
Efficient Web-Based Linkage of Short to Long Forms

Yee Fan Tan1 Ergin Elmacioglu2 Min-Yen Kan1 Dongwon Lee3

1Department of Computer Science, School of Computing, National University of Singapore, Singapore
2Department of Computer Science and Engineering, The Pennsylvania State University, USA

3College of Information Sciences and Technology, The Pennsylvania State University, USA

{tanyeefa,kanmy}@comp.nus.edu.sg {ergin,dongwon}@psu.edu

ABSTRACT
Abbreviations, acronyms, initialisms, and shortenings fre-
quently occur in many texts found on the Web, such as
publication metadata, stock ticker codes, and biological ar-
ticles. To connect these disparate forms together for knowl-
edge discovery, short forms must be properly linked to their
canonical long forms. In this paper, we demonstrate how
a search engine can be efficiently utilized in mining the re-
quired contextual information, so that short forms can be ef-
fectively linked to long forms. We show that a count-based
method consistently outperforms other methods, and that
using the snippets is better than using the full web pages.
We also consider adaptively combining a query probing algo-
rithm together with our count-based method. This reduces
running time and network bandwidth, while maintaining the
strong linkage performance.

Keywords
abbreviation matching, web as information resource, query
probing, record linkage

1. INTRODUCTION
Proper nouns, technical terms, and long words are often

shortened for saving space or improving clarity, due to writ-
ing style or convenience. Figure 1 shows typical examples of
bibliographic references, randomly selected from [11], where
publication venues have been abbreviated (“WebDB”, “SI-
GIR”, and “AAAI”). Figure 2 shows more examples in bib-
liographic publication venues, stock ticker symbols, and hu-
man genome research. However, it is not obvious how short
forms are generated from long forms. For example, “MOU”
includes the word “of” in its abbreviation, while “MIT” does
not. Also, “UbiComp” is generated phonetically rather than
by selecting initial letters of words. Further, different long
forms can have the same short form, such as “ACSAC”.

Short forms are a principal way in which variations are in-
troduced to string representations of names, contributing to
data quality issues when mining the Web. To aid knowledge
discovery and uncovering implicit linkages, resolving short
and long forms plays an important role in many data appli-
cations. In this paper, we study the problem of linking short
forms to long forms. We believe that resolving short forms

Copyright is held by the author/owner.
Proceedings of the 11th International Workshop on Web and
Databases (WebDB 2008), June 13, 2008, Vancouver, Canada

E. Agichtein, P. G. Ipeirotis, and L. Gravano. Modeling
query-based access to text databases. In WebDB, 2003.
J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed
collections with inference networks. In SIGIR, 1995.
W. W. Cohen. Learning trees and rules with set-valued
features. In AAAI, 1996.

Figure 1: References with publication venues abbreviated.

DBLP Computer Science Conferences and Workshops
ACSAC Annual Computer Security Applications Conference
ACSAC Asia-Pacific Computer Systems Architecture Conference
KDD Knowledge Discovery and Data Mining
KDID Knowledge Discovery in Inductive Databases
UbiComp Ubiquitous Computing
WebDB International Workshop on Web and Databases

NASDAQ Composite
AAPL Apple Inc.
CSCO Cisco Systems, Inc.
DELL Dell Inc.
INTC Intel Corporation
MSFT Microsoft Corporation
XRAY DENSPLY International Inc.

Human Genome Acronym List
MALDI matrix-assisted laser desorption ionization
Mb megabase
MGI Microbial Genome Initiative
MHC major histocompatibility complex
MIT Massachusetts Institute of Technology
MOU Memorandum of Understanding

Figure 2: Various examples of abbreviations.

to long forms is harder than the other way around, because
the former requires the interpolation of missing data from
abbreviations that are typically 3 to 5 letters long, while the
latter only needs to discard extraneous data. Our problem
statement is as follows:

Given a set of short forms SF and a set of long forms
LF , for each short form in SF , find the corresponding
matching long forms in LF .

In this paper, we assume that no contextual information is
available when linking short forms to long forms. For ex-
ample, in Figure 1, we see the short forms of publication
venues (“WebDB”, “SIGIR”, and “AAAI”) but not their
corresponding long forms. Hence, algorithms that detect
short forms and their corresponding long forms in full-text
documents (e.g., [3, 16, 18]) are inappropriate for our prob-
lem setting as they depend on the missing contextual infor-
mation. Also, while a number of short to long form lists
(e.g., acronym lists) are freely available, they are usually
incomplete and quickly outdated, as new short forms are
continually created. To remedy these problems, we explore

the use of the Web as an additional knowledge source. In
particular, we propose to use a search engine such as Google,
Yahoo, or Live Search to obtain additional information that
facilitates linking decisions. Our major contributions are as
follows:

• We propose to exploit the external knowledge from
the Web to obtain the required contextual information
that is typically missing from such data. While similar
work has employed the Web for other tasks, our work
is unique, in being the first to specifically tackle the
problem of short-to-long form matching and in unify-
ing related threads of research on this theme. We view
the task as two related facets: a) query composition,
and b) search engine evidence analysis. In particular,
we propose a count-based method that is effective for
linking short forms to long forms.

