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Abstract

Existing multimodal tasks mostly target at
the complete input modality setting, i.e., each
modality is either complete or completely miss-
ing in both training and test sets. How-
ever, the randomly missing situations have
still been underexplored. In this paper, we
present a novel approach named MM-Align to
address the missing-modality inference prob-
lem. Concretely, we propose 1) an align-
ment dynamics learning module based on
the theory of optimal transport (OT) for in-
direct missing data imputation; 2) a denois-
ing training algorithm to simultaneously en-
hance the imputation results and backbone
network performance. Compared with pre-
vious methods which devote to reconstruct-
ing the missing inputs, MM-Align learns to
capture and imitate the alignment dynam-
ics between modality sequences. Results of
comprehensive experiments on three datasets
covering two multimodal tasks empirically
demonstrate that our method can perform
more accurate and faster inference and relieve
overfitting under various missing conditions.
Our code is available at https://github.
com/declare-lab/MM-Align.

1 Introduction

The topic of multimodal learning has grown un-
precedentedly prevalent in recent years (Ramachan-
dram and Taylor, 2017; Baltrušaitis et al., 2018),
ranging from a variety of machine learning tasks
such as computer vision (Zhu et al., 2017; Nam
et al., 2017), natural langauge processing (Fei
et al., 2021; Ilharco et al., 2021), autonomous driv-
ing (Caesar et al., 2020) and medical care (Nascita
et al., 2021), etc. Despite the promising achieve-
ments in these fields, most of existent approaches
assume a complete input modality setting of train-
ing data, in which every modality is either complete
or completely missing (at inference time) in both
training and test sets (Pham et al., 2019; Tang et al.,

2021; Zhao et al., 2021), as shown in Fig. 1a and 1b.
Such synergies between train and test sets in the
modality input patterns are usually far from the
realistic scenario where there is a certain portion
of data without parallel modality sequences, prob-
ably due to noise pollution during collecting and
preprocessing time. In other words, data from each
modality are more probable to be missing at ran-
dom (Fig.1c and 1d) than completely present or
missing (Fig.1a and 1b) (Pham et al., 2019; Tang
et al., 2021; Zhao et al., 2021). Based on the com-
plete input modality setting, a family of popular
routines regarding the missing-modality inference
is to design intricate generative modules attached
to the main network and train the model under full
supervision with complete modality data. By mini-
mizing a customized reconstruction loss, the data
restoration (a.k.a. missing data imputation (Van Bu-
uren, 2018)) capability of the generative modules
is enhanced (Pham et al., 2019; Wang et al., 2020;
Tang et al., 2021) so that the model can be tested
in the missing situations (Fig. 1b). However, we
notice that (i) if modality-complete data in the train-
ing set is scarce, a severe overfitting issue may
occur, especially when the generative model is
large (Robb et al., 2020; Schick and Schütze, 2021;
Ojha et al., 2021); (ii) global attention-based (i.e.,
attention over the whole sequence) imputation may
bring unexpected noise since true correspondence
mainly exists between temporally adjacent parallel
signals (Sakoe and Chiba, 1978). Ma et al. (2021)
proposed to leverage unit-length sequential repre-
sentation to represent the missing modality from
the seen complete modality from the input for train-
ing. Nevertheless, such kinds of methods inevitably
overlook the temporal correlation between modal-
ity sequences and only acquire fair performance on
the downstream tasks.

To mitigate these issues, in this paper we present
MM-Align, a novel framework for fast and effec-
tive multimodal learning on randomly missing mul-
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It is really intense which surprises me …

Because he says issue and they think …

There was enough in there for you to …

However, it is this loyalty to the original …

But the two big characters in this movie …

You know going into it or these watching …

Test

Train

(a)

Train

It is really intense which surprises me …

Because he says issue and they think …

There was enough in there for you to …

Test

However, it is this loyalty to the original …

But the two big characters in this movie …

You know going into it or these watching …

(b)

