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1. INTRODUCTION 
Open domain question answering (QA) has become a popular 
research area in recent years. Most current QA systems search for 
answers in three major stages: document retrieval, passage 
retrieval and answer selection. As QA requires exact answers, 
answer selection is a crucial module in a QA system. 

Many answer selection techniques have been proposed. Density-
based ranking, which considers the surface distance between 
question terms and the answer target, is employed by most state-
of-the-art QA systems. While density-based ranking may be 
effective for questions with answer targets of certain named entity 
(NE) types, it may fare poorly with questions whose answer target 
type is unknown, for instance: “What does AARP stand for?” For 
such questions, there is a much larger answer candidate space to 
choose from, and the density-based method often does not have 
enough information to pinpoint the correct answer.  In addition, 
even for those questions with known NE-type answer targets, 
lexical level matching often leads to false positives [1].  

To overcome such problems, we use dependency relations 
between matched question terms and the answer target as 
additional evidence to pinpoint the correct answer. We have 
applied dependency relation matching to passage retrieval in our 
past work [1]. We now focus on answer selection and extend 
dependency relation matching by using WordNet to allow flexible 
relation alignment. 

2. THE APPROACH 
In this section, we briefly describe the modules in our factoid QA 
system, particularly the answer selection module.  

2.1 Document and Passage Retrieval 
We use Lucene� as our document retrieval system. We adopt a 
density-based passage ranking algorithm with query expansion as 

described in [2] to rank the relevance of passages. We use single 
sentence as passage since the dependency parsers such as Minipar [3] 
can only analyze a single sentence as input. We choose the top 
ranked 50 sentences as input for answer selection. 

2.2 Answer Selection 
We employ Minipar to generate dependency trees for each top ranked 
sentence from the passage retrieval module. A dependency tree 
depicts dependency relations between nodes, i.e., tokens of a 
sentence (a token can be a single word, a noun phrase or a verb 
phrase). For each pair of adjacent nodes in the tree,  an edge is 
labeled with the relation between them from modifier to  head. For 
any two tokens in a sentence, a relation path exists between their 
nodes in the tree. The path consists of a series of relations attached to 
the intermediate nodes. As such, we define a relation triple in the 
form of (Start_Token, Relation_Path, End_Token). Our answer 
selection is conducted on relation triples. The node with the most 
similar relations with other question term nodes compared to the 
relations they have in the question is selected as the answer. 

2.2.1. Relation Similarity Learning 
Due to variations in natural language texts, the same relation is often 
phrased differently in questions and answer sentences. Instead of 
performing exact matching between relations, we adopt a statistical 
method to learn the relatedness of relations from training data. 

We accumulate around 1,000 factoid question-answer pairs from 
TREC 2001 and 2002 QA tasks to build our statistical model. In 
order to align relations between question terms and answer terms, we 
substitute a general tag <ANS> for those question targets in 
questions and answer sentences. We then use Minipar to parse the 
questions and answer sentences. For each question and answer, 
relation paths from question triples are generated and aligned with 
those from answer triples. if their starting and ending tokens are the 
same after stemming. This results in 2,557 relation path pairs for 
model construction. The relatedness of two relations is measured by a 
variation of mutual information: 
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where Rel0 and Rel1 are the relations extracted from the question 
paths and the answer paths respectively. fQ(Rel) and fA(Rel) represent 
the number of occurrences of Rel in question paths and answer paths. 

)Rel,Rel( 10δ  is 1 when relations Rel0 and Rel1 occur in a question path 

and its corresponding answer path respectively, and 0 otherwise. α  
is inversely proportional to the number of relations appearing in the 
question and in the answer.  

We compute pair-wise similarity for all dependency relations. These 
relation similarities form the basis for calculating relation path 
                                                                 

1 http://jakarta.apache.org/lucene/docs/index.html 
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similarity at the answer selection stage. Other techniques for 
estimating these pair-wise relation similarities can be found in [1]. 

2.2.2 Answer Selection 
We retrieve 50 top ranked sentences from the passage retrieval 
module. For each sentence, we perform NE tagging. For each 
question, we use two different approaches to select a group of answer 
candidates, depending on the question type. For questions that 
require a specific NE type as the answer target, we use all the tokens 
of that NE type from the top 50 sentences as our target set. For 
questions requiring no known NE types as answer targets, we use all 
verb phrases or noun phrases to form the answer candidate set.  

