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Abstract

Numerous visio-linguistic (V+L) representation
learning methods have been developed, yet exist-
ing datasets do not evaluate the extent to which
they represent visual and linguistic concepts in
a unified space. Inspired by the crosslingual
transfer and psycholinguistics literature, we pro-
pose a novel evaluation setting for V+L mod-
els: zero-shot cross-modal transfer. Existing
V+L benchmarks also often report global accu-
racy scores on the entire dataset, rendering it
difficult to pinpoint the specific reasoning tasks
that models fail and succeed at. To address
this issue and enable the evaluation of cross-
modal transfer, we present TRAVLR, a synthetic
dataset comprising four V+L reasoning tasks.
Each example encodes the scene bimodally such
that either modality can be dropped during train-
ing/testing with no loss of relevant information.
TRAVLR’s training and testing distributions are
also constrained along task-relevant dimensions,
enabling the evaluation of out-of-distribution
generalisation. We evaluate four state-of-the-art
V+L models and find that although they perform
well on the test set from the same modality, all
models fail to transfer cross-modally and have
limited success accommodating the addition or
deletion of one modality. In alignment with prior
work, we also find these models to require large
amounts of data to learn simple spatial relation-
ships. We release TRAVLR as an open challenge
for the research community.1

1 Introduction

Research in psycholinguistics has found that hu-
man processing of spatial words activates brain
regions associated with the visual system (Tang
et al., 2021), suggesting the latter’s involvement in
processing linguistic input. It is therefore reason-
able to expect multimodal neural models to resem-
ble humans in this respect. Following its recent
success in the text domain (Devlin et al., 2019), the
pretraining–fine-tuning paradigm has been applied
to the vision and text modalities to create unified
visio-linguistic (V+L) representations. Just as pre-

∗Equal contribution
1Code and dataset to be released shortly.

(a) A complete example for spatiality task.

(b) Possible directions of cross-modal transfer.

Figure 1: An example from TRAVLR (a). Both
image and caption fully represent the scene; either
can be dropped during training/testing, enabling
the evaluation of cross-modal transfer ability (b).

trained multilingual models have been shown ca-
pable of zero-shot cross-lingual transfer on various
NLP tasks (Conneau et al., 2020), we may expect
true V+L models to be capable of generalising to
a modality not seen during fine-tuning.

However, current approaches of benchmarking
V+L models often involve reporting global accu-
racy scores on the entire dataset, rendering the spe-
cific sources of success and failure difficult to di-
agnose (Ribeiro et al., 2020; Goel et al., 2021).
For instance, Visual Question Answering (VQA,
Goyal et al. 2017) tasks may allow models to ex-
ploit dataset bias (Dancette et al., 2021), or may
reduce to object recognition problems which do
not evaluate the models’ ability to perform more
complex tasks beyond aligning words or phrases
in the text to a portion of the image (Hudson and
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Manning, 2019; Acharya et al., 2019), which does
not require knowledge of syntactic structure or the
ability to reason over several objects in a scene
(Bernardi and Pezzelle, 2021). This concern is
pertinent given that pretraining tasks often primar-
ily involving masking either the textual or image
modality.

Datasets such as NLVR2 (Suhr et al., 2019) ad-
dress this limitation, but do not allow for fine-
grained evaluation along specific dimensions (Tan
et al., 2021). CLEVR (Johnson et al., 2017) and
SHAPEWORLD (Kuhnle and Copestake, 2017) en-
able targeted evaluations of a V+L model’s reason-
ing abilities but only encode the scene unimodally,
as images. Additionally, their test examples may
still be in the training distribution with respect
to task-relevant dimensions, making it difficult to
draw conclusions about generalisation ability.

We thus propose TRAVLR, a synthetic dataset
comprising four V+L reasoning tasks: spatial-
ity, cardinality, quantifiers, and numerical com-
parison. Unlike SHAPEWORLD, we control the
train/test split such that examples in the out-of-
distribution (OOD) test set are OOD with respect
to task-relevant dimensions. We focus on tasks
involving spatial and numerical reasoning, which
require reasoning over multiple objects and have
been shown to be challenging for V+L models
(Johnson et al., 2017; Parcalabescu et al., 2020).

Inspired by the word/picture sentence verifi-
cation task from psycholinguistics (Goolkasian,
1996), we further propose the cross-modal transfer
setting, where the model is trained on input from
one modality and tested on input from another. By
representing the scene bimodally as both an image
and a caption (Figure 1), TRAVLR is the first V+L
dataset to support such an evaluation setting, to our
knowledge. Being able to transfer cross-modally
in a zero-/few-shot manner will improve data effi-
ciency in applications where diverse image data is
more difficult to obtain than written descriptions.

We use TRAVLR to evaluate the minimum
amount of data and training steps required for var-
ious V+L models to learn simple reasoning tasks,
in addition to comparing their final performance.
We show that existing models often require unrea-
sonably large amounts of data and training steps
to learn simple tasks. We argue that our dataset
serves as a basic sanity check for the abstract rea-
soning capabilities of models, and is complemen-
tary to datasets such as GQA (Hudson and Man-

ning, 2019) that evaluate real-world object recog-
nition and compositional reasoning abilities. Fi-
nally, we find current pretrained V+L models to
be generally unsuccessful at learning to perform a
task from one modality alone, and thus pose this
as an open challenge for future V+L models.

