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ABSTRACT 
This paper explores probabilistic lexico-syntactic pattern 
matching, also known as soft pattern matching. While previous 
methods in soft pattern matching are ad hoc in computing the 
degree of match, we propose two formal matching models: one 
based on bigrams and the other on the Profile Hidden Markov 
Model (PHMM). Both models provide a theoretically sound 
method to model pattern matching as a probabilistic process that 
generates token sequences.  We demonstrate the effectiveness of 
these models on definition sentence retrieval for definitional 
question answering. We show that both models significantly 
outperform state-of-the-art manually constructed patterns. A 
critical difference between the two models is that the PHMM 
technique handles language variations more effectively but 
requires more training data to converge. We believe that both 
models can be extended to other areas where lexico-syntactic 
pattern matching can be applied.   

Categories and Subject Descriptors 
I.2.7 [Artificial Intelligence]: Natural Language Processing; 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval - Retrieval Models; 

General Terms 
Algorithms, Measurement, Experimentation 
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1. INTRODUCTION 
Natural language texts often exhibit patterns, and thus lexico-
syntactic patterns are pervasive in natural language retrieval and 
extraction tasks, such as information extraction (e.g., [11]). An 
example of such a pattern is “<PersonIN> , NNP, BE$ named to 
POST$”1, which may be used to extract the person name Bob 
Lloyd from the sentence “…<PersonIN> Bob Lloyd 
</PersonIN>, president and chief operating officer, was named 
to the <POST> chief executive </POST>”.  Besides information 

extraction, such patterns have been applied to areas including: 

1. Question answering (QA): Pattern matching is utilized to 
improve precision in both factoid QA [12] and definitional QA 
[19, 6, 1]. The former learns surface text patterns to extract 
exact answers for simple questions about facts while the latter 
utilizes more complicated definition patterns to identify 
definition sentences to define a topic. 

2. Retrieval of subjective expressions: Riloff and Wiebe [13] 
applied an IE system to learn patterns of subjective expressions 
so that opinions can be identified from news articles. 

Lexico-syntactic patterns, which are either manually constructed 
or machine learned, are often represented and matched as regular 
expressions. They perform slot by slot matching against test 
sentences, which we call hard matching. While these patterns are 
highly precise, they often fare poorly in recall because of language 
variations. For instance, the sample pattern given earlier cannot 
match the sentence: 

<PersonIN> Lee. Abraham </PersonIN>, 65 years old, former chairman 
and chief executive officer of Associated Merchandising Corp., New 
York, was named to the board of the footwear manufacturer. 

which can be reduced to: 

<PersonIN> , NUM$ NN ADJ, NNP, NNP, BE$ named to <POST> 

The pattern fails to match the sentence due to additional tokens 
(underscored in the above) that are not found in training samples. 
Such mismatches are common in natural language texts because 
authors can use diverse expressions to convey the same meaning. 
We conjecture that current pattern matching applications may be 
hindered due to the rigidity of hard matching. One promising 
technique to circumvent this is soft pattern matching. Previously 
examined by Cui et al. [2], soft patterns (SP) have shown to 
significantly outperform hard patterns in extracting definition 
sentences as they model language variations probabilistically. 
While that work has demonstrated the performance of soft 
patterns, it has not been anchored in a theoretically sound 
framework. 

In this paper, we build upon the earlier work in soft pattern 
matching. Different from previous empirical work, we show how 
soft pattern matching is achieved within the framework of two 
standard probabilistic models.  We take both patterns and test 
instances as sequences of lexical and syntactic tokens. Here, 
pattern matching can be considered probabilistic generation of  

                                                                 

1 NNP is a POS tag that represents a noun phrase. BE$ stands for all “be” 
verbs. POST$ refers to the position involved in the management 
succession. 
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test sequences based on training sequences. The first model is 
derived from a bigram language model with linear interpolation 
[7] of unigram and bigram probabilities. The second model is 
based on the Profile Hidden Markov Model (PHMM). Parameters 
in both models are estimated using Expectation Maximization 
(EM). While the language model and the PHMM have been 
studied in other areas, their use in modeling lexico-syntactic 
pattern matching is a novel contribution of our work.  

We choose the task of definition sentence retrieval within a typical 
definitional QA system to demonstrate the models’ effectiveness. 
The reason is two-fold: (1) Definition sentences are diversified in 
exhibited patterns [2], and thus require flexible pattern matching 
to achieve high recall; and (2) definitional QA remains one of the 
least explored areas in QA research. To answer definition 
questions, such as “Who is Aaron Copland” or “What are 
prions”, a system is expected to generate a summary of all pieces 
of salient information (or nuggets) about the given target. To 
generate definitions for a target, a typical definitional QA system 
first retrieves linguistic constructs (e.g., sentences, appositives or 
relative clauses) that might contain salient information about the 
target, and then summarizes these units into readable definitions. 
To identify such constructs, current systems use definition 
patterns to recognize definitions. Although a number of other 
techniques influence the retrieval of such definition units, 
component evaluations [2, 19] suggest that definition patterns are 
the most important feature. 