• While our web-based method achieves good linkage ac-
curacy, the search engine queries issued require a long
running time to complete. Instead of taking an ad
hoc approach to solve this problem, we algorithmically
adaptively combine a query probing approach with our
count-based method to save time and bandwidth while
retaining performance.
• We compare our proposed method with other types

of search engine evidence on three datasets of different
domains. The results show that our claims consistently
hold for all the three datasets.

This paper is organized as follows. In Section 2, we de-
scribe related work in the general linkage area. In Section 3,
we first describe a framework that unifies various approaches
that use a search engine to perform linkage. In Section 4,
we propose a count-based method, and show its effective-
ness compared to other linkage methods. In Section 5, we
propose a query probing method, and adaptively combine it
with a count-based method to reduce the number of search
engine queries needed. In Section 6, we conclude the paper.

2. RELATED WORK
Most closely related to our work, [12] describe an approach

that combined three kinds of data available in a search en-
gine backend to extract short and long form pairs. In con-
trast, our approach does not assume access to search engine
internals, and deals directly with constructing long-short
form pairs using only the front end querying interface.

More generally, the linkage problem has been widely stud-
ied and is known by various names. A comprehensive survey
is beyond the scope of this paper; introductions can be found
in [7] and [20]. Among all record linkage works, web-based
approaches are most relevant (e.g., [4, 5, 15]). Some works
used conjunctive keyword queries – querying for sf∧lf to see
whether a short form sf and a long form lf are linked. As
this results in quadratic time complexity, non-conjunctive
keyword approaches have also been developed. These only
query from one side – querying for sf to see whether the re-
sults have any evidence for lf . While efficient, this can lead
to problems in accuracy and coverage. One key contribution
of our work is to further improve upon this by introducing
bi-directional non-conjunctive querying, resulting in higher
accuracy while retaining linear complexity.

Recent work have also dealt with the finer details of using
the Web for linkage evidence. [17] and [13] look at effec-
tive query expansion by using the Web. [14] extends this

Algorithm 1 Overall algorithm.

1: for each sf ∈ SF do
2: for each lf ∈ LF do
3: obtain information for sf and lf using search engine
4: compute scoresf (lf) using obtained information
5: rank the long forms in LF according to scoresf (lf)

by identifying characteristic terms that differentiate name-
sakes. [6] suggested that if two strings refer to the same
entity, then each string will frequently co-occur with some
common information piece on the Web. Along these lines,
our work again focuses on efficiency – examining how query
bandwidth can be saved through the use of query probing.

3. LINKING SHORT TO LONG FORMS
In this paper, we use the following notation. Uppercase

SF and LF denote the sets of short forms and long forms
in the dataset, respectively. Lowercase sf and lf denote
specific instances from SF and LF , respectively. scoresf (lf)
denotes a scoring function that ranks the long forms in LF

that potentially match a particular short form sf .
Our intuition is that if a short form and a long form in-

deed refer to the same real-world entity, people would use
them interchangeably on the Web. To link a set of short
forms SF to a set of long forms LF , we consult a search
engine for external linkage evidence, as illustrated in Algo-
rithm 1. For a short form sf and a long form lf , we can
derive information from a search engine, and use it to com-
pute a scoring function scoresf (lf) to rank the long forms
in LF for a given short form sf . How to do this efficiently
– in terms of query bandwidth – is the central focus of our
work. Next, we investigate open details, such as the form of
the queries and the computation of the scoring function.

Designing the Search Queries. As discussed, to gather
linkage evidence, one can issue conjunctive keyword queries,
i.e., q = sf ∧ lf , or issue non-conjunctive keyword queries,
i.e., q = sf or q = lf , or both. If |SF | = m and |LF | = n,
then conjunctive keyword queries require O(mn) queries,
which is of quadratic complexity and infeasible given long
lists. On the other hand, non-conjunctive keyword queries
only require O(m) or O(n) queries, or O(m + n) queries,
which is still feasible. Hence, we only consider non-conjunctive
keyword queries in this paper. Note that we can add domain
knowledge to the query to further filter results. For exam-
ple, for DBLP publication venues, we may add the keywords
“workshop” and “conference” to the query to promote web
pages with publication metadata in the returned results.

Search Engine Evidence. A search engine typically re-
turns a page of results (usually 10), and each result contains
its rank, title, Keyword-In-Context (KWIC) snippet, and
URL. The total number of results is also reported. We can
choose how to process these information to determine link-
age evidence, and specify follow-up actions as needed, e.g.,
download the web pages in the results. We can make re-
peated calls to the search engine to obtain multiple pages
of results. The main focus here is on processing the search
engine evidence, i.e., defining the scoring function via infor-
mation obtained from a search engine.