2 Related Work

V+L tasks and datasets. The Visual Question
Answering (VQA) task involves answering a ques-
tion about an image, and is a complex task as
it requires an ability to process input in both vi-
sual and textual modalities (Antol et al., 2015).
A known issue with VQA datasets is the pres-
ence of real-world language priors and statistical
biases in the training and testing distribution (Ker-
vadec et al., 2021; Agrawal et al., 2018; Kafle
et al., 2019). This was a problem with the orig-
inal VQA dataset that Goyal et al. (2017) ad-
dresses in VQA v2.0 by balancing each query
with pairs of images. However, Dancette et al.
(2021) show that VQA v2.0 still contains both uni-
modal and multimodal biases that models can ex-
ploit. Furthermore, many questions in VQA use
non-compositional language that do not require
abilities beyond object recognition. Bernardi and
Pezzelle (2021) argue that more complex reason-
ing tasks should involve reasoning about relation-
ships between several objects in the image.

NLVR attempts to address the lack of com-
positionality in VQA using synthetically gener-
ated images of abstract 2D shapes accompanied by
human-written English sentences to be judged true
or false (Suhr et al., 2017). NLVR2 (Suhr et al.,
2019) and SNLI-VE (Xie et al., 2019) also in-
volve truth-value/entailment judgement tasks, and
use photographs instead of synthetic images. Both
lack detailed annotations of the specific semantic
phenomena evaluated by each example. GQA im-
proves over VQA by focusing on compositional
questions that require reasoning over multiple ob-
jects and contains detailed annotations (Hudson
and Manning, 2019), but still suffers from sta-
tistical imbalances and the lack of an out-of-
distribution test set (Kervadec et al., 2021).

Other synthetic datasets focusing on reason-
ing include CLEVR (Johnson et al., 2017) and
SHAPEWORLD (Kuhnle and Copestake, 2017).
CLEVR is a fully synthetic 3D dataset and con-
tains the annotations necessary to analyse model
performance on specific tasks along various di-



mensions. SHAPEWORLD is a dataset targeting
linguistic phenomena such as spatial relationships
and quantifiers. gSCAN (Ruis et al., 2020) focuses
on generalisation of commands within a 2D grid-
world with objects, including various tasks such
as novel composition of object properties, novel
movement direction and novel adverbs.

V+L models. Pretrained V+L models differ in
their architecture and pretraining methods. VL-
BERT (Su et al., 2019), UNITER (Chen et al.,
2020) and VisualBERT (Li et al., 2020a) are
single-stream models with a single Transformer
while ViLBERT (Lu et al., 2019), LXMERT (Tan
and Bansal, 2019), and ALBEF (Li et al., 2021)
are dual-stream models which encode image and
textual inputs separately before fusing them. All
models use a combination of masked language
modelling and image-text matching objectives for
pretraining, with LXMERT additionally pretrain-
ing on VQA and ALBEF using a contrastive
loss to align the image and language representa-
tions. UNITER, VisualBERT, and LXMERT use
a frozen Faster R-CNN (Ren et al., 2015) to ex-
tract region-based features from the image while
ALBEF directly encodes the image with a Vision
Transformer (Dosovitskiy et al., 2020).

Cross-modal transfer. Prior work has found
models trained on multimodal data to perform bet-
ter on unimodal downstream tasks than models
trained only on one modality. Zadeh et al. (2020)
found models trained on multimodal input to per-
form better than text-only models on three NLP
tasks, while Testoni et al. (2019) showed that mod-
els trained on textual, visual, and auditory input
were better at a quantification task than models
trained only on a single modality. Using a task
involving queries about typical colours of objects,
Norlund et al. (2021) found that BERT trained on
linguistic and visual features outperforms BERT
trained on language data filtered for mentions of
colour. Frank et al. (2021) investigated the cross-
modal alignment of pretrained V+L models with
an ablative method based on masked-modelling.

Summary. The datasets commonly used to eval-
uate V+L models such as VQA and NLVR2 lack
fine-grained interpretability, due to the lack of
annotations for semantic phenomena involved in
each example. Additionally, multiple semantic
phenomena co-occur within a single training ex-
ample, making it difficult to control the training

distribution and assess the generalisation abilities
of models. In contrast, we show that task-specific
investigation of the key reasoning capabilities of
models can help to compare the data efficiency,
performance and limitations of different models.

Existing V+L datasets also only present the
scene in the visual modality and cannot be used to
evaluate a V+L model’s ability to generalise across
modalities (cross-modal transfer). By encoding
the underlying scene in both visual and textual
modalities, we can evaluate cross-modal transfer
by training on one and evaluating on the other.

Existing synthetic datasets (e.g., CLEVR and
SHAPEWORLD) often fail to split the training and
testing distributions along a dimension relevant to
the specific task, because they generate captions
based on randomly generated images. Our ap-
proach exploits the benefits of a synthetic dataset
by strictly controlling the training and evaluation
distributions to test the generalisation abilities of
V+L models and avoid statistical biases from lan-
guage priors and non-uniform distributions.

