
Dependency Relation Matching for Answer Selection
Renxu Sun Hang Cui Keya Li Min-Yen Kan Tat-Seng Chua

Department of Computer Science
School of Computing

National University of Singapore

{sunrenxu, cuihang, likeya, kanmy, chuats}@comp.nus.edu.sg

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval - Retrieval Models; I.2.7 [Artificial Intelligence]:
Natural Language Processing;

General Terms
Algorithms, Measurement, Experimentation

Keywords
Question Answering, Answer Selection, Dependency Relation
Matching

1. INTRODUCTION
Open domain question answering (QA) has become a popular
research area in recent years. Most current QA systems search for
answers in three major stages: document retrieval, passage
retrieval and answer selection. As QA requires exact answers,
answer selection is a crucial module in a QA system.

Many answer selection techniques have been proposed. Density-
based ranking, which considers the surface distance between
question terms and the answer target, is employed by most state-
of-the-art QA systems. While density-based ranking may be
effective for questions with answer targets of certain named entity
(NE) types, it may fare poorly with questions whose answer target
type is unknown, for instance: “What does AARP stand for?” For
such questions, there is a much larger answer candidate space to
choose from, and the density-based method often does not have
enough information to pinpoint the correct answer. In addition,
even for those questions with known NE-type answer targets,
lexical level matching often leads to false positives [1].

To overcome such problems, we use dependency relations
between matched question terms and the answer target as
additional evidence to pinpoint the correct answer. We have
applied dependency relation matching to passage retrieval in our
past work [1]. We now focus on answer selection and extend
dependency relation matching by using WordNet to allow flexible
relation alignment.

2. THE APPROACH
In this section, we briefly describe the modules in our factoid QA
system, particularly the answer selection module.

2.1 Document and Passage Retrieval
We use Lucene� as our document retrieval system. We adopt a
density-based passage ranking algorithm with query expansion as

described in [2] to rank the relevance of passages. We use single
sentence as passage since the dependency parsers such as Minipar [3]
can only analyze a single sentence as input. We choose the top
ranked 50 sentences as input for answer selection.

2.2 Answer Selection
We employ Minipar to generate dependency trees for each top ranked
sentence from the passage retrieval module. A dependency tree
depicts dependency relations between nodes, i.e., tokens of a
sentence (a token can be a single word, a noun phrase or a verb
phrase). For each pair of adjacent nodes in the tree, an edge is
labeled with the relation between them from modifier to head. For
any two tokens in a sentence, a relation path exists between their
nodes in the tree. The path consists of a series of relations attached to
the intermediate nodes. As such, we define a relation triple in the
form of (Start_Token, Relation_Path, End_Token). Our answer
selection is conducted on relation triples. The node with the most
similar relations with other question term nodes compared to the
relations they have in the question is selected as the answer.

2.2.1. Relation Similarity Learning
Due to variations in natural language texts, the same relation is often
phrased differently in questions and answer sentences. Instead of
performing exact matching between relations, we adopt a statistical
method to learn the relatedness of relations from training data.

We accumulate around 1,000 factoid question-answer pairs from
TREC 2001 and 2002 QA tasks to build our statistical model. In
order to align relations between question terms and answer terms, we
substitute a general tag <ANS> for those question targets in
questions and answer sentences. We then use Minipar to parse the
questions and answer sentences. For each question and answer,
relation paths from question triples are generated and aligned with
those from answer triples. if their starting and ending tokens are the
same after stemming. This results in 2,557 relation path pairs for
model construction. The relatedness of two relations is measured by a
variation of mutual information:

)Rel()Rel(

)Rel,Rel(
log)Rel,Rel(

10

10
10

AQ ff
MI

×
×

= ∑ δα

where Rel0 and Rel1 are the relations extracted from the question
paths and the answer paths respectively. fQ(Rel) and fA(Rel) represent
the number of occurrences of Rel in question paths and answer paths.

)Rel,Rel(10δ is 1 when relations Rel0 and Rel1 occur in a question path

and its corresponding answer path respectively, and 0 otherwise. α
is inversely proportional to the number of relations appearing in the
question and in the answer.

We compute pair-wise similarity for all dependency relations. These
relation similarities form the basis for calculating relation path

1 http://jakarta.apache.org/lucene/docs/index.html

Copyright is held by the author/owner(s).
SIGIR’05, August 15–19, 2005, Salvador, Brazil.
ACM 1-59593-034-5/05/0008.

similarity at the answer selection stage. Other techniques for
estimating these pair-wise relation similarities can be found in [1].

2.2.2 Answer Selection
We retrieve 50 top ranked sentences from the passage retrieval
module. For each sentence, we perform NE tagging. For each
question, we use two different approaches to select a group of answer
candidates, depending on the question type. For questions that
require a specific NE type as the answer target, we use all the tokens
of that NE type from the top 50 sentences as our target set. For
questions requiring no known NE types as answer targets, we use all
verb phrases or noun phrases to form the answer candidate set.