In addition to our theoretical work, we also assess the 
performance of the formal soft matching models by empirical 
evaluation.  We conduct a series of extrinsic experiments using 
the two soft pattern models on TREC definitional QA task test 
data. Our experiments show that the performance of both models 
significantly outperform state-of-the-art manually constructed 
hard matching patterns by 11.67% and 9.18% in automatic 
ROUGE score, and by 9.83% and 7.30% in the manual F3 
measure used by TREC, respectively. Moreover, the two models 
achieve better performance compared to the original soft matching 
method proposed in Cui et al. [2]. The evaluation results also 
reveal that the PHMM model is more tolerant to variations in 
model length but requires more training data for it to converge. 

In Section 2, we present a typical definitional QA system with 
which our experiments are performed, and we give the necessary 
background for understanding the proposed models. In Section 3, 
we discuss the two proposed generic soft matching models and 
our adaptation in detail. We present the evaluation results in 
Section 4 and conclude the paper with future work in Section 5. 

2. SYSTEM ARCHITECTURE AND 
BACKGROUND 

The recent development of definitional QA has been boosted by 
the Text REtrieval Conference (TREC). TREC-12 and TREC-13 
conducted systematic evaluations for definition questions. We use 
a standard definitional QA system that structurally conforms to 
those top performing TREC systems [19, 20]. Its architecture is 
illustrated in Figure 1. 
 
Document Retrieval: Given a definition question such as “Who 
is X” or “What is X”, the search target, i.e., “X” in the question, is 

fed as query into a standard document retrieval system. The 
retrieved documents are split into sentences. 

Question

Document Retrieval

Preprocessing

Definition Sentence
Retrieval

Redundancy Removal

Definition Pattern
Matching

Bag-of-Words Similarity
Ranking

Definition
 

Figure 1. Architecture of the definitional QA system. 
 
Preprocessing of Sentences: We then process the sentences into 
pattern instances, on which soft pattern generation and matching 
are performed. First, words specific to the search targets are 
replaced with their general syntactic (POS or chunk) tags. 
Remaining words are stemmed. We refer to these remaining 
lexical words and substituted general syntactic tags as tokens. 
Definition patterns are expressed by sequences of such tokens. 
Second, we crop the windows surrounding the search target as 
instances according to model length L. The following box 
illustrates the process: 

T he channel Iqra is ow ned  by the A rab R adio and  T elevision  com pany
and  is the brainchild of the Saudi m illiona ire, Saleh K am el.

P O S tagging , chunking  and
substitu tion

D T $ N N  < SC H _T E R M >  B E $ ow ned  by D T $ N P and
B E $ D T $ brainch ild of N P .

C ropping (L= 3)

D T $ N N  <SC H _T E R M > B E $ ow ned by  
An instance is further split into left and right sequences based on 
the position of <SCH_TERM>. We model the left and right 
sequences separately using soft pattern models. In the above 
example, “DT$ NN” is the left sequence and “BE$ owned by” is 
the right sequence. 

Definition Sentence Retrieval: The definition sentence retrieval 
module identifies and extracts definition sentences from the 
relevant document set. Systems fielded at TREC rank definition 
sentences using two sets of features: definition patterns and bag-
of-words pertinent to the target. Definition pattern matching is the 
most important feature used for identifying definitions. Xu et al. 
[19] and Hildebrandt et al. [6] employed various manually 
constructed definition patterns at both lexical and syntactic levels 
to identify specific linguistic constructs and assign different 
weights to the types of patterns. Other TREC systems [5, 20] also 
employ various manual definition patterns but they treat all 
patterns equally. All these systems use hard pattern matching. In 
contrast, soft matching patterns compute a probabilistic match for 
a test instance by combining individual slot and sequence 
probabilities. Cui et al. [2] experimentally demonstrated that soft 
pattern matching outperforms hard pattern matching in the 
definition sentence retrieval task. In this paper, we also adopt the 
soft pattern matching approach, but we augment the previous 
model with a rigorous mathematical foundation for soft pattern 
matching.   



