2 Statistical Ranking. The second component that many current defi-
nitional QA systems make use of is statistical ranking, which is used to weight
the importance of extracted definition candidates. A statistical ranking method
constructs a centroid vector, or profile, for the search target and ranks the defi-
nition candidates by calculating the similarity between the candidates and the
centroid vector. Centroid words are relevant, nontrivial words correlated with
the search target, selected from the extracted candidates by measuring their
cooccurrence with the target or their corpus frequency in an external resource.
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Fig. 2. Illustration of the architecture of the definitional QA system.

Our centroid ranking method, discussed in Section 3.1, is based on the cooc-
currence technique but also generalizes the lexical tokens into syntactic tags
to create more generic patterns. We will discuss how to replace centroid words
with their syntactic tags in Section 4.1.

TREC systems (e.g., Ahn et al. [2004]) also utilize definitions extracted from
online encyclopedias and biographical Web sites, which provide a much larger
and neater resource for definitions. External definitions are usually utilized to
reinforce the definition candidates from the corpus. Candidates with higher
degrees of overlap with the external definitions are augmented in weights.
We will not discuss the use of external definitions in detail since we focus on
building a self-contained definitional QA system.

3. SYSTEM OVERVIEW

Figure 2 shows the overall system architecture of our definitional QA system.
Given a definition question, our system executes the following four steps to
construct an appropriate answer.

(1) Document retrieval. Given a definition question, we first extract the search
target as a query and feed it into a standard document retrieval system.
The retrieved documents are split into sentences.

(2) Preprocessing. We process the retrieved sentences into pattern instances
on which soft definition pattern generation and matching are performed.
Specifically, in the training phase, labeled definition sentences are pro-
cessed into pattern instances. In the testing phase, each test sentence is
also transformed to a pattern instance and statistically matched against
the previously trained pattern. We first replace the words that are spe-
cific to the search targets with their general syntactic (POS or chunk) tags.
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Fig. 3. Sample pattern instances generated after preprocessing.

Remaining words are stemmed. We refer to these remaining lexical words
and substituted general syntactic tags collectively as tokens. We then take
the tokens surrounding the search target as pattern instances. Figure 3
illustrates several sample pattern instances.

(3) Definition sentence ranking. The ranking module ranks the input sentences
based on how likely they are definition sentences for the target. We rank def-
inition sentences using two features: definition patterns and bag-of-words
relevance. To rank sentences, we combine the pattern matching and bag-
of-words ranking scores using simple linear weights.

(4) Definition sentence summarization. This module produces the final answer
by selecting from top-ranked sentences and removing redundant sentences.
Sentence editing and reordering may be employed to create a final coherent
summary (e.g., Jing [2000]), but this postprocessing is beyond the scope of
this article.

The key steps, that is, pattern instance generalization (Step 2) and soft pat-
tern matching in ranking definition sentences (Step 3), deserve an in-depth
discussion, and will be described in detail in the following section. In the re-
mainder of this section, we discuss the bag-of-word relevance approach (part of
Step 3) and the final summarization sentence selection (Step 4).

3.1 Bag-of-Words Statistical Ranking of Relevance

In order to accumulate as many relevant sentences for the search target as pos-
sible, we adopt centroid ranking, a bag-of-words statistical ranking technique
for weighting the relevance of a passages with respect to a given target. Cen-
troid ranking has been applied in summarization [Radev et al. 2004], and in
definitional question answering [Xu et al. 2004; Cui et al. 2004a].

In multidocument summarization, Radev et al. [2004] selected centroid
words by taking words that are most representative across documents by com-
puting words’ global TF×IDF weights. However, in the definitional QA context,
centroid words must bear very specific information describing the search tar-
get. Therefore, we adopt a local relevance metric of words with respect to the
search target based on their cooccurrences with the search target. To assess
the importance of each word independent of the search target, we use inverse
document frequency (IDF).1 A word’s local cooccurrence and the global IDF

1We use the statistics from Web Term Document Frequency and Rank site (http://elib.cs.

berkeley.edu/docfreq/) to approximate words’ IDFs within the corpus.
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scores are combined to represent the relevance of a word to the search target.
The centrality of a word is then implemented in our system by the following
equation:

CentralityT (w) = − log
SF(T, w)

SF(T ) × SF(w)
× IDF(w), (1)

where T denotes the search target and w is a candidate word occurring in the
context of T . SF(w1, w2) is the number of sentences that contain both w1 and
w2 and SF(w) is the number of sentences that contain w. IDF(w) represents the
inverse document frequency of w.

Given the input sentences, stop words are removed and the remaining words
are stemmed. Centrality scores for the remaining stemmed words are calculated
and those words whose scores exceed a standard deviation over the mean are
selected as centroid words.

For each target, the system constructs a centroid vector from the resulting
centroid words. Similar to the work by Blair-Goldensohn et al. [2004] and Xu
et al. [2004], we then rank the candidate sentences by their similarity with the
centroid vector, using cosine similarity. Sentences that are highly ranked are
considered candidate definition sentences.

In addition to corpus statistics, we also make use of external definitions for
the search targets to supplement centroid word selection. In our system, we rely
on Answers.com to search for existing definitions for a given target. The main
reason for utilizing external definitions is that there are only a few occurrences
in the corpus for some targets, and thus it would be difficult to obtain reliable
cooccurrence statistics for those contextual words. Therefore, we augment the
centrality scores, that is, the weights, of those centroid words which also appear
in the external definitions.