It is really intense which surprises me …

Because he says issue and they think …

There was enough in there for you to …

Train

Test

However, it is this loyalty to the original …

But the two big characters in this movie …

You know going into it or these watching …

(c)

Test

It is really intense which surprises me …

Because he says issue and they think …

There was enough in there for you to …

However, it is this loyalty to the original …

But the two big characters in this movie …

You know going into it or these watching …

Train

(d)

Figure 1: Input patterns of different modality inference
problems. Here visual modality is the victim modal-
ity that may be missing randomly. (a) modalities are
both complete in train and test set; (b) modalities are
both complete in the train set but the victim modality
is completely missing in the test set; (c) victim modal-
ity is missing randomly in the train set but completely
missing in the test set; (d) modalities are missing with
the same probability in train and test set.

timodal sequences. The core idea behind the frame-
work is to imitate some indirect but informative
clues for the paired modality sequences instead of
learning to restore the missing modality directly.
The framework consists of three essential func-
tional units: 1) a backbone network that handles the
main task; 2) an alignment matrix solver based on
the optimal transport algorithm to produce context-
window style solutions only part of whose values
are non-zero and an associated meta-learner to im-
itate the dynamics and perform imputation in the
modality-invariant hidden spaces; 3) a denoising
training algorithm that optimizes and coalesces the
backbone network and the learner so that they can

work robustly on the main task in missing-modality
scenarios. To empirically study the advantages of
our models over current imputation approaches, we
test on two settings of the random missing con-
ditions, as shown in Fig. 1c and Fig. 1d, for all
possible modality pair combinations. To the best of
our knowledge, it is the first work that applies opti-
mal transport and denoising training to the problem
of inference on missing modality sequences. In a
nutshell, the contribution of this work is threefold:

• We propose a novel framework to facilitate the
missing modality sequence inference task, where
we devise an alignment dynamics learning mod-
ule based on the theory of optimal transport and
a denoising training algorithm to coalesce it into
the main network.

• We design a loss function that enables a context-
window style solution for the dynamics solver.

• We conduct comprehensive experiments on three
publicly available datasets from two multimodal
tasks. Results and analysis show that our method
leads to a faster and more accurate inference of
missing modalities.

2 Related Work

2.1 Multimodal Learning
Multimodal learning has raised prevalent concen-
tration as it offers a more comprehensive view
of the world for the task that researchers intend
to model (Atrey et al., 2010; Lahat et al., 2015;
Sharma and Giannakos, 2020). The most funda-
mental technique in multimodal learning is multi-
modal fusion (Atrey et al., 2010), which attempts to
extract and integrate task-related information from
the input modalities into a condensed representative
feature vector. Conventional multimodal fusion
methods encompass cross-modality attention (Tsai
et al., 2018, 2019; Han et al., 2021a), matrix alge-
bra based method (Zadeh et al., 2017; Liu et al.,
2018; Liang et al., 2019) and invariant space regu-
larization (Colombo et al., 2021; Han et al., 2021b).
While most of these methods focus on complete
modality input, many take into account the missing
modality inference situations (Pham et al., 2019;
Wang et al., 2020; Ma et al., 2021) as well, which
usually incorporate a generative network to impute
the missing representations by minimizing the re-
construction loss. However, the formulation under
missing patterns remains underexplored, and that
is what we dedicate to handling in this paper.



2.2 Meta Learning

Meta-learning, or learning to learn, is a hot research
topic that focuses on how to generalize the learning
approach from a limited number of visible tasks
to broader task types. Early efforts to tackle this
problem are based on comparison, such as relation
networks (Sung et al., 2018) and prototype-based
methods (Snell et al., 2017; Qi et al., 2018; Lifchitz
et al., 2019). Other achievements reformulate this
problem as transfer learning (Sun et al., 2019) and
multi-task learning (Pentina et al., 2015; Tian et al.,
2020), which devote to seeking an effective trans-
formation from previous knowledge that can be
adapted to new unseen data, and further fine-tune
the model on the handcrafted hard tasks. In our
framework, we treat the alignment matrices as the
training target for the meta-learner. Combined with
a self-adaptive denoising training algorithm, the
meta-learner can significantly enhance the predic-
tions’ accuracy in the missing modality inference
problem.