In addition to pattern matching, definitional QA systems also use 
the bag-of-words approach to rank extracted constructs. Blair-
Goldensohn et al. [1] and Xu et al. [19] constructed a profile for 
the target by selecting centroid words, i.e., words that frequently 
co-occur with the target. The profile is then used to rank definition 
sentences by their cosine similarity with the profile. Many systems 
also reinforce such profiles by exploiting word statistics from 
external resources, such as biographical web sites and 
encyclopedias.  We follow the literature in constructing our 
system, by adopting the centroid method reinforced by existing 
definitions from biography.com and wikipedia.com. To retrieve 
definition sentences, we linearly combine the scores of pattern 
matching and bag-of-words ranking in the experiments [3]. 

Redundancy Removal: The redundancy removal module takes a 
list of ranked definition sentences as input. It produces the final 
answer by removing redundant sentences. A sentence is removed 
if its cosine similarity with any sentence already selected for the 
answer exceeds a predefined threshold [2]. 

2.1 Soft Pattern Matching  
After preprocessing, each definition sentence is converted into a 
pattern instance that consists of left and right token sequences 
relative to the search target.  At the training phase, token 
sequences are aligned and represented as a single vector P: 
<S�,S�, …, S�> that combines information over all of the training 
sequences, where Si represents the ith slot (or position) left or right 
of the search target and contains tokens appearing in that position. 
Unlike hard matching patterns that generalize training instances 
into pattern rules, soft matching patterns model each token’s 
distribution statistics in each slot over all training instances. Given 
a test sequence T with length l:<t1, t2 …… tl> where ti is the token 
corresponding to the ith slot, soft pattern models are used to model 
the generative probability of sequence T, given training sequences 
represented in vector P. In the next two sub-sections, we briefly 
review the background to our new soft pattern models before 
proposing the models in Section 3. 

2.1.1 Language Modeling 
Language modeling has been extensively studied in speech 
recognition, part-of-speech tagging and syntactic parsing [14]. N-
gram language modeling is one important approach which models 
local sequential dependencies between adjacent tokens. Trigrams 
(n=3) are a common choice when large training corpora are 
available. We use a bigram (n=2) model in this paper, as we have 
a limited amount of training data. We also remedy problems with 
sparse data by smoothing n-gram probabilities. The first soft 
matching pattern model we introduce is based on n-gram language 
models, in which we incorporate linear interpolation [7] of 
unigrams and bigrams. 

2.1.2 Hidden Markov Models in Information 
Extraction and Biological Sequence Modeling 

Hidden Markov Models (HMMs) have been widely applied to 
speech recognition and various natural language processing 
applications [10], including information extraction (IE) and 
biological sequence modeling, which are most relevant to 
definition pattern matching.  

IE relies heavily on patterns at the lexical, syntactic and semantic 
levels. Two types of extraction patterns are exploited in current IE 

systems: machine-induced hard matching rules [11] and 
probabilistic models such as HMMs. Skounakis et al. [15] applied 
hierarchical HMMs to the task of extracting binary relations in 
biomedical texts. They constructed two types of HMMs to 
represent words and phrases, which are two levels of emission 
units. Although these variations of HMMs also model pattern 
matching as token sequence generation, the topology they employ 
are more task specific and not general enough to be extended to 
other applications such as definition pattern matching.  

HMMs recently have also been applied in computational biology 
to model protein families. Krogh et al. [8] utilized an HMM with 
a generic topology, called the Profile HMM (PHMM) (see Figure 
2), to model multiple sequence alignment of protein families.  
PHMMs can be considered a probabilistic implementation of edit 
distance. It has different states for match, insertion and deletion 
operations. As it demonstrates flexible matching of lexico-
syntactic patterns, we can easily adapt PHMMs for soft pattern 
matching by changing “amino acids” to “words and syntactic 
tags”.  The PHMM approach is our second model proposed. 

3. GENERIC SOFT PATTERN MATCHING 
MODELS 

In this section, we describe the derivation of our two soft pattern 
models and parameter estimation in detail. 

3.1 Bigram Soft Pattern Model 
We first adopt a bigram model to model pattern instances. While 
the original bigram model is simply a product of probabilities of 
all bigrams in a sequence, we apply linear interpolation of 
unigrams and bigrams to represent probability of bigrams. The 
reason is two-fold: (1) to smooth probability distribution to 
generate more accurate statistics for unseen data, and (2) to 
incorporate conditional probability of individual tokens appearing 
in specific slots. In particular, we model a sequence of pattern 
tokens as: 
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where � stands for the bigram model and P(ti|Si) stands for the 
conditional probability of token ti appearing in slot Si. � is the 
mixture weight combining the unigram and bigram probabilities. 
Note that we use the conditional probability of a unigram being in 
a slot to represent unigram probability. This is because the 
position of a token is important in modeling: for instance, a 
comma always appears in the first slot right of the target in an 
appositive expression. Incorporating individual slots’ probabilities 
enables the bigram model to allow partial matching, which is a 
characteristic of soft pattern matching. In other words, even if 
some slots cannot be matched, the bigram model can still yield a 
high match score by combining those matched slots’ unigram 
probabilities. 