3.2 Definition Sentence Summarization

In Step 4, the system constructs the final definition from the ranked candi-
date sentences. This is done by selecting the top-ranked sentences that suit the
length requirement and avoid including redundant content. We adopt a vari-
ation of Maximal Marginal Relevance (MMR) [Carbonell and Goldstein 1998]
to select nonredundant sentences from the top of the list of sentences ranked
by definition weighting scores. The sentence selection algorithm is presented
in Figure 4. Different from the approach taken by Carbonell and Goldstein
[1998], who ranked all passages with MMR, our method examines sentences in
descending ranked order and stops when the length of the definition is satis-
fied. This method takes advantage of the previous ranking step and results in
a more efficient algorithm.

4. SOFT PATTERN MATCHING MODELS

In this section, we discuss the two soft pattern models: the bigram model and
the profile HMM, respectively. Before introducing the soft pattern models, let
us discuss how to generalize training definition sentences and test sentences
into pattern instances, which are abstract token sequences representing the
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Fig. 4. Definition sentence summarization algorithm.

Fig. 5. Illustration of generalization of pattern instances.

original sentences. Soft pattern models perform training and testing on the
basis of pattern instances.

4.1 Generalization of Pattern Instances

Given a group of potential definition sentences, our goal is to learn the local
contextual patterns surrounding the given search target. We do not handle
long-distance dependencies, as observation shows that definition sentences are
identified mainly by adjacent words and punctuation.

Definition (Pattern Instance). A token sequence that contains lexical and/or
syntactic tokens to the left or right of the search target after performing trans-
formation steps of tagging and chunking, selective substitution, and window
cropping on a candidate sentence.

The process of generalizing pattern instances is illustrated in Figure 5. It
comprises three steps:

(1) Tagging and chunking. The sentences are first processed with part-of-
speech (POS) tagging and chunking by NLProcessor, a commercial parser
developed by Infogistics.

(2) Selective substitution. We then perform selective substitution of certain lex-
ical items by their syntactic classes in order to generate representative
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Table II. Heuristics Used for Selective Substitution

Examples (from the example

Token Substitution sentence in Figure 5)

Any part of the search

target

<TARGET> Iqra → <TARGET>

Target-specific words

(centroid words)

Corresponding syntactic classes

determined by part-of-speech

tags

channel → NN

Noun phrases by

chunking

NP Arab Radio and Television

company → NP

is, am, are, was,

were

BE$ is → BE$

a, an, the DT$ the → DT$

All numeric values CD$ 63 → CD$

Adjectival and

adverbial modifiers

Deleted

All other words and

punctuations

No substitution owned, by, of, and,

brainchild are unchanged

patterns and to counter overfitting. The substitution attempts to replace
words that are specifically related to the search term (i.e., target-specific
words in Table II) with more general tags. The lexical forms of these words
are specific to the search target and do not help to form general definition
patterns and hence are replaced by their part-of-speech tags. Likewise,
we perform the same substitution to noun phrases identified by chunk-
ing, as different scenarios usually do not share the same noun phrase in-
stances. Moreover, we collapse adjacent syntactic tags of the same type into
one. The substitution rules that we use and some examples are listed in
Table II.

There has been similar work in generalizing the symbols used in pat-
terns in information extraction. Borkar et al. [2001] demonstrated a simple
strategy of hierarchical feature selection. They utilized part of the training
data as a validation set and prune the specific features. The goal of their
method was similar to ours—to generalize the generated patterns. How-
ever, we do not adopt the pruning technique because the number of tokens
in definitional patterns is large. Instead, we employ a statistical method to
determine the specific words to be substituted, which is discussed in the
next subsection. Another example of generalizing specific words and sub-
structures was shown in Sudo et al. [2003]. Sudo et al. replaced the proper
names in the context with their classes. This technique is similar to our use
of syntactic tags to replace specific words. In dealing with different scenar-
ios for definitions, our substitution technique replaces more specific words,
instead of only proper names.

(3) Window cropping. We need to consider the local context around the
<TARGET>. The context is modeled as a window centered on <TARGET> ac-
cording to the predefined size L, that is, the number of tokens on both sides
of <TARGET>. Thus we get pattern instances with size 2L + 1 including the
search target.
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4.1.1 Determining Substituted Words. In Step (2) of generalizing pattern
instances, target-specific words are replaced with their part-of-speech tags. This
step can be viewed as a generalization task, for which the information extraction
(IE) community has proposed well-grounded solutions. In IE, choosing which
words to generalize can be done through cross-validation [Borkar et al. 2001]
where specific words are replaced by their corresponding tags when they per-
form worse than their tags. More recently, McCallum [2003] has also sug-
gested an iterative process in which features (both specific and general) are se-
lected to be included in the feature set based on improvement in the model’s log
likelihood.

While such data-driven methods may work well in scenarios with large
amounts of data, current definitional QA datasets are comparatively small and
exhibit a large diversity of patterns. In this study, target-specific words are
determined by centroid words, which are defined as nontrivial words that are
highly relevant to the search target. Our approach is similar in spirit to Sudo
et al. [2003], who used a tunable inverse document frequency parameter to de-
fine nontrivialness. However, as patterns vary significantly in definitions, we
deterrmine such centroid words locally, in the sense that they change with each
search target.