4. COUNT-BASED LINKAGE METHODS
We propose methods for linking short forms to long forms

Dataset Description Short forms Long forms Matching pairs
DBLP DBLP conference and workshop titles 906 920 926

Source: http://www.informatik.uni-trier.de/˜ley/db/conf/indexa.html
Query: “〈title〉” conference OR conferences OR workshop OR workshops

NASDAQ NASDAQ Composite stock symbols 3084 3061 3084
Source: http://www.nasdaq.com/asp/index component.asp?symbol=IXIC
Query: “〈title〉” nasdaq

GENOMES Human Genome Acronym List 307 307 307
Source: http://www.ornl.gov/sci/techresources/Human Genome/acronym.shtml
Query: “〈title〉” genome OR genomes

Table 1: The evaluation datasets.

Human Genome Project - Wikipedia, . . .
“Genomes: 15 Years Later A Perspective by . . .
More on the sequencing of the human genome
The international Human Genome Project (HGP) . . .
More on the sequencing of the human genome . . .
Approximately 60% of the underlying sequence data . . .

Figure 3: Snippets (simplified) from the query “HGP”.

Algorithm 2 Computing count(sf → lf) by obtaining top-
k search engine results for each short form.

1: for each sf ∈ SF do
2: D = SearchEngineTop(sf, k)
3: for each lf ∈ LF do
4: count(sf → lf) = number of results in D contain-

ing lf

by counting the terms in the returned results. These meth-
ods use the SearchEngineTop(q, k) function, which queries
a search engine with q and retrieves top-k results. We define
the following scoring functions:

• count(sf → lf) is the number of results (snippets or
web pages) of the short form sf containing the long
form lf . For a simplified illustration, suppose sf is
“HGP” and lf is “Human Genome Project”. We query
a search engine with “HGP” and suppose we consider
only the top-3 results, whose snippets are as shown
in Figure 3. As two of these snippets contain “Hu-
man Genome Project”, we have count(sf → lf) = 2.
Algorithm 2 shows this algorithm more formally.

• count(sf ← lf) is the number of results of the long
form lf containing the short form sf . It can be ob-
tained by interchanging sf and lf in Algorithm 2.

• count(sf ↔ lf) = count(sf → lf) + count(sf ← lf)
is a combination of the previous two.

While web-based and traditional record linkage techniques
have been applied to other tasks, to our knowledge, no study
has yet to examine the efficacy of these techniques on the
task of short form to long form matching. To our knowledge,
our less computationally expensive O(m+n) count(sf ↔ lf)
scoring function is a new contribution that may assist in
other web-based linkage tasks.

4.1 Comparison with Other Types of Evidence
We will evaluate our count-based methods against three

other methods adapted to solve the same problem.

Schwartz and Hearst. This algorithm [18] is a state-of-
the-art abbreviation extraction algorithm that expects full
text input and does not use the Web. It scans full-text arti-
cles for fragments of the form “lf (sf)”, and tries to extract
the long form lf with the best alignment with the short form

sf in a greedy manner. We apply this algorithm by creating
a file containing all combinations of short forms and long
forms in the dataset, with lines of the form “lf (sf)”. This
extraction algorithm returns candidate matching pairs with-
out scoring their quality, but instead indicates which part of
the long form matches (e.g., the “Key Cryptography” part
of “Public Key Cryptography”). Therefore, we define the
scoring function to be the fraction of characters in the long
form that was matched.

Inverse host frequency. This web-based method uses
URL information from search engine results. For a query q,
we form a feature vector vq of hostnames (or domain names)
from the URLs of its top-k search engine results, weighted
by its inverse host frequency (IHF) [19], i.e., IHF(h) =

log2
maxh freq(h)+1

freq(h)+1
+1. Here, freq(h) is the number of short

and long form queries whose top-k results contain the host-
name h. For a short form sf and a long form lf , the cosine
similarity between vsf and vlf is the scoring function.

Sahami and Heilman. This is a web-based information
retrieval method [17] that we reimplemented. For each query
q, we download the web pages at the URLs of its top-k re-
sults, wq,1, . . . , wq,k. For each web page wq,i, we compute
its tf -idf vector vq,i. Following Sahami and Heilman, we
truncate vq,i to include only the 50 tokens with the high-
est tf -idf weights, and then normalize it. Next we compute
vq = 1

k

∑k

i=1 vq,i, and when normalized, it is the query ex-
pansion vector of q. For a short form sf and a long form
lf , the cosine similarity between vsf and vlf is the scoring
function.

4.2 Datasets and Search Engine
To validate our methods, we examine real-world problems

of matching short and long forms. In all experiments, we
used the Google search engine via its SOAP Search API.
We used three datasets from different domains for our eval-
uation: DBLP, NASDAQ and GENOMES which have very
different characteristics. Each dataset contains the SF and
LF sets, as well as the solution set S of matching short and
long form pairs. We applied all the methods using SF and
LF as input, and used S as the gold standard. Table 1 sum-
marizes these datasets, and lists the form of queries used.
The additional keywords in the queries were selected based
on the domain of the dataset, with all web-based methods
using the same queries. Examples from each dataset are
shown in Figure 2.