As test instances are often different in length, we normalize the 
log-likelihood of Equation (1) by the length l of the test instance: 
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where l denotes the number of tokens in the test instance. 



Next, we estimate unigram and bigram probabilities by their 
maximum likelihood (ML) estimates: 
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where ti(Si) denotes that token ti appears in slot Si and |t| denotes 
the frequency of the token t. In language modeling, ML estimates 
often suffer from the sparse data problem. It is even worse in our 
scenario because we count tokens with respect to slot positions, 
which makes the training data even sparser. As such, we need to 
employ some smoothing technique to counter the problem. For 
simplicity, we use Laplace smoothing on unigram probabilities 
(recall that bigram probabilities have already been smoothed by 
interpolation): 
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where |N(t)| gives the total number of unique tokens in our 
training data and � is a constant, which is 2 in our experiments.  

Note that we count frequencies of words and general syntactic 
tags separately. General tags typically have a much higher 
frequency compared to individual words, and would thus skew the 
distribution if combined with words. Thus we need to separate the 
two types and estimate each token’s unigram probability against 
its own set. 

Estimating the mixture weight �: We use the Expectation 
Maximization (EM) algorithm [4] to find optimal settings of �. 
Specifically, we estimate� � by maximizing the likelihood of all 
training instances, given the bigram model: 

))|()1()|((log
1

1
maxarg

)|(maxarg

)()()(
1

)(
||

1 2

||

1

)(
)(

)(
1

j
i

j
i

j
i

j
i

INS

j

jl

ij

INS

j

j
jl

j

StPttP
l

ttP

λλ

µλ

λ

λ

−+
−

=

=

−
= =

=

∑ ∑

∑ �

   (6) 

P(t1|S1) is ignored because it does not affect �. � can be estimated 
using the EM iterative procedure: 

1. Initialize�� to a random estimate between 0 and 1, say 0.5. 
2. Update�� using:  

∑ ∑
−+−

×=
= =

−

−
)(

1 2
)()()(

1

)(

)(

1

)(

)|()1()|(

)|(

1

1

||

1
'

INSf

j

jl

i
j

i

j

i

j

i

j

i

j

i

j

i

j StPttP

ttP

lINS λλ
λλ    (7) 

where INS denotes all training instances and |INS| is the number of 
training instances which is used as a normalization factor.  

3. Repeat Step 2 until�� converges. 
 

We set � to 0.3 according to the experimental results. 

3.2 PHMM Soft Pattern Model 
Although the bigram model allows partial matching, it lacks the 
ability to deal with gaps in test instances. For instance, given 
training instances such as “<SCH_TERM> which is known for 
…”, the trained bigram model cannot give reasonable match 
scores to test instances such as “<SCH_TERM> which is best 
known for …” or “<SCH_TERM> , whose xxx is  known for …” 
even though they are simple variants of the training instances in 

which insertions or deletions occur.  The gaps can be captured by 
PHMMs, which allow insertion and deletion operations in the 
matching process. Figure 2 shows the topology of a PHMM. 

Start M1
M 2 M3 M 4 End

D2 D3 D4D1

I0 I1 I2
I3

I4

 

Figure 2. Illustration of the Profile HMM (L=4). Matching 
states are represented by Mi in squares, insertion states by Ii in 
diamonds, and deletion states by Di in circles. Start and End 
states occupy the positions of 0 and L+1.  

The PHMM contains a sequence of match states, which are 
denoted by Mi (i=1..L). These match states correspond to slots in 
pattern instances and determine model length L. Each match state 
can emit a token t from all tokens in the training instances with the 
emission probability P(t|Mi). For each match state, there is a 
deletion state, denoted by Di, which does not emit a token and is 
used to skip the corresponding match state. Insertion states emit a 
token t with the emission probability P(t|Ii). Insertion states insert 
tokens after match or deletion states, as with the word “best” in 
the earlier example. While transitions from match states and 
deletion states always move forward in the model, insertion states 
allow self-loops, corresponding to multiple insertions. A token 
sequence representing a pattern instance can be generated by 
moving through this model with state transition probabilities 
P(Si|Sj). The deletion and insertion states allow the PHMM to 
model missing or unobserved words in training. Specifically, the 
probability of a sequence of tokens t1 … tN that are generated by 
moving through the states S0 … SL+1 (the Start and End states are 
S0 and SL+1) is as follows: 
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where µ stands for the model. P(tn(i)|Si) is set to 1 when Si is a 
deletion state. To recognize a definition pattern, we choose the 
most probable state path in the above equation to approximate the 
probability of the sequence being given all possible state paths. 
The rationale is that most often, the most probable state path gives 
a much higher probability than any other paths. Equation (8) can 
be efficiently calculated by the forward-backward algorithm [10]. 
We employ the Viterbi algorithm [10] to find the most probable 
state path. In Figure 3, we show an example to illustrate how the 
PHMM finds the optimal path to account for the “gaps” between 
training instances and the test instance. Although the training data 
does not contain any instance that has “known” in Slot 1 and 
“NNP” in Slot 4, the PHMM automatically selects the path that 
goes through a deletion state to skip Slot 1 and uses an insertion 
state to emit “NNP”. Thus, the tokens are re-aligned with their 
most probable occurring slots such that the unseen test instance 
can still obtain a reasonable generative probability. 