4.2 Bigram Model

The first soft matching pattern model we introduce is based on n-gram language
models. Language modeling has been extensively studied in speech recogni-
tion, part-of-speech tagging and syntactic parsing [Rosenfeld 2000]. n-Gram
language modeling is one important approach which models local sequential
dependencies between adjacent tokens. Trigrams (n = 3) are a common choice
when large training corpora are available. We use a bigram (n = 2) model for
soft pattern matching, as we have limited training data.

While the original bigram model is simply a product of probabilities of all
bigrams in a sequence, we apply linear interpolation [Manning and Schütze
1999] of unigrams and bigrams to represent probability of bigrams. The reason
is twofold: (1) to smooth probability distribution in order to generate more ac-
curate statistics for unseen data, and (2) to incorporate conditional probability
of individual tokens appearing in specific slots. Note that we refer to slots as
the positions of tokens relative to the target. In particular, we model a sequence
of pattern tokens as

P (t1 · · · tL) = P (t1|μ)
L∏

i=2

(λP (ti|ti−1, μ) + (1 − λ)P (ti, μ))

= P (t1|S1)
L∏

i=2

(λP (ti|ti−1) + (1 − λ)P (ti|Si)), (2)

where μ stands for the bigram model and P (ti|Si) stands for the conditional
probability of token ti appearing in slot Si. λ is the mixture weight combining
the unigram and bigram probabilities. L denotes the number of slots in the
model. Note that we use the conditional probability of a unigram being in a
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slot to represent unigram probability. This is because the position of a token
is important in modeling: for instance, a comma always appears in the first
slot right of the target in an appositive expression. Incorporating individual
slot probabilities enables the bigram model to allow partial matching, which
is a characteristic of soft pattern matching. Even when some slots cannot be
matched, the bigram model can still yield a high match score by combining
matched slots’ unigram probabilities.

As test instances are often different in length, we normalize the log-likelihood
of Equation (2) by the length l of the test instance:

Pnorm(t1 · · · tL) = 1

l
(log P (t1|S1) +

L∑
i=2

log(λP (ti|ti−1) + (1 − λ)P (ti|Si))), (3)

where l denotes the number of tokens in the test instance.
Next we estimate unigram and bigram probabilities by their maximum like-

lihood (ML) estimates:

PML(ti|Si) = |ti(Si)|∑
k |tk(Si)| , (4)

PML(ti|ti−1) = |ti(Si)ti−1(Si−1)|
|ti(Si)| , (5)

where ti(Si) denotes that token ti appears in slot Si and |t| denotes the frequency
of the token t. ti(Si)ti−1(Si−1) represents two adjacent tokens ti and ti−1, which
appear in slots Si and Si−1, respectively. In language modeling, ML estimates
often suffer from sparse data. As we count tokens with respect to slot positions,
the training data is even more sparse. We employ smoothing to counter the
problem. For simplicity, we use Laplace smoothing on unigram probabilities
(recall that bigram probabilities have already been smoothed by interpolation):

P (ti|Si) = |ti(Si)| + δ∑
k |tk(Si)| + δ|N (t)| , (6)

where |N (t)| gives the total number of unique tokens in our training data and
δ is a constant, which is set to 2 in our experiments.

Note that we count frequencies of words and general syntactic tags sepa-
rately. General tags typically have a much higher frequency compared to in-
dividual words, and would thus skew the distribution if combined with words.
Thus we need to separate the two types and estimate each token’s unigram
probability against its own set.

4.2.1 Estimating the Mixture Weight λ. We use the Expectation Maximiza-
tion (EM) algorithm [Dempster et al. 1977] to find optimal settings of λ. Specifi-
cally, we estimate λ by maximizing the likelihood of all training instances given
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Fig. 6. Illustration of Topology of the PHMM Model.

the bigram model. The estimation process is as follows:

λ = argmaxλ

|INS|∑
j=1

P
(
t( j )
1 . . . t( j )

l ( j )|μ
)

= argmaxλ

|INS|∑
j=1

1

l( j ) − 1

l( j )∑
i=2

log
(
λP

(
t( j )
i |t( j )

i−1

) + (1 − λ)P
(
t( j )
i |S( j )

i

))
. (7)

P (t1|S1) is ignored because it does not affect the estimation of λ. λ can be esti-
mated using the EM iterative procedure:

(1) Initialize λ to a random estimate between 0 and 1, say 0.5.

(2) Update λ using

λ
′ = 1

|INS| ×
|INS|∑
j=1

1

l( j ) − 1

l( j )∑
i=2

λP
(
t( j )
i |t( j )

i−1

)
λP

(
t( j )
i |t( j )

i−1

) + (1 − λ)P
(
t( j )
i |S( j )

i

) , (8)

where INS denotes all training instances and |INS| is the number of train-
ing instances which is used as a normalization factor.

(3) Repeat Step 2 until λ converges.

We set λ to 0.3 according to the experimental results.