3 TRAVLR: Cross-Modal Transfer of
Visio-Linguistic Reasoning

Psycholinguistic studies have demonstrated the ef-
fect of input modality on the performance of hu-
mans on truth-value judgement tasks. Goolka-
sian (1996)’s word/picture-sentence verification
task found human subjects to exhibit faster reac-
tion times and fewer errors when asked to provide
truth value judgements on images as opposed to
words, even when both encode the same underly-
ing concept. We similarly ask if pretrained visio-
linguistic models also exhibit asymmetries in ac-
curacy and amount of required fine-tuning data
when the input modality is varied.

There is also evidence that human infants learn
abstract rules better when presented with bimodal
cues such as visual shapes and speech sounds,
compared to when information is presented in a
single modality (Frank et al., 2009; Flom and
Bahrick, 2007). We similarly ask if presenting the
context in both visual and textual modalities im-
proves performance for V+L models.

To answer these questions, we construct
TRAVLR, a synthetic dataset comprising four
visio-linguistic reasoning tasks. These tasks were
previously identified to be challenging for text-
only models (Lin and Su, 2021; Dua et al., 2019;
Ravichander et al., 2019). TRAVLR aims to eval-



uate the extent to which pretrained V+L models
already encode or are able to learn these four rela-
tions between entities present in the input scene.
We first describe the general task format before
elaborating on the cross-modal transfer problem.

Given a scene with objects, S = {o1, ..., on},
where each object can be represented as a tuple <
colour, shape, position >, and a textual query q
involving some relation r(o1, ..., oi) between two
or more objects in S, each task involves learning
a function y = f(S, q) where y ∈ {true, false}.
This is essentially a binary classification task. For
instance, in the spatiality task, the relation r could
be left or right, which compares the positions of
two objects. In the numerical comparison task,
the noun phrases in the query refer to subsets of
objects, while the relations (e.g., more) compare
the cardinality of two sets of objects. Success-
fully assigning a truth value to the query thus in-
volves reasoning over several objects (Bernardi
and Pezzelle, 2021).

However, a model can never have direct access
to the underlying representation scene in reality
and must operate on visual or textual forms. De-
pending on the modality under evaluation, S may
be presented in the form of an image or a textual
description. In prior work such as VQA, S is pre-
sented as an image. In TRAVLR, S is represented
bimodally as an < image, caption > pair.

Each example consists of an image, an accom-
panying caption, and a query. Images include ab-
stract objects arranged in a grid, where each object
has two properties: colour and shape. In our ex-
periments, we draw from 5 possible colours (red,
blue, green, yellow, orange) and 7 possible shapes
(square, circle, triangle, star, hexagon, octagon,
pentagon), giving 35 unique objects in total. Each
caption fully describes the image with the coordi-
nates of each object (e.g., “There is a red circle
at A 1, a blue square at B 2...”). A description
of the coordinate system, e.g., “Columns, left to
right, are ordered A to F. Rows, top to bottom, are
ordered 1 to 6.” is prepended to the caption. The
caption and query are separated by the [SEP] to-
ken when presented to the models. Removing the
caption reduces our tasks to VQA-like tasks.

3.1 Reasoning Tasks

When generating the examples for each task, we
constrain the training distribution along a dimen-
sion relevant to the specific task. For instance,

Figure 2: An example of OOD test set construc-
tion. In a left/right relationship reasoning task, the
relevant dimension is the column ID. Specific ID
pairs (X) are held out to form this test distribution.

in generating the training and out-of-distribution
(OOD) test sets for the spatial relationship task,
we ensure that the positions of the queried ob-
jects do not overlap between the training and test
sets along the relevant axis (e.g., the horizontal
axis for horizontal relations left/right). This differs
from the approach adopted by SHAPEWORLD,
which randomly generates images which are sub-
sequently fed to a module responsible for gener-
ating query statements and assigning a truth value
based on the corresponding scene. Consequently,
the distribution of the images in SHAPEWORLD

cannot be directly constrained depending on the
specific task, and may lead to statistical bias in
the distribution of queries. Furthermore, SHAPE-
WORLD does not enforce task-specific train/test
splits. We next explain how we construct the
train/test splits.

Spatiality. The spatiality task involves queries
of the form “The [object1] is [relationship]
the [object2]” (e.g., “The red circle is right
of the blue triangle”), where the possible
relationships are to the left of, to the right
of, above, below. For horizontal relation-
ships (left/right), the train and test sets are
split based on the pair <column(object1),
column(object2)> (Figure 2), while for
vertical relationships (above/below), the
train and test sets are split based on the pair
<row(object1),row(object2)>. This tests the
model’s ability to generalise its understanding of
spatial relationships along the relevant dimension,
as opposed to memorising fixed positions.



All < [attr1] ∩ [attr2], [attr2] \ [attr1] >
Not all < [attr1] ∩ [attr2], [attr1] \ [attr2] >
No < [attr1] \ [attr2], [attr2] \ [attr1] >
Some < [attr1] \ [attr2], [attr1] ∩ [attr2] >
Only < [attr1] ∩ [attr2], [attr1] \ [attr2] >
Not only < [attr1] ∩ [attr2], [attr2] \ [attr1] >

Table 1: Pairs for each quantifier.