Estimation of the model: During training, we need to estimate 
transition and emission probabilities for the PHMM. The training 
process, also called the estimation process, can be accomplished 
by employing the standard Baum-Welch algorithm [10]. 
Corresponding to our adaptation to the calculation of sequence 
probability, we use the Viterbi algorithm to determine the path 



with the highest probability during the re-estimation process, 
unlike the standard Baum-Welch algorithm which considers all 
possible paths which are weighted by their probabilities. 

Start M1 M2 M3 M4 End

D2 D3 D4D1

NNP
NN
  ,

,
known
known

known
as
as

as
“

DT$

Training instances:
  
     NNP ,       known as <SCH_TERM>    
      NN          known        as         “ <SCH_TERM>
        , known        as  DT$ <SCH_TERM>

I0 I1 I2 I3 I4

NNP

known as DT$

Known   as   DT$   NNP   <SCH_TERM>

 

Figure 3. Generating a test instance with gaps using the 
PHMM. The optimal path is in bold, and words or tags 
emitted are shown in callouts.  

Initialization of the model:  Although probabilities in a PHMM 
can be estimated automatically using an iterative EM algorithm 
starting with random or uniform probabilities, the re-estimation 
process can only guarantee that the model reaches local maxima.  
In addition, in capturing definition patterns, definition expressions 
are diverse and sparse in terms of both lexical tokens and POS 
tags. If we start with random or uniform setting of the model, we 
would likely end up with an unsatisfactory model that gives close 
estimates of different possibilities. To make training manageable 
given our small training set, we assume that the most probable 
state path for a sequence should go through as many match states 
as possible. The reason is that although insertion and deletion 
states add flexibility, they may hurt generalization of underlying 
definition patterns if the model gives high probabilities of going 
through them. Specifically, we set the emission probabilities for 
each match and insertion state using the smoothed maximum 
likelihood estimate of the emission probabilities (Equation 5). We 
adjust the value of � such that the probability of emitting a token 
from match states is higher than that of insertion states. We set the 
initial state transition probabilities to the inverse proportion of the 
number of transition links from a state.  

3.3 Combining Left and Right Sequences 
The pattern matching score for a test instance against definition 
patterns is obtained by combining the soft pattern matching scores 
for both the left and right sequences in the context of the search 
target. We use the linear combination of the scores: 

)|_()1()|_()|( RL SPseqrightPSPseqleftPCinsP αα −+=      (9) 

where ins represents a test instance and C denotes the context 
model. P(left_seq|SPL) and P(right_seq|SPR) give the probabilistic 
pattern matching scores of the left and right sequences of the 
instance, given the corresponding soft pattern (SP) matching 
models. � is the mixture weight. We adopt an EM algorithm 
similar to that in Section 3.1 to estimate the value of �. We set ��
to 0.3 in our experiments. 

3.4 Discussions on the Two Generic Soft 
Matching Models 

We have presented two generic soft pattern models: Bigram SP 
and PHMM SP. These two models differ in their complexity. The 
bigram model can be considered a simplified first-order Markov 
model with one state for each token. It directly captures sequence 
information using bigram probabilities. In contrast, PHMM has a 
more complicated topology that aggregates token sequence 
probability into state transition probabilities. Theoretically,   the 
PHMM needs more training data to converge to an accurate model 
as it has more parameters to estimate. Appropriate initialization 
(as shown in Section 3.2) for the PHMM also aids convergence to 
the global maxima. An advantage is that PHMMs are less 
sensitive to model settings, e.g., model length, because it makes 
its transitions between hidden states which correspond to 
aggregations of tokens rather than directly between surface tokens. 
We present experiments in Section 4 to validate these conjectures.   