The DBLP dataset consists of computer science confer-
ences and workshops in the DBLP digital library. This
dataset is generally clean, because DBLP was manually con-
structed and consistently uses full words in more than 98%
of its long forms. The retrieved web pages tend to be confer-
ence and workshop web sites, and publication lists on aca-

demic homepages and research groups. The web pages some-
times contain typos and spelling mistakes. The NASDAQ
dataset consists of stock symbols in the NASDAQ Compos-
ite index. This large list itself is also fairly clean, but there
are stock symbols that have no resemblance to the company
name at all, such as “XRAY” for “DENSPLY International
Inc.”. The retrieved web pages come from a large variety of
domains and mainly consist of financial news and stock in-
formation. Some of these web pages appear to be automat-
ically generated from databases, hence these can be fairly
clean. The GENOMICS dataset consists of abbreviations
that are commonly used in the human genomics domain. It
is the smallest and noisiest among the three datasets. Some
long forms have abbreviated words like “Univ.” and “Intl.”,
but their usage is inconsistent. Worse, this list includes aca-
demic institutions, academic conferences, government orga-
nizations and biological terms. Hence, the retrieved web
pages have all kinds of sources and information.

For the count-based methods, as well as Sahami and Heil-
man method, we evaluated on both the snippets and the
downloaded web pages. For all methods except Schwartz
and Hearst, we evaluated with k ∈ {10, 20}, i.e., using top-10
or top-20 search engine results, except for web pages where
we only show results for k = 10.

4.3 Evaluation
To evaluate the various methods, we use average recall and

average ranked precision as our evaluation metrics. Suppose
a short form sf corresponds to R long forms, and the top-
10 candidate long forms in the ranked list for sf contains r

correct long forms. Then, the recall is r
R

. To account for the
quality of rankings, we use ranked precision [10] instead of
traditional precision. Let Pi be the fraction of correct long
forms within the top-i candidates. Let C be the set of posi-
tions of the correct long forms within the top-10 candidates.

Thus, the ranked precision is
∑

i∈C
Pi

r
. The average recall

and average ranked precision are the averages of recall and
ranked precision over all short forms in our dataset.

Figure 4 shows the results. Overall, we found that the
count-based methods with snippets tend to produce the best
performance. In particular, we found that count(sf ↔ lf)
consistently produces the best results. The count(sf ← lf)
and count(sf ↔ lf) methods usually achieved average recall
and average ranked precision higher than 0.9.

As noted, the count-based methods with snippets tend
to produce the best performance, particularly count(sf ↔
lf). Interestingly, count(sf ← lf) is much better than
count(sf → lf), though they differ only in direction. For
count(sf → lf), many short form queries have no snippets
containing the corresponding long forms, and some short
forms are common words (e.g., “STEP”) leading to irrel-
evant results, affecting both precision and recall. On the
other hand, long forms make more informative multi-word
queries, and often appear where short forms are defined.
Finally, count(sf ↔ lf) combines the best of the two uni-
directional methods, and gives the best performance at the
expense of doubling the number of queries. This is because
count(sf ← lf) is often able to obtain relevant information
when count(sf → lf) misses out.

The Schwartz and Hearst algorithm generally did not per-
form very well, and is one of the worst performing algorithms
for the DBLP and NASDAQ datasets. This is not surpris-
ing because many long form candidates share many common

����� ����� ����� ����� ����	 ���
� ����� ����� ����	 ����� ���
� ��
�� ����� ����� ���
� ����� ��	��
��
��������� ������������� ��
��������� ������������� ��
��������� ������������� ��
��������� ������������� ��
��������� ������������� ��
��������� ������������� ��
��������� ������������� ��
��������� ������������� ��
��������� ������������� �!�"�#$���"�������������

��
 �!�"�#$���"�������������
��

 �!�"�#$���"������������
��� %$&�'�"�������� %$&�'�"�������� %$&�!�����"������ %$&�!�����"������ �!��(�)#$��(��

*+,-.. /0123 /0431 /0562 /0571 /0578 /0584 /0442 /0264 /0257 /0597 /0581 /02/8 /0147 /0479 /04/7 /0435 /0988
:;<=>?@ABCAD E@=FGGH>@?6/D :;<=>?@ABCAD E@=FGGH>@?9/D :;<=>?@AICAD E@=FGGH>@?6/D :;<=>?@AICAD E@=FGGH>@?9/D :;<=>?@AJCAD E@=FGGH>@?6/D :;<=>?@AJCAD E@=FGGH>@?9/D :;<=>?@ABCAD EKHLGMNH@?6/D :;<=>?@AICAD EKHLGMNH@?6/D :;<=>?@AJCAD EKHLGMNH@?6/D OMPMQFRSHFCQM=E@=FGGH>@?6