Figure 3: Example instance for not all quantifier
with pair < 2, 3 >.

Cardinality. The cardinality task involves
queries of the form “There are [number]
[shape/colour] objects.” (e.g., “There are 3
circle objects”). The train and test sets are split by
the <number, shape/colour> pair occurring in
the input image/caption. For instance, instances
containing 2 circles and 3 triangles could occur
in the training distribution, while instances
containing 3 circles occur only in the OOD test
distribution.

Quantifiers. This task involves queries of the
form “[quantifier] the [attr1] objects are
[attr2] objects.”, where the quantifiers include
all, some, only and their negated counterparts not
all, none and not only. The train-test split is
performed based on the pair < a, b >, which
varies based on the quantifier, as given in Table
1. For instance, for the relationship not all, a is
the number of objects which fulfil both [attr1]
and [attr2], and b is the number of objects which
fulfil [attr1] but not [attr2]. In the example in
Figure 3, the pair is < 2, 3 >.

Numerical comparison. The numerical com-
parison task involves queries of the form “There
are [more/fewer] [attr1] objects than [attr2]
objects” (e.g., “There are more circles than
squares.”). The train and test sets are split by the
pair < a, b > where a is the number of [attr1]

objects, and b is the number of [attr2] objects.
Instances for which |a − b| is smaller than some
threshold is assigned to the training distribution,
and the remaining pairs are assigned to the test-
ing distribution. Success in this task is evidence of
generalisation based on an implicit understanding
of numeral scales and the transitivity of compari-
son i.e., a > b and b > c implies that a > c.

3.2 Cross-Modal Transfer

Humans can often reason about relationships be-
tween objects regardless of whether they are de-
scribed with language or presented as an image.
If pretrained V+L models have learnt a truly mul-
timodal representation, they should similarly be
able to learn a reasoning task with input from one
modality and perform inference using input from
the other modality with no extra training. We term
this ability zero-shot cross-modal transfer, which
may have significant implications for sample effi-
ciency. Since annotated examples comprising di-
verse real-world images may be more difficult to
collect compared to written descriptions, it may
be desirable to be able to train multimodal models
on only textual input before using them to process
visual input. Furthermore, it is hoped that transfer
from the visual modality can improve spatial rea-
soning ability even if the scene is represented as
text instead of an image.

We draw an analogy to the concept of zero-shot
cross-lingual transfer in multilingual NLP, which
is often used to evaluate a multilingual model’s
ability to generalise to languages unseen during
fine-tuning (Conneau et al., 2018). Similar to
cross-modal transfer, a model is first pretrained on
multiple languages before being fine-tuned on a
task data from a single language. The model is
then evaluated on examples from languages un-
seen during fine-tuning. Just as an ideal multilin-
gual model is expected to perform well in this set-
ting, we expect a perfectly multimodal model to
perform just as well on the “unseen” modality.

Encoding the scene as both an image and a cap-
tion allows models to be trained and evaluated on
a combination of three settings: i) image-only in-
put, ii) caption-only input, and iii) both image and
caption inputs. We note that the query is presented
as part of the text input in each setting. In the
caption-only setting, a blank white image is pre-
sented to the models. TRAVLR is, to our knowl-
edge, the first dataset that supports the evaluation



Task Train Val. InD Test OOD Test

Spatial 15837 / 16163 4993 / 5007 5007 / 4993 9960 / 10040
Cardinality 4040 / 3960 4927 / 5073 5043 / 4957 10079 / 9921
Quantifier 4006 / 3994 5003 / 4997 5030 / 4970 10029 / 9971
Comparison 4088 / 3912 4926 / 5074 4992 / 5008 10033 / 9967

Table 2: Dataset statistics (no. of True / False)

of zero-shot cross-modal transfer.

3.3 Generating TRAVLR

We generate the dataset for each task separately.
To generate each example, we select objects and
determine their attributes with their values ran-
domly sampled uniformly from the predefined dis-
tributions. The training and OOD test distribu-
tions are determined prior to the generation of both
the input scene and queries based on the pairs ex-
plained above. We thus ensure that the pairs rele-
vant to each task do not overlap between the train
and OOD test sets, and also that all queries in the
OOD test set cannot be found in the training set.
Distractor objects irrelevant to the intended query
are finally added to the scene.

For example, to generate queries for the spa-
tial relationship task, we select two objects and
their positions based on the training/testing distri-
butions, before adding a distractor object to the
scene. We then randomly select a relationship
(e.g., either left or right for a horizontal relation-
ship) for the query, which corresponds to either a
true or false answer.

We also generate metadata for each example,
comprising abstract representations of the input
scene, the caption and the query, and crucial infor-
mation about each example (e.g. the pairs). The
spatiality task’s training set comprises 32k exam-
ples, the training sets of the other tasks comprise
8k examples each due to differences in the amount
of data required for convergence.