4.3 Profile Hidden Markov Model

Although the bigram model allows partial matching, it lacks the ability to
deal with gaps in test instances. For instance, given training instances such as
“<TARGET> which is known for . . . ,” the trained bigram model cannot give rea-
sonable match scores to test instances such as “<TARGET> which is best known
for . . . ” and “<TARGET>, whose xxx is known for . . . ” even though they are
simple variants of the training instances in which insertions or deletions occur.
Such gaps can be captured by Profile HMMs, which allow insertion and deletion
editing operations in the matching process. Figure 6 shows the topology of a
PHMM.

The PHMM contains a sequence of match states, which are denoted by Mi

(i = 1 . . . L). These match states correspond to slots in pattern instances and
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determine the model length L. Each match state can emit a token t from all
tokens in the training instances with the emission probability P (t|Mi). For each
match state, there is a deletion state, denoted by Di, which does not emit a token
and bypasses the corresponding match state. Insertion states can emit any
token t with the emission probability P (t|Ii). Insertion states insert tokens after
match or deletion states, as with the word best in the earlier example. While
transitions from match states and deletion states always move forward in the
model, insertion states allow self-loops, corresponding to multiple insertions.
A token sequence representing a pattern instance can be generated by moving
through this model with state transition probabilities P (Si|Sj ). The deletion
and insertion states allow the PHMM to model missing or unobserved words in
training. Specifically, the probability of a sequence of tokens t1 · · · tN generated
by moving through states S0 · · · SL+1 (the Start and End states are S0 and SL+1)
is

P (t1 · · · tN |S0 · · · SL+1, μ) = P (SL+1|SL)
L∏

i=1

P (tn(i)|Si)P (Si|Si−1), (9)

where μ stands for the model, and P (tn(i)|Si) is set to 1 when Si is a deletion
state. To recognize a definition, we choose the most probable state path in the
above equation to approximate the probability of the sequence being given all
possible state paths, as the most probable state path often gives a much higher
probability than any other path. Equation (9) can be efficiently calculated by
the forward-backward algorithm [Manning and Schütze 1999]. We employ the
Viterbi algorithm [Manning and Schütze 1999] to find the most probable state
path. In Figure 7, we show an example to illustrate how the PHMM finds the
optimal path to account for the gaps between training instances and the test
instance. Although the training data does not contain any instance that has
“known” in Slot 1 and “NNP” in Slot 4, the PHMM automatically selects the path
that goes through a deletion state to skip Slot 1 and uses an insertion state to
emit “NNP”. Thus, the tokens are realigned with their most probable occurring
slots such that the unseen test instance can still obtain a reasonable generative
probability.

4.3.1 Estimation of the Model. During training, we need to estimate tran-
sition and emission probabilities for the PHMM. The training process can be
accomplished by employing the standard Baum-Welch algorithm [Manning and
Schütze 1999]. Corresponding to our adaptation to the calculation of sequence
probability, we use the path with the highest probability determined by the
Viterbi algorithm during the reestimation process, and not all possible paths
used in the standard Baum-Welch algorithm.

4.3.2 Initialization of the Model. Although probabilities in a PHMM can
be estimated automatically using an iterative EM algorithm starting with ran-
dom or uniform probabilities, the reestimation process only guarantees that the
model reaches a local maximum. Definition patterns are diverse and sparse in
terms of both lexical tokens and POS tags. If we initialize EM with such ran-
dom or uniform probabilities, we may end up with a suboptimal model that
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Fig. 7. Illustration of generating a test instance with gaps using the PHMM. The optimal path is

in bold, and words or tags emitted are shown in callouts.

is unable to discriminate between different sequences. To make training man-
ageable given our small training set, we assume that the most probable state
path for a sequence should go through as many match states as possible. The
reason is that, although insertion and deletion states add flexibility, they may
hurt generalization of underlying definition patterns if the model assigns high
probabilities to them. Specifically, we set the emission probabilities for each
match and insertion state using the smoothed maximum likelihood estimate of
the emission probabilities (Equation (6)). We adjust the initial value of P (t|Ii)
such that the probability of emitting a token from match states is always higher
than that from insertion states. We set the initial state transition probability
for a state as 1

n , where n is the number of transition links that lead from the
state.

5. EVALUATIONS

We have evaluated the proposed methods in an extensive series of experiments
using the TREC question answering datasets. For completeness, we recap our
previous work [Cui et al. 2004a, 2005] in this section. In this article, we ex-
tend our experiments by adopting a larger data set to test soft pattern models’
scalability, and we report soft pattern matching results as measured by recent
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automated metrics. More specifically, our evaluation goals are (1) to affirm the
conclusion that soft pattern models outperform hard pattern matching on a
larger test set which includes the latest TREC-14 data; (2) to verify our hy-
pothesis drawn in [Cui et al. 2005] that the PHMM could yields significantly
greater performance than the bigram model, given more training data; and (3)
to assess the performance of our soft pattern models using the newly proposed
metric POURPRE, which is specifically designed for automatic evaluation of
definitional QA systems.

5.1 Evaluation Setup

5.1.1 Data Set. We employed the TREC question answering task dataset
for our experiments. It includes the AQUAINT corpus of over one million news
articles and over 200 definition questions, each of which is about a search tar-
get. For training, we used the TREC-12 and TREC-13 data, consisting of 114
definition question-answer pairs. Based on the answer nuggets (ground truth,
manually edited data) provided by TREC for these questions, we manually
labeled 1769 sentences that covered the nuggets from the corpus as training
definition sentences for estimating the soft matching models.