Despite their differences, the two models are inherently connected 
because both the models deem definition patterns as sequences of 
tokens. They model the same structural information for patterns: 
First, both models capture the importance of a token’s position in 
the context of a search target: the bigram model uses unigram 
probabilities while the PHMM model uses emission probabilities 
to represent a token’s independent probability of appearing in 
each position. Second, both models account for the sequential 
order of tokens. This sequential information is captured by  
bigram probability in the bigram model and state transition 
probability in the PHMM model. Thus, the soft matching method 
proposed in Cui et al. [2] may be considered a special case of our 
Bigram SP model.  

Our assumption is that all definition pattern instances embedded 
in definition sentences are generated by a single model. Although 
it may be advantageous if we could train separate probabilistic 
models for different types of definition patterns, limited training 
prevents this, and such models impair the objective of establishing 
a uniform matching model for definition patterns. 

4. EVALUATIONS 
We have three goals in our evaluations: (1) to compare the 
performance of our soft matching models against other state-of-
the-art pattern matching techniques in the context of a standard 
definitional QA system, and to study the two models’ sensitivity 
to: (2) model length, and (3) amount of training data. 

4.1 Evaluation Setup 

4.1.1 Data Set 
We employ the data set from the TREC-13 Question Answering 
Task. It includes the AQUAINT corpus of over one million news 
articles and 64 definition question2 and answer pairs. We use the 
data set from the TREC-12 definitional QA task as training data, 
which shares the same corpus with TREC-13 and includes an 
additional 50 definition question and answer pairs. Based on the 
answer nuggets (ground truth, manually labeled data) provided by 
TREC for these 50 questions, we manually label all sentences that 
cover the nuggets from the corpus as definition sentences. In total, 
                                                                 
2 The test data for TREC-13 includes 65 definition questions. NIST drops 

one in the official evaluation. 



we obtain 761 labeled definition sentences as training data for 
estimating the soft matching models.  

4.1.2 Evaluation Metrics 
We adopt the evaluation metrics used in the TREC definitional 
question answering task [16, 17]. TREC provides a list of 
essential and acceptable nuggets for answering each question. We 
use these nuggets to assess the various QA systems in our 
evaluation in both manual and automatic assessments. In the 
manual assessment used in official TREC evaluations, an assessor 
examines how many essential and acceptable nuggets are covered 
in the returned answer. Each definition is scored using nugget 
recall (NR) and an approximation to nugget precision (NP) based 
on answer length. These scores are combined using the F3 measure 
with recall being weighted three times as important as precision 
[17].   

In addition to manual assessment, we perform automated 
evaluation using ROUGE [9].  Automatic scores can be a good 
supplement to manual evaluations for two reasons.  First, as Xu et 
al. [19] suggested, ROUGE gives automatic scores that are highly 
correlated with manual counting of nuggets. Second, the manual 
checking of nuggets is subject to inconsistent scoring across runs 
[16].  ROUGE is a metric originally designed for summarization 
evaluation and has previously been adapted for definitional QA 
evaluation [19]. We use the metric ROUGE-3, which counts the 
trigrams shared between the official answer and the system 
answer.  

To perform automatic scoring, for each search target, we construct 
five groups of sentences as the gold standard. According to 
TREC-13 guidelines, gold standard sentences are selected based 
on answers to the factoid/list questions about the target and 
“other” information about the target, which includes essential and 
acceptable nuggets. We give details of how to construct the gold 
standard in the Appendix. We use two ROUGE metrics: ROUGE-
3-ALL (R3A) for evaluations against all sentences in the gold 
standard and ROUGE-3-ESSENTIAL (R3E) for evaluations 
against those sentences that contain only factoid/list answers and 
essential nuggets in the gold standard list.  The final ROUGE 
scores are the average scores obtained by running the evaluation 
tool over the five groups of gold standard lists. 

4.1.3 Comparison Systems 
In our experiments, the base definition generation system used is 
the system discussed in Section 2 and illustrated in Figure 1. In 
evaluations, we only vary the definition pattern matching module 
while holding constant all other components and their parameters. 
For comparison, we apply a set of manually constructed hard 
matching definition patterns which has demonstrated state-of-the-
art performance as the baseline system. The patterns combine 
those used in Cui et al. [2] and Hildebrandt et al. [6], which 
comprise the most complete published list of patterns to our 
knowledge. In particular, we use the following comparison 
systems: 

(1) HP-Filter: This system employs the method used in Xu et al. 
[19] and Hildebrandt et al. [6] where bag-of-words is used to rank 
those constructs matched by any manual definition pattern.  

(2) Original SP: We also use the soft pattern matching method 
proposed in Cui et al. [2], and adopt the same parameter settings.  

