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Abstract

Morphological inflection is a process of word
formation where base words are modified to
express different grammatical categories such
as tense, case, voice, person, or number. World
Englishes, such as Colloquial Singapore En-
glish (CSE) and African American Vernacu-
lar English (AAVE), differ from Standard En-
glish dialects in inflection use. Although com-
prehension by human readers is usually unim-
paired by non-standard inflection use, NLP
systems are not so robust. We introduce a new
Base-Inflection Encoding of English text that
is achieved by combining linguistic and statis-
tical techniques. Fine-tuning pre-trained NLP
models for downstream tasks under this novel
encoding achieves robustness to non-standard
inflection use while maintaining performance
on Standard English examples. Models us-
ing this encoding also generalize better to
non-standard dialects without explicit training.
We suggest metrics to evaluate tokenizers and
extensive model-independent analyses demon-
strate the efficacy of the encoding when used
together with data-driven subword tokenizers.

1 Introduction

Large-scale neural models have proven success-
ful at a wide range of natural language process-
ing (NLP) tasks but are susceptible to amplifying
discrimination against minority linguistic commu-
nities (Hovy and Spruit, 2016; Tan et al., 2020)
due to selection bias in the training data and model
overamplification (Shah et al., 2019).

Most datasets implicitly assume a distribution
of perfect Standard English speakers, but this does
not accurately reflect the majority of the global En-
glish speaking population that are either second
language or non-standard dialect speakers (Crystal,
2003; Eberhard et al., 2019). This is particularly
concerning because these World Englishes differ
at the lexical, morphological, and syntactic levels

(Kachru et al., 2009); over-sensitivity to these local
variations predisposes English NLP systems to dis-
criminate against speakers of World Englishes by
either misunderstanding or misinterpreting them
(Hern, 2017; Tatman, 2017).

In particular, Tan et al. (2020) recently show that
current question-answering and machine transla-
tion systems are overly sensitive to non-standard
inflection use, which is a common feature of di-
alects like Colloquial Singapore English (CSE) and
African American Vernacular English (AAVE).1

Since humans are able to internally correct for or
ignore non-standard inflection use (Foster and Wig-
glesworth, 2016), we should expect NLP systems
to be equally robust.

Existing work in adversarial robustness for NLP
primarily focuses on adversarial training methods
(Belinkov and Bisk, 2018; Ribeiro et al., 2018; Tan
et al., 2020) or classifying and correcting adversar-
ial examples (Zhou et al., 2019a). However, this
effectively increases the size of the training dataset
by including adversarial examples or training a new
model to identify and correct perturbations, thereby
significantly increasing the overall computational
cost for creating hardened models.

These approaches also only operate on either raw
text or the model and ignore tokenization, which
transforms raw text into a form that the neural net-
work can learn from. Here we introduce a new
representation for word tokens that separates base
and inflection to improve NLP robustness, in a
sense making grammatical parsing explicit (Pān. ini,
c. 500 BCE) and potentially changing the statistical
properties of tokens (Zipf, 1965, p. 255).

Many NLP systems presently use a combination
of a whitespace and punctuation tokenizer followed
by a data-driven subword tokenizer like byte pair

1Examples in Appendix A of Tan et al. (2020).
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encoding (BPE) (Sennrich et al., 2016).2 However,
a purely data-driven approach may fail to find the
optimal encoding, both in terms of vocabulary effi-
ciency and cross-dialectal generalization, thereby
making the neural model more vulnerable to inflec-
tional perturbations. As such, we:

• Propose Base-Inflection Encoding (BITE),
which uses morphological information to help
the data-driven tokenizer use its vocabulary ef-
ficiently and generate robust token sequences.
In contrast to morphological and subword seg-
mentation techniques like BPE and Morfessor
(Creutz and Lagus, 2002), we reduce inflected
forms to their base forms before re-injecting the
inflection information into the encoded sequence
via special inflection symbols. This approach
gracefully handles the canonicalization of words
with ablaut while allowing the original sentence
to be easily reconstructed.