5.1.2 Evaluation Metrics. We adopted three metrics to evaluate defini-
tional QA performance: F3, POURPRE, and ROUGE. The F3 measure was
based on a manual examination while the latter two metrics were automati-
cally evaluated. Automatic scores are a good supplement to manual evaluations
for two reasons. First, as previous work [Lin and Demner-Fushman 2005; Xu
et al. 2004] suggests, POURPRE and ROUGE are highly correlated with man-
ual counting of nuggets. Second, manual evaluation can often be inconsistent
across runs [Voorhees 2003b].

5.1.2.1 F3 Measure. We first adopted the evaluation metrics used in the
TREC definitional question answering task [Voorhees 2004]. Along with each
topic, TREC provides a list of answer keys (nuggets) to evaluate system re-
sponses. Answer nuggets are labeled as either vital or okay (see Figure 1). Vital
nuggets represent the most important facts about the target and should be
included in a definition. Okay nuggets contribute to relevant information but
are not essential. From TREC-13 onward, the definitional nuggets only answer
questions not covered by answers to the factoid or list questions. Since we did
not distinguish between the other two sources, we added the factoid and list
nuggets as vital nuggets to the standard definitional nuggets. In the manual
assessment used in TREC, an official assessor examined the nuggets covered
in the returned answer; similarly in our research, one of the authors performed
the manual checking of answer nuggets. We tried to preserve the objectivity of
the evaluation process by following the TREC guidelines as closely as possible.
Each definition was scored using nugget recall (NR) and an approximation to
nugget precision (NP) based on answer length. These scores were combined
using the F3 measure with recall being weighted three times as important as
precision. We list the official definition of F3 measure in Table III.
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Table III. TREC Definition of NR, NP, and F3 Measure

r number of vital nuggets in the system response

R number of vital nuggets in the gold standard

a number of okay nuggets in the system response

l length of the system response

NR = r
R

NP =
{

1 if l < 100 × (r + a)

1 − l − 100 × (r + a)
l otherwise

F3 = 10×NR × NP
9 × NP + NR

5.1.2.2 POURPRE. Lin and Demner-Fushman [2005] proposed the
POURPRE metric specifically for evaluating definitional QA systems. POUR-
PRE simulates the process of manual checking of answer nuggets. It counts
the answer nuggets that are covered by the system response by examining
nontrivial unigrams shared between them. It calculates F3-like scores by us-
ing the automatically determined nuggets. To ensure integrity of the answers,
POURPRE counts only the words appearing within the same answer string.
POURPRE counts a nugget matched if the system response covers a certain
percentage of all the nontrivial unigrams in the gold standard. We set this
ratio to 25% according to our experiments.

5.1.2.3 ROUGE. ROUGE [Lin and Hovy 2003] is a metric originally de-
signed for summarization evaluation and has previously been adapted for defi-
nitional QA evaluation by Xu et al. [2004]. We used the metric ROUGE-3, which
was adopted by Xu et al. [2004] and counts the trigrams shared between the
official and system answers.

5.1.3 Gold Standard for Automatic Scoring. To perform automatic scoring
by POURPRE and ROUGE, we constructed a gold standard inventory of sen-
tences that contained answer nuggets provided by TREC. We manually checked
such nuggets.

For each search target, we constructed two groups of gold standard answers,
ALL and VITAL, which were analogous to the TREC answer nuggets but were
corresponding judgments at the sentence level. The VITAL group consisted
of vital nuggets, which included answers to the factoid and list questions, as
well as vital nuggets to the “other” questions. The ALL group was a super-
set of VITAL group, which added the okay nuggets that addressed the “other”
questions.

For each answer nugget, we retrieved up to five sentences that reflected that
nugget to serve as the gold standard. This was because the answer nugget may
be embedded in different sentences, possibly realized with different vocabulary.
Accordingly, we constructed five groups of sentences as gold standard answers
for each target. A group of sample gold standard sentences for TREC topic #72
is given in Table IV.

The final scores are the average scores obtained by running the evaluation
tools over the five groups of gold standard sentences.
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Table IV. Gold Standard Sentences for the Topic 72 “Bollywood” (These sentences belong to one of

the five groups of gold standard sentences. The third column indicates from what kind of question

the nugget is constructed.)

1 VITAL/ALL Factoid Around 800 movies a year come out of India. The center of

the film industry is in Bombay, from which the name

Bollywood is derived.

2 VITAL/ALL Factoid Organizers said they hoped to gain international recognition

for Bollywood, the nickname given to Bombay, which

boasts the world’s second largest film industry after

Hollywood.

3 VITAL/ALL List Shabana Azmi, Amitabh Bachchan, Bobby Deal, Madhuri

Dixit, Sanjay Dutt, Sunil Dutt, Kajol, Anil Kapoor, Aamir

Khan, Salmon Khan, Shah Rukh Khan, Amisha Patel,

Aishwarya Rai, Lisa Roy, Hrithik Roshan, Sushmita Sen,

Sunil Shetty

4 VITAL/ALL Other television production houses, such as Sony entertainment

and star TV, pay huge sums to buy the rights of Bollywood

favorites.