In our evaluations, we set answer length N to 14 sentences for all 
systems to approximate the desirable answer length used in 
successful TREC systems [19, 6, 2].  

4.2 Performance Evaluation 
In the first evaluation, we assess the performance obtained by the 
two soft matching models against that of the comparison systems. 
We set model length L to optimal values based on experiments 
which we will present in the next subsection. We list the 
evaluation results in Table 1. We take HP-Filter as the baseline 
system for comparison with the soft pattern matching models.  

Table 1. F3 performance comparison (percentage improvement 
shown in brackets; ** and * represent different significance 
levels by t-test: p ������ and 0.05, respectively) 

Configurations 
HP-Filter 
(Baseline) 

Original SP Bigram SP PHMM SP 

R3A 0.2106 
0.2233 

(+6.00%) 
0.2303 

(+9.37%) 
0.2234 

(+6.08%) 

R3E 0.2286 
0.2378 

(+4.00%) 
0.2553 

(+11.67%)* 
0.2496 

(+9.18%) 

NR 0.5027 0.5376 0.5519 0.5420 

NP 0.3159 0.3238 0.3403 0.3264 

F3 0.4633 
0.4937 

(+6.56%)** 
0.5088 

(+9.83%)** 
0.4971 

(+7.30%)** 

Correlation  
F3, R3A 

0.63 0.63 0.66 0.61 

Correlation  
F3, R3E 

0.63 0.69 0.67 0.60 

From Table 1, we arrive at the following: 

1. We reaffirm the conclusion drawn by Cui et al. [2] that soft 
matching patterns outperform manually constructed hard matching 
patterns in both manual and automatic evaluations. With the 
manual F3 measure, all three soft pattern models perform 
significantly better than the baseline (p �������������	
��


������
measures change slightly when ROUGE scores are used. With 
R3E, only the bigram and PHMM models achieve significant 
improvement over the baseline (p=0.03 and p=0.08). The original 
and PHMM models achieve similar performance in R3A scores 
while the bigram model achieves some improvement. We 
conjecture that the differences among the significance tests are 
due to the long standard answers.  Recall that we have compiled a 
list of sentences as the gold standard for ROUGE evaluation. 
While the human assessor is able to figure out the real answer 
nuggets embedded in the system-returned answers, the ROUGE 
evaluation tool is likely to overestimate recall due to the long 
standard answers. 

2. We note that both Bigram SP and PHMM SP outperform 
Original SP in all scores. Bigram SP outperforms Original SP by 
7.36% (p=0.09) and 3.05% (p=0.1) in R3E and F3 scores, 
respectively. PHMM SP achieves 5.00% improvement over 
Original SP in R3E scores. These results show that the 
preliminary soft matching method is not optimized in parameter 
setting. Finding best parameters is often tedious and difficult for 
such ad hoc systems. In contrast, Bigram SP and PHMM SP 
provide a sound framework for parameter estimation. This should 



facilitate the migration of the two generic soft matching models to 
other applications. 

3. We observe that the manual F3 scores are highly correlated 
with the automatic metrics R3A and R3E despite that the ROUGE 
scores might have minor disturbance due to the long gold standard 
answers. We calculate statistical correlation between F3 and 
ROUGE scores. Correlation measures vary from -1 (perfectly anti-
correlated) to 1 (perfectly correlated). All the correlation measures 
in our evaluations are between 0.6 and 0.7, which indicate strong 
correlations between the metrics.  

4.3 Analysis of Sensitivity to Model Length 
As the parameters of the models are estimated automatically, we 
vary the only arbitrarily set factor – model length – for the two 
models. We list the ROUGE scores for both models when varying 
their model length (number of slots) from 2 to 6 in Table 2.    

In Table 2, we see that Bigram SP obtains the best performance 
with the model length of 3 while PHMM SP achieves the highest 
performance with the model length of 4. Both models slacken in 
their performance when more slots are used. 

We also compare percentage change in performance against the 
highest score for each scoring metric. The performance of the 
bigram model fluctuates more over different model lengths 
compared to PHMM SP. This is evidence that PHMM SP may be 
more stable amid changes in model typology. 

Another observation is that with model lengths of 5 and 6,  
PHMM SP performs better than the bigram model. We 
hypothesize that the PHMM model may be more capable of 
dealing with longer contexts. 

Table 2. Performance with different model lengths. The 
percentage values in parentheses are difference measures 
compared to the maximum.  Note that PHMM SP’s minimum 
length for training is 3. 