• Demonstrate BITE’s effectiveness at hardening
the NLP system to non-standard inflection use
while preserving performance on Standard En-
glish examples. Crucially, simply fine-tuning the
pre-trained model for the downstream task after
adding BITE is sufficient. Unlike adversarial
fine-tuning, our method does not increase the
dataset size and is more environment-friendly.

• Show that BERT (Devlin et al., 2019) is less
perplexed by non-standard dialectal data when
equipped with BITE, which implies BITE helps
the model generalize better across dialects.

• Conduct extensive model-independent analyses
to demonstrate BITE’s efficacy when used in tan-
dem with data-driven subword tokenizers like
BPE, WordPiece (Schuster and Nakajima, 2012),
and unigram language model (LM) (Kudo, 2018).
Since there is little prior work on quantitatively
evaluating the efficacy of subword encoding
schemes, we propose a number of metrics to
operationalize and evaluate the vocabulary ef-
ficiency and semantic capacity of an encoding
scheme. Our evaluation measures are generic
and can be used to evaluate any tokenizer.

2 Related Work

Subword tokenization. Before neural models
can learn, raw text must first be encoded into sym-
bols with the help of a fixed-size vocabulary. Early

2SentencePiece treats whitespace as just another character.

models represented each word as a single symbol in
the vocabulary (Bengio et al., 2001; Collobert et al.,
2011) and uncommon words were represented by
an unknown symbol. However, such a representa-
tion is unable to adequately deal with words absent
in the training vocabulary. Therefore, subword rep-
resentations like WordPiece (Schuster and Naka-
jima, 2012) and byte pair encoding (Sennrich et al.,
2016) were proposed to encode out-of-vocabulary
(OOV) words by segmenting them into subwords
and encoding each subword as a separate symbol.
This way, less information is lost in the encoding
process since OOV words are approximated as a
combination of subwords in the vocabulary. Wang
et al. (2019) propose to reduce vocabulary sizes by
operating on bytes instead of characters.

To make subword regularization more tractable,
Kudo (2018) proposed an alternative method of
building a subword vocabulary by reducing an ini-
tially oversized vocabulary down to the required
size with the aid of a unigram language model,
as opposed to incrementally building a vocabulary
like in WordPiece and BPE variants.

Adversarial robustness in NLP. To harden
NLP systems against adversarial examples, exist-
ing work largely uses adversarial training (Good-
fellow et al., 2015; Jia and Liang, 2017; Ebrahimi
et al., 2018; Belinkov and Bisk, 2018; Ribeiro et al.,
2018; Iyyer et al., 2018; Cheng et al., 2019). How-
ever, this generally involves retraining the model
with the adversarial data, which is computationally
expensive and time-consuming. Tan et al. (2020)
showed that simply fine-tuning the trained model
for a single epoch on appropriately generated adver-
sarial training data is sufficient to harden it against
inflectional adversaries. Instead of adversarial train-
ing, Zhou et al. (2019b) propose using a BERT-
based model to detect adversarial examples and
recover the original examples. Jia et al. (2019) and
Huang et al. (2019) use Interval Bound Propagation
to train provably robust models.

3 Linguistically-Grounded Tokenization

In data-driven subword encoding schemes like
BPE, the goal is to improve the model’s ability
to approximate the semantics of an unknown word
by encoding words as subwords.

Although the fully data-driven nature of such
methods make them language-independent, this
forces them to rely only on the statistics of the sur-
face forms when transforming words into subwords



Dataset Condition WordPiece (WP) BITE + WP WP + Adv. FT.

SQuAD 2.0 Ans. Qns (F1) Clean 74.58 74.50 75.46 79.07
Adv. 61.37 71.33 72.56 72.21

SQuAD 2.0 All Qns (F1) Clean 72.75 72.71 73.69 74.45
Adv. 59.32 69.23 70.66 68.23

MultiNLI (Acc) Clean 83.44 83.01 82.21 83.86
Adv. 58.70 76.11 81.05 83.87

MultiNLI-MM (Acc) Clean 83.59 83.50 83.36 83.86
Adv. 59.75 76.64 81.04 75.77

Table 1: BERTbase results on the clean and adversarial MultiNLI and SQuAD 2.0 datasets. We compare Word-
Piece+BITE to both WordPiece alone and with one epoch of adversarial fine-tuning. To ensure a fair comparison
with adversarial fine-tuning, we trained the BITE-equipped model for an extra epoch (right column) on clean data.