For sentences in the answer candidate set, we extract relation paths
by aligning the matched terms in the question and answer sentences.
Note that the <ANS> node and the candidate answer node are
considered to be a match. However, we notice that sentences
containing potential answers may not use the exact term used in the
question. For example, “Who did Capriati beat in the French Open
final?” can be answered by “Capriati defeat Graf by 2-1 in French
final last night”. In this case, “beat” and “defeat” should be matched.
We thus define two matching criteria, namely strict matching and
flexible matching. With strict matching, two terms are matched if and
only if they have the same stem form. With flexible matching, we use
WordNet to find semantically related words. Specifically, for a
particular term Q0, we use WordNet to extract terms that are in Q0’s
gloss (GQ) and synset (SQ) in terms of its top three senses according
to its POS tag. We define the matched term pair between the question
term Q0 and any term in the answer candidate sentence (T0) by:

))()(()(},{ 000000 TstemQstemSTGTTQMatch QQ =∨∈∨∈⇔

These matched terms can be used to expand terms in the starting and
ending nodes for a relation path, and thus increase the chance of a
match. Given two relation paths PQ and PA, we first treat relations
along the path as a sequence, and try all possible alignments of the
relation sequence between the question triple and the answer triple.
Among all possible alignments, we only choose the one that
maximizes the sum of mutual information. The path similarity is
calculated as:

))Re,(Re(maxarg
)(1

),(
__

)(∑
+

= A
j

Q
i

alignmentspossibleallAPlen
Q

AQ llMI
Plen

PPSim
ε

where�is a constant, and len(PQ) and len(PA) denote the length of
the relation sequence in the question triple and the answer triple
respectively. Finally, the score of the answer candidate is calculated
as:

∑=
Anscontainingtriplesmatched

AQ PPSimAnsQScore

),(),(

Based on this score, we select the highest ranked answer string to
be the final answer.

3. EVALUATIONS
To evaluate our approach to selecting answers, we use 200 factoid
questions from the TREC 2004 QA task and 380 factoid questions
from TREC 2003 as our test set. Note that we exclude from the test
set those questions that have no answers. We set up three systems for
comparison: We use a state-of-the-art density-based answer selection
module as the baseline system (BS) [4], and we implement two
relation-based answer selection modules, S1 and S2. S1 uses strict
token matching (Section 2.2.2 without WordNet extensions) while S2
uses flexible token matching (using WordNet extensions). We further
divide the questions into two types according to whether their answer

target types are known. We list the experimental results in Tables 1
and 2.

Table 1. Performance comparison on TREC 2004 questions
%Imp. denotes percentage improvement over the baseline system (BS)

 BS S1 (%Imp.) S2 (%Imp.)

Overall average
accuracy

0.51 0.62 (22%) 0.65 (27%)

For questions with
NE-type targets

0.68 0.78 (15%) 0.81 (19%)

For questions
without NE-type

targets

0.29 0.42 (45%) 0.44 (52%)

Table 2. Performance comparison on TREC 2003 questions

 BS S1 (%Imp.) S2 (%Imp.)

Overall average
accuracy

0.44 0.53 (20%) 0.56 (27%)

For questions with
NE-type targets

0.57 0.67 (18%) 0.70 (23%)

For questions
without NE-type

targets

0.22 0.29 (32%) 0.33 (50%)

Our main observations from the tables are: (a) Our approach using
dependency relations produces significant improvement over the
baseline system for both TREC 2003 and 2004 questions. The
improvement is more significant for questions in which the answer
type is unknown. In such cases, the baseline system will have a much
larger candidate set to choose from and the density-based approach is
reduced to blind search. (b) The result obtained by flexible matching
is not significantly better than that obtained by strict matching. We
conjecture that the main reason is WordNet does not capture the
variation between nouns and verbs. For example, the answer to the
question “Who did XXX marry?” may appear in the form “XXX’s wife
YYY”. In this case, WordNet fails to capture the similarity between
“marry” and “wife”. Another reason is that although approximate
matching criteria may increase matching recall, it also introduces
noise in answer extraction, especially when the matched term has
different senses and cannot be substituted simply by its synonyms
from other senses.

4. REFERENCES
[1] H. Cui, R. Sun, K. Li, M.-Y. Kan and T.-S. Chua, Question

Answering Passage Retrieval Using Dependency Relations, In
Proc. of SIGIR 2005, Salvador, Brazil, 2005.

[2] H. Cui, K. Li, R. Sun, T.-S Chua and M.-Y. Kan, National
University of Singapore at the TREC-13 Question Answering
Main Task, Proc. of TREC-13, 2004.

[3] D. Lin, Dependency-based Evaluation of MINIPAR,. Workshop
on the Evaluation of Parsing Systems, Granada, Spain, 1998.

[4] H. Yang, H. Cui, M.-Y. Kan, M. Maslennikov, L. Qiu and T.-S. Chua,
QUALIFER in TREC-12 QA Main Task, In Proc. of TREC-12, 2003.