In- and out-of-distribution test sets. Prior
work on generalisation evaluation recommended
the use of in- and out-of-distribution (henceforth
InD and OOD, respectively) test sets (Csordás
et al., 2021). Hence, we include validation and
InD test sets are randomly sampled from the train-
ing distribution (10k examples each) in addition
to the OOD test set described in section 3.1 (20k
examples). Table 2 summarises these statistics.

4 Experiments

Models. We perform experiments with Visual-
BERT, LXMERT, UNITER, and ALBEF. We use
Li et al. (2020b)’s implementation of VisualBERT,
LXMERT, and UNITER, and the original imple-
mentation of ALBEF. The image features of the
first three models are 36 regions of interest ex-
tracted by a pretrained Faster R-CNN (Ren et al.,
2015; Anderson et al., 2018), for which we use Tan
and Bansal (2019)’s implementation.2 We also use
two text-only models, RoBERTa (Liu et al., 2019)
and BERT (Devlin et al., 2019), as baselines in the
caption-only setting.

Setting. We train models on each task for 80
epochs. Following Csordás et al. (2021)’s finding
that early stopping may lead to underestimation of
model performance, we do not do early stopping.
Hyperparameters are fixed at a batch size of 256
and 2e-5 for ALBEF, based on the recommended
parameters for fine-tuning on SNLI-VE (Xie et al.,
2019), and a batch size of 32 and a learning rate of
5e-6 for VisualBERT, UNITER and LXMERT. As
the hyperparameters recommended for fine-tuning
on VQA on VisualBERT, UNITER and LXMERT
did not lead to convergence on some tasks, we ad-
justed learning rates downwards which led to con-
vergence or better performance on our dataset.

4.1 Within-Modality Results
We first discuss the results of within-modality test-
ing, i.e., testing the model on the modality it was
trained on (Table 3).

Spatiality. In the image-only setting, UNITER
achieves the highest F1 score, followed by
LXMERT, VisualBERT, and finally ALBEF. Visu-
alBERT requires at least 32k examples to achieve
above random performance, while ALBEF com-
pletely fails to learn the task (Figure 4a). We note
that 32k is a rather significant number of examples
given the task’s simplicity, where there are only 36
possible positions for each object. For compari-
son, the full VQA dataset, which aims to cover all
possible tasks, consists of only 443k training ex-
amples. A potential explanation for the superior
performance of UNITER and LXMERT could be
that unlike the other models, spatial coordinates
from the bounding boxes are explicitly encoded as
features in the input to the image encoders, which
they are able to directly exploit. This option is

2https://github.com/airsplay/py-bottom-up-attention



Spatiality

Train Image Caption Image + Caption
Test Image Caption Img. + Cap. Image Caption Img. + Cap. Image Caption Img. + Cap.

VisualBERT 77.78 (+1.11) 46.21 (-0.18) 51.35 (-0.05) 40.79 (+0.56) 50.44 (+0.05) 50.49 (+0.00) 50.69 (+0.35) 50.50 (-0.56) 50.56 (-0.66)
UNITER 99.63 (-0.09) 38.96 (+0.32) 58.99 (-1.64) 45.46 (-1.69) 73.52 (-7.65) 73.57 (-7.64) 52.08 (+0.68) 97.66 (-2.34) 97.58 (-2.42)
LXMERT 99.37 (-0.34) 33.44 (+0.08) 45.59 (+0.08) 33.42 (+0.12) 33.42 (+0.12) 33.42 (+0.12) 33.42 (+0.12) 33.42 (+0.12) 33.42 (+0.12)
ALBEF 48.01 (+0.08) 48.31 (+0.54) 48.14 (+0.58) 47.84 (-0.18) 95.28 (-4.72) 95.28 (-4.72) 39.31 (-1.10) 96.33 (-3.67) 96.34 (-3.66)

Cardinality

Train Image Caption Image + Caption
Test Image Caption Img. + Cap. Image Caption Img. + Cap. Image Caption Img. + Cap.

VisualBERT 83.67 (-1.56) 46.78 (-0.85) 50.08 (-1.05) 42.34 (-1.47) 99.82 (+0.28) 99.77 (+0.62) 42.34 (-1.47) 99.87 (+0.06) 99.82 (+0.21)
UNITER 74.56 (-3.87) 47.72 (-0.13) 50.24 (-0.94) 42.34 (-1.47) 98.60 (+0.80) 98.77 (+1.04) 42.34 (-1.47) 98.82 (-0.04) 99.65 (+0.8)
LXMERT 83.69 (-2.92) 33.28 (+0.05) 45.55 (+1.37) 33.51 (-0.01) 33.51 (-0.01) 33.51 (-0.01) 33.51 (-0.01) 33.51 (-0.01) 33.51 (-0.01)
ALBEF 59.23 (+0.39) 32.66 (-0.06) 53.16 (-0.52) 43.91 (+0.8) 99.76 (+0.48) 99.76 (+0.48) 43.91 (-0.42) 99.57 (+0.35) 99.57 (+0.35)

Quantifiers

Train Image Caption Image + Caption
Test Image Caption Img. + Cap. Image Caption Img. + Cap. Image Caption Img. + Cap.