Algorithm 1 Base-Inflection Encoding (BITE)
Require: Input sentence S = [w1, . . . , wN ]
Ensure: Tokenized sequence T

T ← [∅]
for all i = 1, . . . , |N | do

if POS(wi) ∈ {NOUN, VERB, ADJ} then
base← GETLEMMA(wi)
inflection← GETINFLECTION(wi)
T ← T + [base, inflection]

else
T ← T + [wi]

end if
end for
return T

since they do not make any language-specific mor-
phological assumptions. To illustrate, the past tense
of go, take, and keep have the inflected forms
went, took, and kept, respectively, which have
little to no overlap with their base forms and each
other even though they share the same tense. These
six surface forms would likely have no subwords
in common in the vocabulary, thereby putting the
burden of learning both the relation between base
forms and inflected forms and the relation between
inflections for the same tense on the model. Addi-
tionally, since vocabularies are fixed before model
training, such an encoding does not optimally use
a limited vocabulary.

Even when inflections do not exhibit ablaut and
there is a significant overlap between the base and
inflected forms, e.g., the -ed and -d suffixes, there
is no guarantee that the suffix will be encoded as
a separate subword and that the base forms and
suffixes will be consistently represented. To il-
lustrate, encoding danced as {dance,d} and
dancing as {danc,ing} results in two differ-
ent “base forms” for the same word, dance. This
again places the burden of learning that the two
“base forms” mean the same thing on the model and

makes inefficient use of a limited vocabulary.
When encoded in conjunction with another in-

flected form like entered, which should be en-
coded as {enter,ed}, this encoding scheme also
produces two different subwords for the same type
of inflection -ed vs -d. Like the first example,
the burden of learning that the two suffixes corre-
spond to the same tense is transferred to the learn-
ing model.

A possible solution is to instead encode danced
as {danc,ed} and dancing as {danc,ing},
but there is no guarantee that a data-driven encod-
ing scheme will learn this pattern without some
language-specific linguistic supervision. In addi-
tion, this unnecessarily splits up the base form into
two subwords danc and e; the latter contains no
extra semantic or grammatical information yet in-
creases the tokenized sequence length. Although
individually minor, encoding many base words in
this manner increases the computational cost for
any encoder or decoder network.

Finally, although it is theoretically possible to
force a data-driven tokenizer to segment inflected
forms into morphologically logical subwords by
limiting the vocabulary size, many inflected forms
are represented as individual symbols at common
vocabulary sizes (30–40k). We found that the
BERTbase WordPiece tokenizer and BPE3 encoded
each of the above examples as single symbols.

To address these issues, we propose the Base-
Inflection Encoding framework (or BITE), which
encodes the base form and inflection of content
words separately. Similar to how existing subword
encoding schemes improve the model’s ability to
approximate the semantics of out-of-vocabulary
words with in-vocabulary subwords, BITE helps

3Trained on Wikipedia+BookCorpus (1M) with a vocabu-
lary size of 30k symbols.



the model handle out-of-distribution inflection us-
age better by keeping a content word’s base form
consistent even when its inflected form drastically
changes. This distributional deviation could mani-
fest as adversarial examples, such as those gener-
ated by MORPHEUS (Tan et al., 2020), or sentences
produced by non-standard English (L2 or dialect)
speakers. As a result, BITE provides adversarial
robustness to the model.

3.1 Base-Inflection Encoding

Given an input sentence S = [w1, . . . , wN ] where
wi is the ith word, BITE generates a sequence
of tokens S′ = [w′1, . . . , w

′
N ] such that w′i =

[BASE(wi),INFLECT(wi)] where BASE(wi) is the
base form of the word and INFLECT(wi) is the
inflection (grammatical category) of the word (Al-
gorithm 1). If wi is not inflected, INFLECT(wi) is
NULL and excluded from the final sequence of to-
kens to reduce the neural network’s computational
cost. In our implementation, we use Penn Treebank
tags to represent inflections. For example, “Jack
jumped the hurdles” would be encoded as

[Jack, jump, VBD, the, hurdle, NNS].