/D
OMPMQFRSHFCQM=E@=FGGH>@?9
/D

OMPMQFRSHFCQM=EKHLGMNH@?
6/D TSUEV;QMF=@?6/D TSUEV;QMF=@?9/D TSUEP;@>=MQH@?6/D TSUEP;@>=MQH@?9/D O:PKMW>XRSHMW@>

YZ[\]^_`]abcbd[

(a) DBLPefghh efggi efggg jfeee jfeee jfeee efghh efggk efggh efggg efggg efggl efllj efmjm eflme efmim eflln
opqrstuvwxvy zur{||}sutjey opqrstuvwxvy zur{||}sutley opqrstuv~xvy zur{||}sutjey opqrstuv~xvy zur{||}sutley opqrstuv�xvy zur{||}sutjey opqrstuv�xvy zur{||}sutley opqrstuvwxvy z�}�|��}utjey opqrstuv~xvy z�}�|��}utjey opqrstuv�xvy z�}�|��}utjey �����{��}{x��rzur{||}sutj

ey
�����{��}{x��rzur{||}sutl
ey

�����{��}{x��rz�}�|��}ut
jey ���z�p��{rutjey ���z�p��{rutley ���z�pusr��}utjey ���z�pusr��}utley �o����s���}��us

������ ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
�� ¡¢£¤¥¦§¥̈ ©¤¡ª««¬¢¤£��̈ �� ¡¢£¤¥¦§¥̈ ©¤¡ª««¬¢¤£��̈ �� ¡¢£¤¥­§¥̈ ©¤¡ª««¬¢¤£��̈ �� ¡¢£¤¥­§¥̈ ©¤¡ª««¬¢¤£��̈ �� ¡¢£¤¥®§¥̈ ©¤¡ª««¬¢¤£��̈ �� ¡¢£¤¥®§¥̈ ©¤¡ª««¬¢¤£��̈ �� ¡¢£¤¥¦§¥̈ ©̄¬°«±²¬¤£�

�̈
�� ¡¢£¤¥­§¥̈ ©̄¬°«±²¬¤£�
�̈

�� ¡¢£¤¥®§¥̈ ©̄¬°«±²¬¤£�
�̈

³±́±µª¶·¬ª§µ±¡©¤¡ª««¬¢¤£�
�̈

³±́±µª¶·¬ª§µ±¡©¤¡ª««¬¢¤£�
�̈

³±́±µª¶·¬ª§µ±¡©̄¬°«±²¬¤£
��̈ ·̧¹©º�µ±ª¡¤£��̈ ·̧¹©º�µ±ª¡¤£��̈ ·̧¹©�́¤¢¡±µ¬¤£��̈ ·̧¹©�́¤¢¡±µ¬¤£��̈ ³�́̄±»¢¼¶·¬±»¤¢

½¾¿ÀÁÂÃÄÁÅÆÇÆÈ¿

(b) NASDAQÉÊËËÌ ÉÊÍÉÎ ÉÊÏÉË ÉÊÏËÐ ÉÊÏËÑ ÉÊÏÒÌ ÉÊËÎÉ ÉÊËÍÉ ÉÊÍÓÎ ÉÊÏËÑ ÉÊÏÎÑ ÉÊÑÒÓ ÉÊÑÐÎ ÉÊËÐÍ ÉÊÑÑÏ ÉÊËÐÑ ÉÊÍÎÓ
ÔÕÖ×ØÙÚÛÜÝÛÞ ßÚ×àááâØÚÙÐÉÞ ÔÕÖ×ØÙÚÛÜÝÛÞ ßÚ×àááâØÚÙÓÉÞ ÔÕÖ×ØÙÚÛãÝÛÞ ßÚ×àááâØÚÙÐÉÞ ÔÕÖ×ØÙÚÛãÝÛÞ ßÚ×àááâØÚÙÓÉÞ ÔÕÖ×ØÙÚÛäÝÛÞ ßÚ×àááâØÚÙÐÉÞ ÔÕÖ×ØÙÚÛäÝÛÞ ßÚ×àááâØÚÙÓÉÞ ÔÕÖ×ØÙÚÛÜÝÛÞ ßåâæáçèâÚÙÐÉÞ ÔÕÖ×ØÙÚÛãÝÛÞ ßåâæáçèâÚÙÐÉÞ ÔÕÖ×ØÙÚÛäÝÛÞ ßåâæáçèâÚÙÐÉÞ éçêçëàìíâàÝëç×ßÚ×àááâØÚÙÐ

ÉÞ
éçêçëàìíâàÝëç×ßÚ×àááâØÚÙÓ
ÉÞ

éçêçëàìíâàÝëç×ßåâæáçèâÚÙ
ÐÉÞ îíïßðÕëçà×ÚÙÐÉÞ îíïßðÕëçà×ÚÙÓÉÞ îíïßêÕÚØ×çëâÚÙÐÉÞ îíïßêÕÚØ×çëâÚÙÓÉÞ éÔêåçñØòìíâçñÚØ