VisualBERT 91.50 (-2.93) 34.44 (+0.26) 48.15 (-0.16) 46.89 (+0.49) 99.63 (+0.47) 99.65 (+0.51) 41.84 (+0.21) 99.48 (+0.50) 99.46 (+0.56)
UNITER 96.93 (-0.12) 49.31 (-0.37) 54.10 (-0.85) 48.51 (-2.00) 99.40 (-0.28) 99.33 (-0.31) 44.79 (-1.35) 94.55 (+7.04) 97.30 (+4.78)
LXMERT 96.09 (-1.58) 36.63 (-1.06) 36.26 (-1.09) 48.45 (-1.24) 97.86 (+6.88) 93.99 (+7.59) 49.33 (-0.30) 34.75 (-0.07) 51.21 (+0.03)
ALBEF 60.45 (-2.15) 40.64 (-0.26) 54.32 (-0.90) 48.45 (-0.07) 99.97 (+0.00) 99.97 (+0.00) 46.10 (-0.55) 100.00 (+0.03) 99.99 (+0.03)

Numerical Comparison

Train Image Caption Image + Caption
Test Image Caption Img. + Cap. Image Caption Img. + Cap. Image Caption Img. + Cap.

VisualBERT 62.07 (-24.72) 33.83 (-2.32) 33.58 (-2.93) 49.99 (+1.23) 89.55 (-10.14) 89.49 (-10.24) 50.00 (+1.23) 81.92 (-16.77) 82.08 (-17.63)
UNITER 57.47 (-28.09) 34.18 (-1.61) 50.00 (-2.10) 47.79 (+0.06) 61.90 (-37.76) 60.59 (-39.04) 49.03 (-1.80) 61.38 (-37.92) 59.64 (-40.11)
LXMERT 63.01 (-21.44) 46.09 (+0.98) 43.40 (-1.08) 46.50 (-2.70) 50.05 (-49.63) 50.11 (-49.52) 50.32 (+3.97) 58.75 (-22.42) 58.17 (-40.27)
ALBEF 47.28 (+4.14) 32.94 (+0.16) 32.94 (+0.16) 47.28 (-1.13) 99.24 (-0.56) 99.24 (-0.56) 44.98 (-4.25) 97.46 (-2.45) 97.44 (-2.45)

Table 3: F1 scores on the OOD test sets for all four tasks (relative change from InD results in parentheses).
Above random results are underlined; best result in each column is bolded.

unavailable to ALBEF, which takes in the image
as input directly instead of relying on a separate
object detector. VisualBERT does not make use
of these spatial coordinates, which may have im-
paired its ability to relate the positions of objects.
Bugliarello et al. (2021) and Frank et al. (2021)
posited this limitation of VisualBERT to be the
reason for its poor performance on tasks such as
RefCOCO+ and Masked Region classification, but
the impact of this limitation on spatial reasoning
has hitherto not been directly investigated.

Although LXMERT and UNITER achieve sim-
ilar F1 scores, UNITER succeeds at learning
the task with substantially less data (≤4k ex-
amples) compared to all the other models while
LXMERT converges in fewer epochs. For in-
stance, LXMERT only requires 4 epochs of train-
ing on the 32k dataset to exceed 99% accuracy
on the validation set, while UNITER requires 39
epochs. A possible reason for the faster conver-
gence of LXMERT on the spatiality task is that

it was additionally pretrained on a VQA task, un-
like all the other models. We can conclude that
LXMERT is more efficient in terms of training
steps, while UNITER is more sample efficient.
Johnson et al. (2017) previously found CNN and
LSTM models to have trouble learning spatial re-
lationships and often memorise absolute object
positions. Our results indicate that Transformer-
based models likely face similar issues.

In the caption-only setting, only UNITER and
ALBEF manage to achieve non-random perfor-
mance. Only ALBEF achieves performance close
to that of RoBERTa, which achieves an F1 score
of 99.46 on the OOD test set with 32k examples,
but requires 16k examples to achieve above ran-
dom performance (Figure 4b). BERT achieves
an F1 score of 89.47 on the OOD test set, out-
performing all models other than ALBEF. Nev-
ertheless, BERT requires at least 8k examples to
achieve above random performance, corroborating
findings by Lin and Su (2021) that BERT requires



(a) Image-only setting

(b) Caption-only setting

(c) Image+caption setting

Figure 4: Performance on spatiality task on
(a) image-only, (b) caption-only and (c) im-
age+caption input at different dataset sizes.

a significant number of examples to learn a simple
natural language inference task.

While ALBEF achieves similar results in
the caption-only and image+caption settings,
UNITER’s performance in the image+caption set-
ting is significantly better than performance in the
caption-only setting (Figure 4c). This may indi-
cate a benefit to training UNITER on both modal-
ities on the spatiality task.

Cardinality. The cardinality task requires less
data than the spatiality task, and all models are
able to achieve non-random performance in the
settings where they were trained with 8k exam-
ples. In the image-only setting, LXMERT is the
best performing model, followed by VisualBERT,
UNITER, and finally ALBEF. Furthermore, per-
formance on the OOD test set is poorer than per-
formance on the InD test set for all models ex-
cept ALBEF. Our results corroborate Parcalabescu
et al. (2020)’s finding that current V+L models
face difficulties counting objects in images.