By lemmatizing each word to obtain the base
form instead of segmenting it like in most data-
driven encoding schemes, BITE ensures this base
form is consistent for all inflected forms of a word,
unlike a subword produced by segmentation, which
can only contain characters available in the original
word. For example, BASE(took), BASE(taking),
and BASE(taken) all correspond to the same base
form, take, even though it is significantly ortho-
graphically different from took.

Similarly, encoding all inflections of the same
grammatical category (e.g., verb-past-tense) in a
canonical form should help the model to learn each
inflection’s grammatical role more quickly. This
is because the model does not need to first learn
that the same grammatical category can manifest
in orthographically different forms.

Finally and most importantly, this encoding pro-
cess is informationally lossless and we can easily
reconstruct the original sentence using the base
forms and grammatical information preserved by
the inflection tokens.

3.2 Compatibility with Data-Driven Methods

Although BITE has the numerous advantages out-
lined above, it suffers from the same weakness as
regular word-level tokenization schemes when used

alone: a limited ability to handle out-of-vocabulary
words. Hence, we designed BITE to be a gen-
eral framework that seamlessly incorporates exist-
ing data-driven schemes to take advantage of their
proven ability to handle OOV words.

To achieve this, a whitespace/punctuation-based
pre-tokenizer is first used to transform the input
into a sequence of words and punctuation charac-
ters, as is common in neural machine translation.
Next, BITE is applied and the resulting sequence
is converted into a sequence of integers by a data-
driven encoding scheme (e.g., BPE). In our experi-
ments, we use BITE in this manner and refer to the
combined tokenizer as “BITE+D”, where D refers
to the data-driven encoding scheme.

4 Model-based Experiments

In this section, we demonstrate the effectiveness of
BITE using the pre-trained cased BERTbase model
(Devlin et al., 2019) implemented by Wolf et al.
(2019). We do not replace WordPiece but instead
extend incorporate it into the BITE framework as
described in §3.2. There are both advantages and
disadvantages to this approach, which we will dis-
cuss in the next section.

4.1 Adversarial Robustness
We evaluate BITE on question answering and nat-
ural language understanding datasets, SQuAD 2.0
(Rajpurkar et al., 2018) and MultiNLI (Williams
et al., 2018), respectively. Following Tan et al.
(2020), we report F1 scores on both the full SQuAD
2.0 dataset and only the answerable questions.
In addition, we also report scores for the out-of-
domain development set (MultiNLI-MM).

For the experiments in this subsection, we use
MORPHEUS (Tan et al., 2020) to generate adver-
sarial examples that resemble second language
English speaker (L2) sentences. These adversar-
ial examples, while synthetic, can be thought of
as “worst-case” examples of L2 sentences for the
model under test. This is done separately for each
BERTbase model.

BITE vs. BITE-less. First, we demonstrate the
effectiveness of BITE at making the model robust
to inflectional adversaries. After fine-tuning two
separate BERTbase models (one with BITE, the
other with standard WordPiece) on SQuAD 2.0 and
MultiNLI with Wolf et al. (2019)’s default hyper-
parameters, we generate adversarial examples for
them using MORPHEUS. From Table 1, we observe



that the BITE-equipped model not only achieves
similar performance (±0.5) on clean data, but is
significantly more robust to inflectional adversaries
(10 points for SQuAD, 17 points for MultiNLI).

BITE vs. Adversarial Fine-tuning. Next, we
compare the BITE to adversarial fine-tuning (Tan
et al., 2020), an economical variation of adversarial
training (Goodfellow et al., 2015) for making mod-
els robust to inflectional perturbations. In adversar-
ial fine-tuning, an adversarial training set is gener-
ated by randomly sampling inflectional adversaries
k times from the adversarial distribution found by
MORPHEUS and adding them to the original train-
ing set. Rather than retraining the model on this ad-
versarial training set, the previously trained model
is simply trained for one extra epoch. In this experi-
ment, we follow the above methodology and adver-
sarially fine-tune the WordPiece-only BERTbase for
one epoch with k set to 4. To ensure a fair compari-
son, we also train the BITE-equipped BERTbase on
the same training set for an extra epoch.