For sentences in the answer candidate set, we extract relation paths 
by aligning the matched terms in the question and answer sentences. 
Note that the <ANS> node and the candidate answer node are 
considered to be a match. However, we notice that sentences 
containing potential answers may not use the exact term used in the 
question. For example, “Who did Capriati beat in the French Open 
final?” can be answered by “Capriati defeat Graf by 2-1 in French 
final last night”. In this case, “beat” and “defeat” should be matched. 
We thus define two matching criteria, namely strict matching and 
flexible matching. With strict matching, two terms are matched if and 
only if they have the same stem form. With flexible matching, we use 
WordNet to find semantically related words. Specifically, for a 
particular term Q0, we use WordNet to extract terms that are in Q0’s 
gloss (GQ) and synset (SQ) in terms of its top three senses according 
to its POS tag. We define the matched term pair between the question 
term Q0 and any term in the answer candidate sentence (T0) by: 
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These matched terms can be used to expand terms in the starting and 
ending nodes for a relation path, and thus increase the chance of a 
match. Given two relation paths PQ and PA, we first treat relations 
along the path as a sequence, and try all possible alignments of the 
relation sequence between the question triple and the answer triple. 
Among all possible alignments, we only choose the one that 
maximizes the sum of mutual information. The path similarity is 
calculated as: 
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where�is a constant, and len(PQ) and len(PA) denote the length of 
the relation sequence in the question triple and the answer triple 
respectively. Finally, the score of the answer candidate is calculated 
as: 
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Based on this score, we select the highest ranked answer string to 
be the final answer. 

3. EVALUATIONS 
To evaluate our approach to selecting answers, we use 200 factoid 
questions from the TREC 2004 QA task and 380 factoid questions 
from TREC 2003 as our test set. Note that we exclude from the test 
set those questions that have no answers. We set up three systems for 
comparison: We use a state-of-the-art density-based answer selection 
module as the baseline system (BS) [4], and we implement two 
relation-based answer selection modules, S1 and S2. S1 uses strict 
token matching (Section 2.2.2 without WordNet extensions) while S2 
uses flexible token matching (using WordNet extensions). We further 
divide the questions into two types according to whether their answer 

target types are known. We list the experimental results in Tables 1 
and 2. 

Table 1. Performance comparison on TREC 2004 questions  
%Imp. denotes percentage improvement over the baseline system (BS) 

 BS S1 (%Imp.) S2 (%Imp.) 

Overall average 
accuracy 

0.51 0.62 (22%) 0.65 (27%) 

For questions with 
NE-type targets 

0.68 0.78 (15%) 0.81 (19%) 

For questions 
without NE-type 

targets 

0.29 0.42 (45%) 0.44 (52%) 

Table 2. Performance comparison on TREC 2003 questions 

 BS S1 (%Imp.)  S2 (%Imp.) 

Overall average 
accuracy 

0.44 0.53 (20%) 0.56 (27%) 

For questions with 
NE-type targets 

0.57 0.67 (18%) 0.70 (23%) 

For questions 
without NE-type 

targets 

0.22 0.29 (32%) 0.33 (50%) 

Our main observations from the tables are: (a) Our approach using 
dependency relations produces significant improvement over the 
baseline system for both TREC 2003 and 2004 questions. The 
improvement is more significant for questions in which the answer 
type is unknown. In such cases, the baseline system will have a much 
larger candidate set to choose from and the density-based approach is 
reduced to blind search. (b) The result obtained by flexible matching 
is not significantly better than that obtained by strict matching. We 
conjecture that the main reason is WordNet does not capture the 
variation between nouns and verbs. For example, the answer to the 
question “Who did XXX marry?” may appear in the form “XXX’s wife 
YYY”. In this case, WordNet fails to capture the similarity between 
“marry” and “wife”. Another reason is that although approximate 
matching criteria may increase matching recall, it also introduces 
noise in answer extraction, especially when the matched term has 
different senses and cannot be substituted simply by its synonyms 
from other senses. 
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