5 VITAL/ALL Other There was no shortage of glitz and glamor Saturday as

Bombay’s biggest films stars were honored at the

International India Film Awards, their cinematic

equivalent of the Oscars.

6 VITAL/ALL Other Any taxi driver picked at random can probably give you a

detailed tour of the movie-star homes in Juhu Beach and

Malabar Hill—Bombay’s Malibu and Beverly Hills.

7 ALL Other Few Americans have even heard of Bollywood.

8 ALL Other A new 30-screen cineplex is dedicating six screens to

Bollywood. Three Bollywood movies, known as extravagant

productions of epic lengths and lavish musical interludes,

entered the United Kingdom’s top 10 list this year.

9 ALL Other Hollywood star Richard Gere was honored by Bollywood at

an awards ceremony for some of the top stars in India.

10 ALL Other A Bollywood version of JANE AUSTEN’S PRIDE &

PREJUDICE received its world premiere on Mon.

11 ALL Other For Hollywood, poaching Indian film talent and learning

from Bollywood’s efficient, low-cost production techniques

may become an economic necessity, as American

movie-making costs soar.

5.1.4 System Settings. The base definitional QA system used in our exper-
iments, is illustrated in Figure 2. For comparison, we applied a set of manually
constructed hard matching definition patterns which have demonstrated state-
of-the-art performance as our baseline. The patterns used were a combination
of ones from Cui et al. [2004a] and Hildebrandt et al. [2004], which comprise
the most complete published list of patterns to our knowledge. We list the hard
patterns in Table VIII in the Appendix.

Since most of the parameters were estimated during the training process
for soft pattern models, we only needed to set model length for both models.
According to the sensitivity analysis on model length in our previous work [Cui
et al. 2005], we set the model length to the optimal settings: L = 3 for the
bigram model and L = 4 for the PHMM. We also set answer length N to 14
sentences for all systems to approximate the desirable answer length used in
successful TREC systems.
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Table V. Performance Comparison of F3 POURPRE, and ROUGE Scores Tested on TREC-14

Data Set (Trained on TREC-13 and 12 Data) (Percentage of improvement over the baseline is

shown in parantheses; * and ** represent different significance levels, p < 0.05 and p < 0.01,

respectively.)

System Setting Hard Pattern (Baseline) Bigram SP PHMM SP

NR (ALL) 0.3042 0.3348 (+10.06%) 0.3527** (+15.97%)

NP (ALL) 0.1391 0.1509 (+8.48%) 0.1508 (+8.41%)

F3 (ALL) 0.2628 0.2911 (+10.73%) 0.3035** (+15.45%)

POURPRE (ALL) 0.2400 0.2539 (+5.77%) 0.2556* (+6.49%)

POURPRE (VITAL) 0.3410 0.3668* (+7.57%) 0.3730** (+9.38%)

ROUGE-3 (ALL) 0.0984 0.1004 (+2.05%) 0.1096 (+11.42%)

ROUGE-3 (VITAL) 0.1022 0.1080 (+5.69%) 0.1095 (+7.15%)

Table VI. Performance Comparison of F3, POURPRE, and ROUGE Scores Tested on TREC-13

Data Set (Trained on TREC-12 Data) (Percentage of improvement over the baseline is shown in

parantheses; * and ** represent p < 0.05 and p < 0.01, respectively. Largely reproduced from

Cui et al. [2005].)

System Setting Hard Pattern (Baseline) Bigram SP PHMM SP

NR (ALL) 0.5027 0.5519* (+9.79%) 0.5420* (+7.82%)

NP (ALL) 0.3159 0.3403 (+7.72%) 0.3264 (+3.32%)

F3 (ALL) 0.4633 0.5088** (+9.83%) 0.4971** (+7.30%)

POURPRE (ALL) 0.2785 0.2921 (+4.88%) 0.2896 (+3.99%)

POURPRE (VITAL) 0.4238 0.4580** (+8.07%) 0.4528* (+6.84%)

ROUGE-3 (ALL) 0.2106 0.2303 (+9.37%) 0.2234 (+6.08%)

ROUGE-3 (VITAL) 0.2286 0.2553* (+11.67%) 0.2496 (+9.18%)

5.2 Experimental Results and Discussion

We list complete F3, POURPRE, and ROUGE scores by the systems in Tables V
and VI. This comprises our previous evaluation results [Cui et al. 2005], adding
results of POURPRE scores, and the new results of larger-scale experiments
in which we trained the soft pattern models using the 1769 manually labeled
sentences, as compared to employing 761 training sentences in Cui et al. [2005].
To recap our previous work, we drew three conclusions from our evaluations:
(1) both the PHMM and the bigram model significantly outperformed the hard
matching system; (2) the PHMM was less sensitive to the variation of model
length than the bigram model; (3) given more training data, the PHMM tended
to improve more.

However, limited by the small size of training data, we were able to demon-
strate that the PHMM was able to perform better than the bigram model. We
had conjectured that this was so as the PHMM has a more complex topology
that could potentially capture more language variations. Given the additional
data used in this article, we are now able to verify this hypothesis. We make
the following observations from the new results in Table V:

(1) Soft pattern models again outperformed hard pattern matching. As Table VI
shows, both the bigram model and the PHMM performed significantly bet-
ter in F3 scores and automatic POURPRE scores (on vital nuggets) than
the baseline system using hard patterns on TREC-13 data. When testing
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on the TREC-14 data set, the PHMM outperformed the baseline system
significantly in both F3 scores and POURPRE scores. This affirms our con-
clusion drawn earlier that soft pattern models are more capable of iden-
tifying definition sentences and boost the performance of definitional QA
systems.