From Table 1, we observe that BITE is often
more effective than adversarial fine-tuning at mak-
ing the model more robust against inflectional ad-
versaries and in some cases (SQuAD 2.0 All and
MNLI-MM) even without needing the additional
epoch of training.

However, the adversarially fine-tuned model con-
sistently achieves better performance on clean data.
This is likely due to the fact that even though adver-
sarial fine-tuning requires only a single epoch of
extra training, the process of generating the training
set increases its size by a factor of k and therefore
the computational cost. In contrast, BITE requires
no extra training and is much more economical.

Adversarial fine-tuning’s poorer performance on
the out-of-domain adversarial data (MultiNLI-MM)
compared to the in-domain data hints at a possible
weakness: it is less effective at inducing model
robustness when the adversarial example is from
an out-of-domain distribution.

BITE, on the other hand, performs equally well
on both in- and out-of-domain data, demonstrating
its applicability to practical scenarios where the
training and test domain may not match.

4.2 Dialectal Variation

Apart from second languages, dialects are another
common source of non-standard inflection use.
However, there is a dearth of task-specific datasets
in English dialects like AAVE and CSE. Therefore,

in this section’s experiments, we use the model’s
perplexity on monodialectal corpora as a proxy
for its performance on downstream tasks in the
corresponding dialect. The perplexity reflects the
pre-trained model’s generalization ability on the
dialectal datasets.

4.2.1 Corpora
For AAVE, we use the Corpus of Regional African
American Language (CORAAL) (Kendall and Far-
rington, 2018), which comprises transcriptions of
interviews with African Americans born between
1891 and 2005. For our evaluation, only the inter-
viewee’s speech was used. In addition, we strip all
in-line glosses and annotations from the transcrip-
tions before dropping all lines with less than three
words. After pre-processing, this corpus consists of
slightly under 50k lines of text (1,144,803 tokens,
17,324 word types).

To obtain a CSE corpus, we scrape the In-
fotech Clinics section of the Hardware Zone Fo-
rums4, a forum frequented mainly by Singapore-
ans and where CSE is commonly used. Similar
pre-processing to the AAVE data yields a 2.2 mil-
lion line corpus (45,803,898 tokens, 253,326 word
types).

4.2.2 Experimental Setup
In this experiment, we take the same pre-trained
BERTbase model and fine-tune two separate vari-
ants (with and without BITE) on Wikipedia and
BookCorpus (Zhu et al., 2015) using the masked
language modeling (MLM) loss without the next
sentence prediction (NSP) loss. We fine-tune for
one epoch on increasingly large subsets of the
dataset, since this has been shown to be more ef-
fective than doing the same number of gradient
updates on a fixed subset (Raffel et al., 2019).

Next, we evaluate model perplexities on the
AAVE and CSE corpora, which we consider to
be from dialectal distributions that differ from the
training data which is considered to be Standard
English. Since calculating the “masked perplexity”
requires randomly masking a certain percentage
of tokens for prediction, we also experiment with
doing this for each sentence multiple times before
averaging the perplexity. However, we find no sig-
nificant difference between doing the calculation
once or five times; the random effects likely cancel
out due to the large size of our corpora.

4https://forums.hardwarezone.com.sg/
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Figure 1: Perplexity of BERTbase with and without BITE on CSE and AAVE corpora. To allow the model to adapt
to the new inflection tokens added to the vocabulary, we perform masked language model (MLM) training for
one epoch on increasingly large subsets of Wikipedia+BookCorpus. We observe a large initial perplexity for the
WordPiece+BITE model as it has not fully adapted to the new inflection tokens; this stabilizes to around half of
the WordPiece-only model’s perplexity as we increase the training dataset size.