óôõö÷÷ øùúûü øùýûþ øùþÿû øùþ�ÿ øùþúþ øùþ�þ øùúÿú øùû�ý øùýûþ øùþúø øùþþü øù��þ øùû�ø øù��� øù�ø� øù��þ øùúûø
������	
��

 �	������	�ÿø
 ������	
��

 �	������	�ûø
 ������	
��

 �	������	�ÿø
 ������	
��

 �	������	�ûø
 ������	
��

 �	������	�ÿø
 ������	
��

 �	������	�ûø
 ������	
��

 ��������	�ÿø
 ������	
��

 ��������	�ÿø
 ������	
��

 ��������	�ÿø
 ���������������	������	�ÿ

ø

���������������	������	�û
ø

����������������������	
�ÿø
 ����������	�ÿø
 ����������	�ûø
 ������	�����	�ÿø
 ������	�����	�ûø
 ����� �!���� 	�

"#$%&'()&*+,+-$

(c) GENOMES

Figure 4: Average recall and ranked precision for the var-
ious kinds of evidence for the three datasets. Numbers in
parentheses represent number of results retrieved per query.

letters as the short form. Therefore, Schwartz and Hearst
is unable to distinguish between them. On the other hand,
this algorithm performs better on the GENOMES dataset
because this dataset is much smaller and hence fewer candi-
dates to choose from. However, its recall suffers because it is
unable to match when the short form contains a letter that
is not found in the long form. Also, the greedy algorithm
sometimes gives only a partial match to the correct long
form (e.g., for “AAAI”, only the last four words of “Ameri-
can Association for Artificial Intelligence” is matched). Such
a weakness suggests that the given data itself lacks the re-
quired context to solve the problem, hence we need to obtain
Web information to perform the matching.

The Sahami and Heilman algorithm is a strong contender
for the top spot, but in all three datasets, count(sf ↔ lf)
always wins by at least a small margin, for both snippets
as well as web pages. While both algorithms are effective
in linking short forms to long forms, the computation for
count(sf ↔ lf) is both simpler and faster. The main dif-
ference between their performance comes from those cases
where there are very few search engine results containing
both the short form and its correct corresponding long form:
count(sf ↔ lf) tends to get it right while Sahami and Heil-
man finds all web pages are almost equally dissimilar.

IHF works well when the web pages of a matching short
form and long form come from common sources, i.e., share
common domains or hostnames. This is somewhat true for
the DBLP dataset, therefore using only the URLs alone gives
a fairly competitive algorithm. However, for the NASDAQ
dataset, some web sites aggregate information for almost
all of the stock symbols, therefore the common domains or
hostnames have little discriminating power and make IHF
ineffective. In all cases, using hostnames is slightly better
than using domain names.

In practically all cases, obtaining 20 results gives better
performance than obtaining only 10 results, which is not sur-
prising. What is more interesting, is that using web pages is
not as good as using snippets for most of the methods, par-
ticularly for the GENOMES dataset. This is likely because
web pages contain a lot of noisy information, e.g., many web
pages for the query “Advances in Data Base Theory” con-
tain “AAAI” in navigation bars and external links. Hence,
snippets might be better as passage retrieval is already done.

In summary, our count(sf ↔ lf) method on snippets out-
performs the other methods in terms of accuracy. However,
the biggest drawback of any web-based method (including
ours) is that they require search engine queries and/or web
page downloads, both of which are expensive on running
time. We remedy this drawback in the next section.

5. ADAPTIVE COMBINATION
In general, adaptive methods combine base methods to

obtain the better aspect of each. It has been adopted in
data integration work (e.g., [21]), duplicate detection (e.g.,
[1]), and determining when to search or when to crawl [11].
For our problem of linking short forms to long forms, we
can adaptively combine a more accurate but slower method
Ms with a weaker but faster method Mw so that we can
obtain a combined method whose accuracy is closer to that
of Ms and yet runs much faster than Ms. A general adaptive
framework is shown in Algorithm 3, in which we allow Mw to
resolve each short form to the corresponding long forms, and
apply Ms only to those short forms whose candidate long
forms appear to be incorrect according to some heuristic H .
In this way, we reduce the execution time needed by making
fewer calls to Ms.

Such an adaptive framework is very versatile and can ap-
ply to many kinds of methods. In this paper, we use a query
probing method as our Mw and a count-based method as our
Ms. We describe our query probing method next.

5.1 Query Probing
Query probing is the automatic extraction of information

from a “hidden web” database by selecting suitable terms
(called query probes) to query [8]. This approach has been
used to obtain language models [2], and to estimate word

Algorithm 3 Adaptively combining a weaker method with
a stronger method.

Input: a weaker method Mw , a stronger method Ms, and
a heuristic H

1: for each sf ∈ SF do
2: for each lf ∈ LF do
3: compute scoresf (lf) using Mw

4: if H determines that scores by Mw gives a poor rank-
ing of long forms then

5: for each lf ∈ LF do
6: compute scoresf (lf) using Ms

7: return scores computed by Ms

8: else
9: return scores computed by Mw

Algorithm 4 Query probing.