The significance levels of the improvements over the baseline varied
across the automatic scores of POURPRE and ROUGE. This may have
been caused by mismatches in which automatic evaluation methods incor-
rectly credited system responses. For instance, the following sentence for
the target “DePauw University,”

. . . will provide scholarships to DePauw University stu-
dents from Indiana, Illinois, Michigan and Ohio.

was mismatched to the vital nugget

Some institutions, like Rhodes College in Tennessee, DePauw
University in Indiana and Bucknell University in Pennsylva-
nia, say they allow students to keep 100 percent of outside schol-
arships.

due to the match of nontrivial words in bold. Therefore, automatic scores
were unable to discern verbose incorrect answers which overlapped with
the gold-standard sentences. We feel that automatic checking of answer
nuggets is a good supplement, but not a substitute, for manual checking.

(2) Given more training data, the PHMM outperformed the bigram model. We
used 1769 training sentences by combining the labeled definition sentences
from TREC-12 and -13, compared to 761 training sentences from using only
TREC-12 in our previous work. As seen in Table V, the PHMM outperformed
the bigram model by 4.26% in F3 measure and by 9.18% in the ROUGE score
based on ALL nuggets. Note that the improvements obtained by the PHMM
over the bigram model were not statistically significant on our test set. We
discuss the possible reason at the end of this section.

(3) Evaluation results are dependent on the determination of vital and okay
nuggets. The evaluation scores by both manual and automatic checking on
TREC-14 data are lower across the board compared with those from TREC-
13 data. In addition, the statistical significance test values (p-values) on
the difference between the evaluation scores obtained by systems using the
TREC-14 data are less significant than those using the TREC-13 data. We
conjecture that this is due to the fact that there are more targets in TREC-
14 that have only a few vital nuggets. Lin and Demner-Fushman [2006]
studied the gold standard answer nuggets in TREC-12, -13, and -14. They
found that five targets (out of 75 targets) have only one vital nugget and
16 targets have two vital nuggets in TREC-14, whereas the corresponding
numbers are 2 and 15 in TREC-13 (out of 64 targets). As only vital nuggets
count for NR, missing any of the few vital nuggets causes scores to drop to
zero for some targets. Therefore, we see a significant drop in the evaluation
scores and a lower level of statistical significance for the results that were
obtained from using the TREC-14 test data.
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5.2.1 How Much Can PHMM Help. We have shown that given more train-
ing data, the PHMM performs better than both hard patterns and the bigram
model. But we have yet to quantitatively measure how much PHMM can im-
prove over the other matching models. Statistically, it is difficult to show sig-
nificance as the datasets involved in definitional question answering are small
and labor-intensive to create. How can we measure whether the PHMM’s more
flexible matching mechanism is actually responsible for its improvement over
the bigram model? Although we cannot show statistical evidence that this is
the case, we can analyze the sentences that are retrieved only by the PHMM
and not by the bigram model to assess the differences in retrieval and ranking
by the two models. Specifically, we rank the sentences for each topic using each
soft pattern model alone (without centroid ranking). We take the top ranked 50
sentences per topic and get the sentences that are in the PHMM’s resulting set
but not in the bigram model’s. In total, we obtain 1187 unique sentences.

We want to find the proportion of these sentences that were retrieved by
the PHMM specifically by its edit operations. This can be done by checking
whether a sentence retrieved by the PHMM was retrieved due to a nontriv-
ial insertion/deletion operation. Insertion immediately following deletion (or
vice versa) is an alternative to matching, and is considered a trivial use of the
PHMM states as it can be simulated in the bigram model. Nontrivial uses of
isolated and repeated insertion or deletion states in the PHMM cannot be rep-
resented in the bigram model. We generated the optimal state transition paths
calculated by the Viterbi algorithm for the left and the right sequences for each
sentence. We obtained 194 sentences (or 16% of the 1187 sentences) that are
exclusively retrieved by the PHMM’s nontrivial edit operations. Such a small
percentage of nontrivial state sequences partially explains why the margin of
difference in performance is small. Given a more noisy data set, such as Web
pages, the PHMM may perform even better because more sentences that cannot
be matched within the training data would benefit from insertion and deletion
operations.

6. CONCLUSIONS AND FUTURE WORK

We have proposed two generic soft pattern models—one based on a bigram lan-
guage model and the other on the PHMM—to identify definition sentences in
a definitional question answering system. Both models provide formal prob-
abilistic methods to capture lexico-syntactic patterns represented by token
sequences. Our experimental results show that both models significantly out-
perform the system version that uses carefully constructed hard matching pat-
terns. In particular, we have shown that the PHMM is more capable of dealing
with gaps in pattern matching caused by language variations by performing in-
sertion and deletion editing operations. In order to show the effectiveness of the
PHMM, we employed more manually labeled data for estimating the models.
The evaluation results show that, given more training data, the PHMM does
perform better than the bigram model. Moreover, we quantitatively analyzed
the differences between the sentences retrieved by the two models. However,
in our data set, we found only a small number of sentences that benefited from
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the PHMM’s special operations of insertion and deletion, and thus the PHMM
did not show a large improvement over the bigram model.