4.2.3 Results
From Figure 1, we observe that the BITE-equipped
model initially has a much higher perplexity, before
converging to around 50% of the standard model’s
perplexity as the model adapts to the presence of
the new inflection tokens (e.g., VBD, NNS, etc.).
Crucially, the models are not trained on dialectal
corpora, which demonstrates the effectiveness of
BITE at helping models better generalize to dialec-
tal distributions after a short adaptation phase.

CSE vs. AAVE. Astute readers might notice that
there is a large difference in perplexity between the
two dialectal corpora, even for the same tokenizer
combination. There are two possible explanations.
The first is that CSE, being an amalgam of English,
Chinese dialects, Malay, etc., differs significantly
from Standard English not only morphologically,
but also in word ordering (e.g., topic prominence)
(Tongue, 1974). In addition, numerous loan words
and discourse particles not found in Standard En-
glish like lah, lor and hor are commonplace in
CSE (Leimgruber, 2009). AAVE, however, gen-
erally shares the same word ordering as Standard
English due to its largely English origins (Poplack,
2000) and is less different linguistically (compared
to CSE vs. Standard English). These differences
between AAVE and CSE are likely explanations
for the significant differences in perplexity.

Another possible explanation is that the Book-
Corpus may contain examples of AAVE since the
BookCorpus’ source, Smashwords, also publishes
African American fiction. We believe the reason
for the difference is a mixture of these two factors.

5 Model-Independent Analyses

Although wrapping an existing pretrained subword
tokenizer and model like WordPiece and BERTbase
allows us to quickly reap the benefits of BITE
without the computational overhead of pretrain-
ing them from scratch, such an approach likely
does not make use of BITE’s full potential. This
is due to the compressing effect that BITE offers
on the lexical space. Therefore, in this section, we
analyze WordPiece, BPE, and unigram language
model (Kudo, 2018) subword tokenizers that are
trained from scratch with and without BITE us-
ing the tokenizers5 and sentencepiece6

libraries. Through our experiments we aim to an-
swer the following two questions:

• Does BITE help the data-driven tokenizer use
its vocabulary more efficiently (§5.1)?

• How does BITE improve adversarial robust-
ness (§5.2)?

We draw one million examples from English
Wikipedia and BookCorpus for use as our train-
ing set. Unless otherwise mentioned, we use an-
other 5k examples as our test set. Although Sen-
tencePiece can directly process raw text, we pre-
tokenize the raw text with the BertPreTokenizer
from the tokenizers library before encoding
them for ease of comparison across the three en-
coding schemes. For practical applications, users
should be able to apply SentencePiece’s method

5github.com/huggingface/tokenizers
6github.com/google/sentencepiece

github.com/huggingface/tokenizers
github.com/google/sentencepiece
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Figure 2: Relative increase in mean tokenized sequence
lengths (%) between BITE-less and BITE-equipped to-
kenizers after training the data-driven subword tokeniz-
ers with varying vocabulary sizes; lower is better. Base-
line (dotted red line) denotes the percentage of inflected
forms in an average sequence; this is equivalent to the
increase in sequence length if BITE had no effect on
the data-driven tokenizers’ encoding efficiency.

of handling whitespace characters instead of the
BertPreTokenizer with no issues.

5.1 Vocabulary Efficiency

We may operationalize the question of whether
BITE improves vocabulary efficiency in at least
three ways. The most straightforward is to measure
the sequence-level change: the difference in the
tokenized sequence length with and without BITE.
Efficient use of a fixed-size vocabulary should re-
sult in it comprising symbols that minimize the
average tokenized sequence length. An alternative
vocabulary-level perspective is to observe how well
a limited vocabulary represents a corpus. Finally,
since the base form of a word is sufficient to se-
mantically represent all its inflected forms (Jackson,
2014), the number of unique linguistic lexemes7

that can be represented by a vocabulary should also
be a good measure how much “semantic knowl-
edge” it contains.