Model 
Length (# 
Slots) 

2 3 4 5 6 

PHMM SP 
R3A 

N/A 
0.2139 

(-4.25%) 
0.2234 

0.2190 
(-1.97%) 

0.2125 
(-4.88%) 

PHMM SP 
R3E 

N/A 
0.2369 

(-5.09%) 
0.2496 

0.2422 
(-2.97%) 

0.2367 
(-5.17%) 

BIGRAM 
SP R3A 

0.2128 
(-7.60%) 

0.2303 
0.2165 

(-6.00%) 
0.2152 

(-6.56%) 
0.2086 

(-9.42%) 

BIGRAM 
SP R3E 

0.2340 
(-8.34%) 

0.2553 
0.2363 

(-7.44%) 
0.2354 

(-7.80%) 
0.2346 

(-8.11%) 

4.4 Analysis of Sensitivity to Amount of 
Training Data 

In this evaluation, we experiment with different amounts of 
training data. We divide the training data into two or three equal 
portions. We train the bigram and PHMM models by using 
different amounts of training data while testing on the same test 
data set as before. We perform multiple runs with different 
portions of training data, and average the scores obtained by the 
system. Table 3 lists the results. 

Table 3. Performance comparison across varying amounts of 
training data. 

Training Data size (fraction of whole training corpus)  

1/3 1/2 1 

PHMM R3A 0.2110 0.2179 (+3.24%) 0.2234 (+5.85%) 

PHMM R3E 0.2311 0.2402 (+3.93%) 0.2496 (+8.00%) 

Bigram R3A 0.2229 0.2269 (+1.76%) 0.2303 (+3.32%) 

Bigram R3E 0.2478 0.2510 (+1.29%) 0.2553 (+3.03%) 

 
Table 3 shows that PHMM SP achieves higher improvement than 
Bigram SP when more training data is used. On the other hand, 
comparing the performance difference between the PHMM and 
bigram models with different amounts of training data reveals that 
with more training data, the performance difference between the 
two models narrows. For instance, the difference decreases from 
7.22% to 2.28% and from 5.61% to 3.09% in R3E and R3A 
scores respectively when we change from using one third to using 
the full amount of training data. This observation supports our 
conjecture that PHMM requires a larger amount of training data 
for parameter estimation. Although Table 1 shows the bigram 
model performing better, we believe that with enough training 
data, PHMM SP may outperform the bigram model. 

5. CONCLUSIONS AND FUTURE WORK 
We have proposed two generic soft pattern models: one based on 
a bigram language model and the other on the PHMM. Both 
provide formal probabilistic methods to model lexico-syntactic 
patterns represented by token sequences. In particular, we have 
shown that PHMM overcomes the problem of gaps caused by 
language variations in pattern matching. Our experiments show 
both models obtaining significantly better performance than 
carefully constructed hard matching patterns in a definitional QA 
system. Although the bigram model shows slightly better 
performance between the two new models in our evaluations, we 
believe that the PHMM model can perform better with more 
training data. Moreover, as the PHMM model has shown to be 
more tolerant to language variations, it is likely to be suitable in 
applications with diverse training and test instances.  

Providing formal models for modeling contextual lexico-syntactic 
patterns is the main contribution of this work.  Our two soft 
matching models are generic and can be extended to related areas 
that require modeling of contextual patterns, such as information 
extraction (IE). The pattern matching problem in IE tasks are 
formally the same as definition sentence retrieval. When 
conducted on free texts, an IE system can also suffer from various 
unseen instances not being matched by trained patterns. Xiao et 
al. [18] have demonstrated that soft pattern matching greatly 
improves recall in an IE system. Although some HMM topologies 
have been employed for IE tasks, our models are more generic and 
require less configuration and parameter tuning with changing 
domains. The models can help IE systems overcome difficulties 
caused by language variations in pattern matching. 
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8. APPENDIX   
According to TREC-13 QA guidelines (Voorhees 2004), 
definitional QA systems are required to present “other” 
information about the search target that is not covered by the 
factoid or list questions related to the target. As our purpose is to 
evaluate a definitional QA system, we perform the following 
alterations to make the evaluation complete: We use a list of 
answer patterns for the factoid and list questions about a target to 
search for sentences that contain the answers. We treat these 
factoid/list answers as essential nuggets and add the answer 
sentences to the gold standard list. This is based on the guideline 
that factoid/list questions are about the most essential information 
about the target. We choose sentences because answers for 
factoid/list questions are only phrases and other nuggets about the 
target are often ungrammatical text fragments. The original form 
of answers and nuggets cannot be matched by ROUGE in most 
cases. As the same answer may be embedded in different 
sentences, we search for up to five sentences for each factoid/list 
answer and for each nugget in the definition part. Accordingly,  
we create five groups of gold standard lists for each target. 
Besides factoid and list answers, we also add sentences containing 
essential and acceptable nuggets to “other” questions to the gold 
standard list. 

 

 