1: NG = set of n-grams contained by the long forms in LF

2: D = ∅
3: for each ng ∈ NG do
4: if number of long forms in LF containing the n-gram

ng ≥ min freq then
5: D = D ∪ SearchEngineTop(ng,kp)
6: for each sf ∈ SF do
7: for each lf ∈ LF do
8: countp(sf, lf) = number of results in D containing

both sf and lf

frequency in different languages [9]. In our context, we can
issue query probes to a search engine to derive approximate
Web statistics, and use it to reduce the number of queries.

Consider three conferences “Joint Conference on Digital
Libraries”, “European Conference on Digital Libraries” and
“Digital Libraries” and their respective short forms “JCDL”,
“ECDL” and “DL”. Normally, we will query all three long
forms to obtain count(sf → lf), query all three short forms
to obtain count(sf ← lf), and query all six short and
long forms to obtain count(sf ↔ lf). However, we ob-
serve that many long forms share common n-grams1, such
as the 2-gram “digital libraries” in our example. A single
query probe “digital libraries” (together with some domain-
specific keywords) yields results for all three (long form) con-
ferences in the top-10 results, and the snippets contain all
three short forms. Thus, when compared to count(sf → lf),
count(sf ← lf) and count(sf ↔ lf), query probing can save
two, two, and five queries, respectively.

With this observation, we devised a query probing algo-
rithm that probes the search engine with n-grams that occur
in at least min freq of the long forms. Our query probing
algorithm is shown in Algorithm 4. We use the top-kp search
engine results to obtain countp(sf, lf), the number of results
that contain both sf and lf , and use it as a scoring function.

5.2 Adaptively Combining Query Probing with
Count-based Methods

The main weakness of the query probing scoring function,
countp(sf, lf), is that typically some of the short forms sf

have no candidate long forms, i.e., countp(sf, lf) = 0 for
all long forms lf , and vice versa. However, for short forms
with candidate long forms, query probing is able to save a

1In this paper, the term n-gram is used at the token level.
Hence, a 3-gram refers to a three-token subsequence.

./0 1213.3/ 124/1230 5063
267 167.225 105110/6 5/76

89:;<=>? @ A?B =1/B89:;<=>? @ A?B =3/B89:;<=>? C A?B =1/B89:;<=>? C A?B =3/B89:;<=>? D A?B =1/B89:;<=>? D A?B =3/B
EF GHIJKGLMNHOPQRS T/U/10V WS T/U/31XQRS Y/U/30V WS Y/U/47XQRS Y/U/55V WS Y/U/00XQRS Y/U//1V WS Y/U/17XQRS Y/U//6V WS Y/U/17X

QRS Y/U//5V WS T/U//6X
(a) DBLP (n = 3, min freq = 3)

Z[\] ^_^\Z[^_ ^_``^_]a _``b[
__Z\̀`c^_[b^̀_b```Z]]]^\

defghijk l mkn i_[ndefghijk l mkn i`[ndefghijk o mkn i_[ndefghijk o mkn i`[ndefghijk p mkn i_[ndefghijk p mkn i`[n
qr stuvwsxyzt{|}~� �[�[_b� �� �[�[``�}~� �[�[`[� �� �[�[Z]�}~� �[�[`_� �� �[�[]]�}~� �[�[[]� �� �[�[_]�}~� �[�[[]� �� �[�[_^�

}~� �[�[`Z� �� �[�[`]�
(b) NASDAQ (n = 2, min freq = 2)

��� ������ ������ ����
��� ������ ������ ����

�������� � ��� ������������ � ��� ������������ � ��� ������������ � ��� ������������ � ��� ������������ � ��� ����
�� ��� ¡�¢£¤�¥¦§¨© ª�«��¬­ ®©¯�«���°§¨© ª�«���­ ®© ª�«���°§¨© ª�«���­ ®© ª�«��¬°§¨© ª�«��¬­ ®© ª�«���°§¨© ª�«��¬­ ®© ª�«���°

§¨© ª�«���­ ®© ª�«���°
(c) GENOMES (n = 3, min freq = 2)

Figure 5: Number of search engine calls using Ms alone, and adaptively combining Ms with query probing using parameters
n-grams and min freq as shown, and kp = 10, where numbers in parentheses represent the number of snippets retrieved per
query. The change in average recall (R) and average ranked precision (P) are indicated in square brackets.

significant number of search engine queries.
Therefore, we propose adaptively combining query prob-

ing with a count-based method using the proposed frame-
work of Algorithm 3. In other words, we use countp(sf, lf)
as our weaker method Mw and use one of count(sf → lf),
count(sf ← lf), or count(sf ↔ lf) as our stronger method
Ms. The heuristic H we use is: If there is no long form lf

in LF with countp(sf, lf) > 0, then we apply the stronger

method Ms.