While we experimented on definitional QA with the soft pattern models, we
note that both models are generic matching models and can be applied to the
following applications in future work:

—Information extraction (IE). The pattern matching problem in IE tasks is for-
mally the same as definition sentence retrieval. When applied to free texts, an
IE system may also suffer from various unseen instances not being matched
by the trained patterns. Xiao et al. [2004] have demonstrated that soft pat-
tern matching greatly improves recall in an IE system. Although some HMM
topologies have been employed for IE tasks, our models are more generic and
require less configuration and parameter tuning with changing domains.

—Factoid question answering. Pattern matching is also utilized to improve
precision in factoid QA [Ravichandran and Hovy 2002]. Soft pattern models
should be trained on each kind of question along with the question taxonomy.

—Subjective expressions. Riloff and Wiebe [2003] applied an IE system to learn
patterns of subjective expressions so that opinions can be identified from
news articles. Texts that reflect opinions are more diversified than those
reporting facts. We believe the PHMM could significantly improve the system
performance in capturing expression patterns on opinions.

APPENDIX

Table VII. Techniques Employed by Recent TREC Systems to Answer Definition Questions

TREC Linguistic Bag-of-Words Mining External

Systems Constructs Ranking Knowledge

Amsterdam

[Ahn et al.

2004]

Nugget extraction

based on

dependency parsing

trees.

Rank the sentences from the

corpus by measuring their

lexical and semantic

similarity with the facts

mined from the external

reference Web site. The

semantic similarity is

measured by the distance of

words in WordNet or word

cooccurrence statistics in a

large corpus.

Rely heavily on

the external

reference

database—an

online

encyclopedia.

Mine the facts

about the

targets from the

Web site.

LCC

[Harabagiu

et al. 2003]

Utilize 38 definition

patterns, out of

which 23 find

matches in TREC

questions.

MIT [Katz

et al. 2004]

16 classes of regular

expression-based

patterns. These

patterns are used to

construct a

database of

definitions offline.

Retrieve sentences that

contain the target and rank

the sentences by the

overlap of key words in the

sentences and the

dictionary definitions.

Dictionary lookup

on an online

dictionary and

use the

dictionary

definitions to

score sentences.

Continues
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Table VII. Continued

TREC Linguistic Bag-of-Words Mining External

Systems Constructs Ranking Knowledge

BBN [Xu

et al. 2003,

2004]
—Patterns identifying

appositive and

copulas constructs.

—Propositions

extracted from

parsing trees.

—40+ manual rules

for structured

definition patterns.

—Special relations

extracted by a

specialized

information

extraction module.

Assign weights to

linguistic constructs

according to the

extraction types.

Rank linguistic constructs by their

similarity with the question profile.

The question profile is constructed

by 3 options:

(1) Centroid of extracted

definitions from online

dictionaries, encyclopedias,

and biographical sites.

(2) Centroid of 17,000 short

biographies for the profile of a

person.

(3) Centroid of extracted

linguistic constructs from the

corpus for the target.

Construct profiles

for targets by

mining external

definitional

resources.

Columbia

[Blair-

Goldensohn

et al. 2003]

Extract definitional

predicates, which

include three types

of genus, species

and, nonspecific

definitional, based

on 23 manual

patterns on parsing

trees.

Construct a centroid vector for the

target by selecting frequent

nontrivial words from all

extracted constructs. The

centroid vector is used to rank

the constructs by measuring

their similarity with the

centroid vector.

IBM

PIQUANT

[Chu-

Carroll

et al. 2004;

Prager

et al. 2003]

—Appositions and

relative clauses.

—Surface patterns

similar to those by

Ravichandran and

Hovy [2002].

Establish a profile for each target.

The profile is constructed by

concepts represented by nouns

that occur more with the target

than random occurrences.

Passages are ranked by the

number of concepts they

contain.

—Predefined

auxiliary

questions for

different types of

targets.

—Hypernyms from

WordNet to define

the terms.

—Biographical data

from a particular

Web site.
Korea

University

[Han et al.

2004]

Extract predefined

constructs from

syntactic parsing

trees of sentences.

Such constructs

include modifying

phrases of the

target, relative

pronoun phrases,

copulas, general

verb phrases, etc.

Statistical ranking of extracted

constructs based on

—Count of the head word of the

target being as the head word in

the answer constructs.

—Count of terms in extracted

constructs.

—Trained statistics of

biographical terms from an

encyclopedia, applying only to

persons.

Biographies from

external

encyclopedia for

training term

statistics.
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Table VIII. Hard Definition Patterns Used in the Baseline System

<TARGET> , (a|an|the)

<TARGET> (is|are|was|were) (a|an|the)

<TARGET> , (also)* (known as|called)

<TARGET> (is|are) (usually|generally|normally)* (called|known as|defined as)

<TARGET> (refer to|refers to|satisfies|satisfy)

known as <TARGET>

<TARGET> (becomes|become|became)

<TARGET> (.{1,40})
<TARGET> , or

<TARGET> (is|are) (usually|generally|normally)* (being used to|used to|referred

to|employed to|defined as|formalized as|described as|concerned with|called)

<TARGET> (-|: )
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