All models are generally able to achieve close
to a perfect F1 score in the caption-only and
image+caption settings, with the exception of
LXMERT. It is notable that VisualBERT is the
best performing model in the caption-only and im-
age+caption settings, in contrast to its poor perfor-
mance on the spatiality task. The performance of
VisualBERT, UNITER and ALBEF are compara-
ble to that of RoBERTa (OOD: 99.82; InD: 99.93)
and BERT (OOD: 98.93; InD: 98.98). These re-
sults corroborate findings by Wallace et al. (2019)
that numeracy is encoded in the embeddings of
language-only models. We hypothesise that the
poor performance of LXMERT compared to the
other models is a result of not being initialised
with BERT parameters prior to pretraining.

Quantifiers. All models perform well on the
quantifiers task in most settings, with some excep-
tions. In the image-only setting, all models ex-
ceed an F1 score of 90, except for ALBEF, which
achieves an F1 score of 60.45. Performance in the
caption-only and image+caption settings are simi-
lar with the exception of LXMERT, and the best
performing model is ALBEF, as in the numeri-
cal comparison task. Both RoBERTa and BERT
achieve a F1 score of 100 both the InD and OOD
datasets. Good performance on the OOD dataset
indicates that models are not memorising specific
numbers of objects and instead use more general
strategies for understanding quantifiers. This par-
allels psycholinguistic findings that comprehen-
sion of (non-exact) quantifiers does not correlate
with counting skills in human children (Dolscheid
et al., 2015).

Numerical comparison. Recall that the InD and
OOD test sets for the comparison task are split
based on the pair < a, b > where a is the number
of objects with the first attribute in the query and b



is the number of objects with the second attribute.
In the main experiment, the value of |a− b| in the
InD test set is between 1 and 3, inclusive, and the
maximum value of a and b is 9. In contrast to the
simpler cardinality task, there is a significant dif-
ference between the InD and OOD settings for the
numerical comparison task in across most settings,
although the models still manage to achieve above
random performance on the OOD test set.

In the image-only setting, performance on the
InD test set is above 80 with the exception of AL-
BEF, which does not achieve above random per-
formance. The performance of the other models
on the OOD test set is significantly lower, between
55 to 65, indicating that all models only have a
limited ability to generalise beyond the training
distribution. In the caption-only setting, all mod-
els achieve close to an F1 score of 100 on the InD
test set, but do not generalise well to the OOD
test set. Only ALBEF maintains a close to per-
fect F1 score on the OOD test set, while Visual-
BERT (F1=89.55) and UNITER (F1=61.90) show
a significant drop in performance, and LXMERT’s
performance is not better than random. Perfor-
mance in the image+caption setting is similar to
the caption-only setting, although performance
on the OOD test set is poorer compared to the
caption-only setting for all models, with the ex-
ception of LXMERT. Notably, the performance of
ALBEF is like that of RoBERTa, which achieves
similar results on OOD and InD test sets (OOD:
99.94; InD: 100), while VisualBERT and UNITER
are closer to that of BERT which performs signif-
icantly more poorly on the OOD test set (OOD:
68.47; InD: 99.60).

Our results suggest that models are able to gen-
eralise to unseen number pairs by constructing an
implicit numeral scale, but only to a limited ex-
tent. Furthermore, unlike the cardinality and quan-
tifiers tasks, the numerical comparison task is able
to differentiate the models’ understanding of the
numeral scale. ALBEF performs the best on the
OOD test set, followed by VisualBERT, UNITER
and finally, LXMERT. As explained earlier, a pos-
sible explanation for the poorer performance of
LXMERT is that it was not initialised with BERT
parameters prior to pretraining.

4.2 Adding/Dropping Modalities

We now discuss the effects of either adding or
dropping a modality to the input presented dur-

ing testing. Understood together with the observa-
tion of a clear similarity between the results in the
caption-only and image+caption settings across all
models and reasoning tasks, these results reveal a
bias towards the textual modality across all mod-
els. Overcoming this bias is a potential step to-
wards modality-agnostic representations.

First, models trained in the image+caption set-
ting at times exhibit minor drops in performance
when tested in the caption-only setting. In con-
trast, models trained in the image+caption setting
perform poorly in the image-only setting in most
cases, with random or close to random perfor-
mance. The only exception is UNITER on the spa-
tiality task, which achieves slightly above random
performance when the caption is dropped during
testing. This indicates a clear bias towards the tex-
tual input and a tendency to be distracted by the
caption across all models.

Second, models trained only on captions per-
form similarly when tested in the image+caption
setting. In contrast, testing a model trained only
on images in the image+caption setting results in
a significant performance drop. This is true even
for the quantifiers task, which was shown to be
the easiest for all models. In most cases, the F1

score is either close to or below random chance,
although ALBEF and UNITER differ from Visu-
alBERT and LXMERT in managing to maintain
above random performance when the caption is
added to the input during testing.