Sequence lengths. A possible concern with
BITE is that it may significantly increase the length
of the tokenized sequence, and hence the compu-
tational cost for sequence modeling, since it splits
all inflected content words (nouns, verbs, and ad-
jectives) into two tokens. We calculate the percent-
age of inflected tokens to be 17.89%.8 Therefore,
if BITE did not enhance WordPiece’s and BPE’s
encoding efficiency, we should expect a 17.89% in-

7A lexeme is the set of a word’s base and inflected forms.
8Note that only content words are subject to inflection.
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Figure 3: Comparison of coverage of the
Wikipedia+BookCorpus (1M examples) dataset
between BITE and a trivial baseline (word counts).
Since BITE has no fixed vocabulary, we determine the
“vocabulary” by taking the N most common tokens.

crease (i.e., upper bound) in their mean tokenized
sequence length. However, from Figure 2, we see
this is not the case as the relative increase (with
and without BITE) in mean sequence length gen-
erally stays below 13%, 5% less than the baseline.
This demonstrates that BITE helps the data-driven
tokenizer make better use of its limited vocabulary.

In addition, we see that the gains are inversely
proportional to the vocabulary size. This is likely
due to the following reasons. For a given sentence,
the corresponding tokenized sequence’s length usu-
ally decreases as the data-driven tokenizer’s vo-
cabulary size increases as it allows merging of
more smaller subwords into longer subwords. On
the other hand, BITE is vocabulary-independent,
which means that the tokenized sequence length is
always the same for a given sentence. Therefore,
we can expect the same absolute difference to con-
tribute to a larger relative increase as the vocabulary
size increases. Additionally, more inflected forms
are memorized as the vocabulary size increases, re-
sulting in an average absolute increase of 0.4 tokens
per sequence for every additional 10k vocabulary
tokens. These two factors together should explain
the above phenomenon.

Vocabulary coverage. Next, we look at this
question from a vocabulary-level perspective and
operationalize vocabulary efficiency as the cover-
age of a representative corpus by a vocabulary’s
tokens. We measure coverage by computing the
total number of tokens (words and punctuation) in
the corpus that are represented in the vocabulary
divided by the total number of tokens in the corpus.
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Since BITE does not require a vocabulary to be
fixed at training time, we simply set the N most
frequent tokens (base forms and inflections) to be
our vocabulary. We use theN most frequent tokens
in the unencoded text as our baseline vocabulary.

From Figure 3, we observe that the BITE vocab-
ulary achieves a higher coverage of the corpus than
the baseline, hence demonstrating the efficacy of
BITE at improving vocabulary efficiency. Addi-
tionally, we note that this advantage is most signifi-
cant when the vocabulary is between 5–10k tokens.
This implies that inflected word forms comprise a
large portion of frequently occurring words, which
comports with intuition.

Semantic capacity. Since a word’s base form is
able to semantically represent all its inflected forms
(Jackson, 2014), we posit that the number of base
forms contained in a vocabulary can be a good
proxy for the amount of semantic knowledge it
contains. This may be termed the semantic capac-
ity of a vocabulary. In whole-word (non-subword)
vocabularies, semantic capacity may be measured
by the number of unique lexemes in the vocabulary.

For subword vocabularies like BPE’s, however,
such a measure is slightly less useful since every
English word can be trivially represented given the
alphabet and a hyphen. Thus, we propose a general-
ization of the above definition which penalizes the
use of multiple (and unknown) tokens to represent
a single base form. Formally,

f(Ti) =

{
1

|Ti|+ui |Ti| − ui > 0

0 otherwise,
(1)

SemCapacity(T1, . . . , TN ) =
N∑
i=1

f(Ti), (2)

where N is the total number of unique base forms
in the evaluation corpus, Ti is the sequence of (sub-
word) tokens obtained from encoding the ith base
form, and ui is the number of unknown tokens9

in Ti. While not strictly necessary when compar-
ing vocabularies on the same corpus, normalizing
Equation (2) by the number of unique base forms in
the corpus may be helpful for cross-corpus compar-
isons. Further normalizing the resulting quantity
by the tokenizer’s vocabulary size yields a measure
of semantic efficiency.