5.3 Evaluation
In addition to average recall and average ranked precision,

we also use the number of search engine calls to evaluate the
effectiveness of our adaptive combination of query probing
and count-based methods. As each search engine call returns
10 results, we will need two calls for 20 results.

We experimented with various parameter settings, and
found that usually kp = 10 is sufficient to provide the largest
decrease in the total number of search engine calls needed.
The results for selected values of n and min freq for each
dataset are shown in Figure 5. Compared to the count-
based methods alone, our adaptively combined methods can
reduce the reduce the number of search engine calls in practi-
cally all cases, with better savings when the stronger count-
based method uses 20 snippets. The largest dataset, NAS-
DAQ, also gave the most significant savings of 18.0% to
31.6%. The change in average recall and average ranked
precision is relatively small, with decreases of up to 0.036
and 0.066, respectively; while task performance actually im-
proved in a few cases. Other query probing parameter set-
tings also gave similarly insignificant changes in average re-
call and average ranked precision. Therefore, we conclude
that query probing can reduce the number of search engine
calls significantly while maintaining task performance.

6. CONCLUSION
The presence of both short forms and long forms in record

fields poses unique challenges to various searching and record
linkage tasks. Approximate string matching does not tend
to work well due to drastic differences in the application
scenario. Our work formalizes the use of search engines
as the two facets of query formulation and search engine
evidence analysis. In formulation, we proposed the use of
inverted and bidirectional non-conjunctive queries. In evi-
dence analysis, we surveyed techniques using gathered URLs
and snippets, as well as downloaded web pages. Our pro-
posed count-based methods, particularly count(sf ↔ lf), is
found to be the most effective in linking short forms to long
forms. As an additional contribution, we describe how we

can adaptively combine two methods, using query probing as
the first stage before trying (if needed) our standard count-
based method. The combined method saves significantly on
querying while retaining a good performance, making our
algorithm scalable for large record linkage problems.

7. REFERENCES
[1] M. Bilenko, R. J. Mooney, W. W. Cohen, P. Ravikumar, and

S. E. Fienberg. Adaptive name matching in information
integration. IEEE Intelligent Systems, 2003.

[2] J. P. Callan and M. E. Connell. Query-based sampling of text
databases. ACM TOIS, 2001.

[3] J. T. Chang, H. Schütze, and R. B. Altman. Creating an online
dictionary of abbreviations from MEDLINE. JAMIA, 2002.

[4] P. Cimiano, S. Handschuh, and S. Staab. Towards the
self-annotating web. In WWW, 2004.

[5] P. Cimiano, G. Ladwig, and S. Staab. Gimme’ the context:
Context-driven automatic semantic annotation with
C-PANKOW. In WWW, 2005.

[6] E. Elmacioglu, M.-Y. Kan, D. Lee, and Y. Zhang. Web based
linkage. In ACM WIDM, 2007.

[7] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE TKDE, 2007.

[8] L. Gravano, P. G. Ipeirotis, and M. Sahami. QProber: A
system for automatic classification of hidden-web databases.
ACM TOIS, 2003.

[9] G. Grefenstette and J. Nioche. Estimation of English and
non-English language use on the WWW. In RIAO, 2000.

[10] D. Hull. Using statistical testing in the evaluation of retrieval
experiments. In ACM SIGIR, 1993.

[11] P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano. To
search or to crawl? Towards a query optimizer for text-centric
tasks. In ACM SIGMOD, 2006.

[12] A. Jain, S. Cucerzan, and S. Azzam. Acronym-expansion
recognition and ranking on the web. In IEEE IRI, 2007.

[13] K.-L. Kwok, L. Grunfelda, and P. Deng. Employing web mining
and data fusion to improve weak ad hoc retrieval. Information
Processing and Management, 2007.

[14] Y. Matsuo, J. Mori, M. Hamasaki, K. Ishida, T. Nishimura,
H. Takeda, K. Hasida, and M. Ishizuka. POLYPHONET: An
advanced social network extraction system from the web. In
WWW, 2006.

[15] J.-H. Oh and H. Isahara. Hypothesis selection in machine
transliteration: A web mining approach. In IJCNLP, 2008.

[16] N. Okazaki and S. Ananiadou. Building an abbreviation
dictionary using a term recognition approach. Bioinformatics,
2006.

[17] M. Sahami and T. D. Heilman. A web-based kernel function for
measuring the similarity of short text snippets. In WWW, 2006.

[18] A. S. Schwartz and M. A. Hearst. A simple algorithm for
identifying abbreviation definitions in biomedical text. In PSB,
2003.

[19] Y. F. Tan, M.-Y. Kan, and D. Lee. Search engine driven author
disambiguation. In ACM/IEEE JCDL, 2006.

[20] W. E. Winkler. Overview of record linkage and current research
directions. Technical report, U.S. Bureau of the Census, 2006.

[21] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman. Dynamic
plan migration for continuous queries over data streams. In
ACM SIGMOD, 2004.