4.3 Cross-Modal Transfer

Despite performing well in the within-modality
settings, none of the models succeed at perform-
ing zero-shot cross-modal transfer to an unseen
modality (i.e., from image-only to the caption-
only setting, and vice versa). Our results suggest
that existing V+L representation learning methods
have not succeeded in producing truly multimodal,
or modality-agnostic, representations.

5 Discussion

Asymmetry between image and text modalities.
Thus far, we have seen that performance in the
caption-only setting resembles performance in the
image+caption setting across all tasks. Models
may be distracted by the caption to the extent that
they perform more poorly in the image+caption
setting than in the image-only setting. Testing a
model fine-tuned on both modalities on only one



modality reveals that models often rely heavily on
the caption, ignoring the image completely, to the
extent that they are unable to answer questions
when the caption is removed. The overall find-
ing is hence a bias towards the textual modality.
This corroborates previous findings by Cao et al.
(2020) that the textual modality plays a more im-
portant role than the image for both single and dual
stream models. Furthermore, we find that V+L
models perform poorer than unimodal RoBERTa
on various caption tasks, similar to Iki and Aizawa
(2021), who show that pretraining on V+L models
cause poorer performance on NLU tasks.

Comparing tasks. The spatiality task is the
hardest task, requiring at least 32k examples in
some cases, as opposed to the 8k examples re-
quired for the other tasks. Focusing on the image-
only setting, the easiest task is the quantifiers task
(models achieve F1 scores above 90), followed
by cardinality (models achieve F1 scores below
90), and finally numerical comparison (models
achieve F1 scores below 70). In the caption-only
and image+caption settings, all models apart from
LXMERT achieve a close to perfect F1 score in the
cardinality and quantifiers tasks, while all models
except ALBEF suffer a performance degradation
on the OOD dataset.

Our results thus suggest that while most models
may succeed on the quantifiers task, they succeed
at counting only to a limited extent. Furthermore,
while success on the cardinality task indicates an
understanding of the meaning of numbers in abso-
lute terms, the numerical comparison task is able
to more clearly differentiate the models in terms
of their understanding of individual numbers’ rel-
ative positions on a numeral scale.

Comparing models. In general, the perfor-
mance of UNITER, VisualBERT and ALBEF in
the caption-only and image+caption settings is
better than performance in the image-only setting.
In contrast, LXMERT appears to perform better in
the image-only settings compared to the caption-
only settings. Although UNITER achieves slightly
higher results than LXMERT on the spatiality and
quantifiers tasks, LXMERT significantly outper-
forms UNITER on the other tasks, likely due to
its having been pretrained on a VQA task.

Our findings corroborate Bugliarello et al.
(2021)’s findings that differences between mod-
els cannot be clearly attributed to differences in

model architecture (i.e. whether they are single
or dual-stream). Since LXMERT and ALBEF
are both dual-stream models, our results suggest
that the pretraining method has a significant ef-
fect on the model’s performance on a downstream
task. The performance of ALBEF in image-only
settings is poorest amongst all models across all
tasks. We hypothesise that the pretrained object
detector used by the other models but not ALBEF
confers an advantage on the image-only setting
because the embeddings presented to the models
already encodes the objects directly. We further
note that while ALBEF may succeed at aligning
phrases in the text to a portion of the image, all our
tasks involving numerical reasoning include noun
phrases which refer to multiple and spatially non-
contiguous objects in the image.

UNITER is the only model which succeeds on
all tasks on all settings, and seems to be less sus-
ceptible to performance degradation when modal-
ities are added or removed from the input during
test. These results suggest that some component
of its architecture or pretraining procedure makes
it less overly biased towards one modality.

6 Conclusion

While pretrained multilingual models have been
shown to demonstrate zero-shot cross-lingual
transfer abilities, it is unclear whether visio-
linguistic models are similarly able to perform
zero-shot cross-modal transfer of downstream task
abilities to a modality unseen during training. We
hence contribute a new dataset, TRAVLR, inspired
by the word/picture sentence verification task from
psycholinguistics. In contrast to existing V+L rea-
soning datasets that only encode the scene as an
image, TRAVLR enables the evaluation of cross-
modal transfer ability by encoding the scene in
both the visual and textual modalities, allowing ei-
ther to be dropped during training or testing.

TRAVLR allows us to evaluate specific visio-
linguistic reasoning skills in isolation instead of
at an aggregate level, enabling finer-grained diag-
nosis of a model’s deficiencies. We found some
models to learn better from one modality than the
other, and some task-setting combinations to be
more challenging across the board. Our results
also provide useful estimates of the amount of
data required for V+L models to acquire various
reasoning skills, indicating that existing models
may require unreasonably large amounts of data



and training steps to learn certain types of visio-
linguistic reasoning. Improving the sample effi-
ciency and training time of V+L models in this re-
gard is a potential direction for future research.

We further found all models to suffer from a
bias towards the textual modality and are unable
to perform zero-shot cross-modal transfer of rea-
soning capabilities despite, in some cases, achiev-
ing close to perfect performance on a test set en-
coded in the same modality. Developing new
visio-linguistic representations that are capable of
zero-shot cross-modal transfer is another direction
for future research, and we pose this as a new chal-
lenge for multimodal modelling.
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