Although it is possible to extend Equation (1) to
cover cases where there are only multiple unknown
tokens, this would unnecessarily complicate the
equation. Hence, we define f(Ti) = 0 when there
are only unknown tokens in the encoded sequence.
We also implicitly define the penalty of each extra
unknown token to be double10 that of a token in
the vocabulary. If necessary, it is trivial to alter the
weight of this penalty by introducing a constant λ:

f(Ti, λ) =

{
1

(|Ti|−ui)+λui |Ti| − ui > 0

0 otherwise.
(3)

To evaluate the semantic capacity of our vocabu-
laries, we use WordNet (Miller, 1995) as our repre-
sentative “corpus”. Specifically, we only consider
its single-word lemmas (N = 83118). From Fig-
ure 4, we see that data-driven tokenizers trained
with BITE tend to produce vocabularies with higher
semantic capacities.

Additionally, we observe that tokenizer combi-
nations incorporating WordPiece or unigram LM
generally outperform the BPE ones. We believe
this to be the result of using a language model to in-
form vocabulary generation. It is logical that a sym-
bol that maximizes a language model’s likelihood
on the training data is also semantically “denser”,
hence prioritizing such symbols produces semanti-
cally efficient vocabularies. We leave the in-depth
investigation of this relationship to future work.

9Usually represented as [UNK] or <unk>.
10|T | contributes the extra count.
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Figure 5: Mean percentage of tokens that are the same
in the clean and adversarial tokenized sequences.

5.2 Adversarial Robustness.

BITE’s ability to make models more robust to in-
flectional perturbations can be directly attributed
to its preservation of a consistent, inflection-
independent base form. We demonstrate this by
measuring the similarity between the encoded
clean and adversarial sentences, using the Rat-
cliff/Obershelp algorithm (Ratcliff and Metzener,
1988) as implemented by Python’s difflib. We
use the MultiNLI in-domain development dataset
and the MORPHEUS adversaries generated in §4.1
for this experiment.

We find that clean and adversarial sequences
tokenized by the BITE-equipped tokenizers were
more similar (1–2% for WordPiece, 2–2.5% for
BPE) than those tokenized by the ones without
BITE (Figure 5). The decrease in similarity for
all conditions as the vocabulary size increases is
unsurprising; a larger vocabulary will generally
result in shorter sequences and the same number of
differing tokens will be a larger relative change.

The above results demonstrate that the improved
robustness shown in §4.1 can be directly attributed
to the separation of each content word’s base forms
from its inflection and keeping it consistent as the
inflection varies, hence mitigating any significant
token-level changes.

6 Conclusion

The tokenization stage of the modern deep learning
NLP pipeline has not received as much attention
as the modeling stage, with researchers often de-
faulting to a commonly used subword tokenizer
like BPE. Adversarial robustness techniques in
NLP also largely focus on augmenting the train-
ing data with adversarial examples. However, we

posit that the process of encoding raw text into
network-operable symbols may have more impact
on a neural network’s generalization and adversar-
ial robustness than previously assumed.

Hence, we propose to improve the tokenization
pipeline by incorporating linguistic information
to guide the data-driven tokenizer in learning a
more efficient vocabulary and generating token se-
quences that increase the neural network’s robust-
ness to non-standard inflection use. We show that
this improves its generalization to second language
English and World Englishes without requiring ex-
plicit training on such data. Since dialectal data
is often scarce or even nonexistent (in the case of
task-specific labeled datasets), an NLP system’s
ability to generalize across dialects in a zero-shot
manner is crucial for it to work well for diverse
linguistic communities.

Finally, given the effectiveness of the com-
mon task framework for spurring progress in NLP
(Varshney et al., 2019), we hope to do the same for
tokenization. As a first step, we propose to evaluate
an encoding scheme’s efficacy by measuring its vo-
cabulary efficiency and semantic capacity (which
may have interesting connections to information-
theoretic limits (Ziv and Lempel, 1978)). We have
already shown that Base-Inflection Encoding helps
a data-driven tokenizer use its limited vocabulary
more efficiently by increasing its semantic capacity
when the combination is trained from scratch.
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