3 Method

3.1 Problem Definition

Given a multimodal dataset D =
{Dtrain,Dval,Dtest}, where Dtrain,Dval,Dtest

are the training, validation and test set, respectively.
In the training set Dtrain = {(xm1

i , xm2
i , yi)

n
i=1},

where xmk
i = {xmk

1,1 , ..., x
mk
i,t } are input modality

sequences and m1,m2 denote the two modality
types, some modality inputs are missing with prob-
ability p′. Following Ma et al. (2021), we assume
that modality m1 is complete and the random miss-
ing only happens on modality m2, which we call
the victim modality. Consequently, we can divide
the training set into the complete and missing
splits, denoted as Dtrain

c = {(xm1
i , xm2

i , yi)
nc
i=1}

and Dtrain
m = {(xm1

i , yi)
n
i=nc+1}, where

|Dtrain
m |/|Dtrain| = p′. For the validation and

test set, we consider two settings: a) the victim
modality is missing completely (Fig. 1c), denoted
as “setting A” in the experiment section; b)
the victim modality is missing with the same
probability p′ (Fig. 1d), denoted as “Setting B”,
in line with Ma et al. (2021). We consider two
multimodal tasks: sentiment analysis and emotion
recognition, in which the label yi represents the
sentiment value (polarity as positive/negative
and value as strength) and emotion category,
respectively.
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Figure 2: Overall architecture of our framework. Solid
lines are the forward paths when training on the
modality-complete split and dashed lines are the for-
ward paths when training and testing on the split with
missing modality.

3.2 Overview

Our framework encompasses a backbone network
(green), an alignment dynamics learner (ADL,
blue), and a denoising training algorithm to op-
timize both the learner and backbone network con-
currently. We highlight the ADL which serves as
the core functional unit in the framework. Moti-
vated by the idea of meta-learning, we seek to gen-
erate substitution representations for the missing
modality through an indirect imputation clue, i.e.,
alignment matrices, instead of learning to restore
the missing modality by minimizing the reconstruc-
tion losses. To this end, the ADL incorporates an
alignment matrix solver based on the theory of op-
timal transport (Villani, 2009), a non-parametric
method to capture alignment dynamics between
time series (Peyré et al., 2019; Chi et al., 2021),
as well as an auxiliary neural network to fit and
generate meaningful representations as illustrated
in §3.4.

3.3 Architecture

Backbone Network The overall architecture of
our framework is depicted in Fig. 2. We harness
MulT (Tsai et al., 2019), a fusion network derived
from Transformer (Vaswani et al., 2017) as the
backbone structure since we find a number of its
variants in preceding works acquire promising out-
comes in multimodal (Wang et al., 2020; Han et al.,
2021a; Tang et al., 2021). MulT has two essen-



tial components: the unimodal self-attention en-
coder and bimodal cross-attention encoder. Given
modality sequences xm1 , xm2 (for unimodal self-
attention we have m1 = m2) as model’s inputs, af-
ter padding a special token xm1

0 = xm2
0 =[CLS]

to their individual heads, a single transformer
layer (Vaswani et al., 2017) encodes a sequence
through a multi-head attention (MATT) and feed-
forward network (FFN) as follows:

Q = xm1WQ,K = xm2WK , V = xm2WV (1)

Ẑ21 = MATT(Q,K, V ) + xm1 (2)

Z21 = FFN(Ẑ21) + LN(Ẑ21) (3)

where LN is layer normalization. In our experi-
ments, we leverage this backbone structure for both
input modality encoding and multimodal fusion.

Output Layer We extract the head embeddings
z120 , z

21
0 from the output of the fusion network as

features for regression. The regression network is
a two-layer feed-forward network:

ŷ =W2(tanh(W1[z
12
0 , z

21
0 ] + b1) + b2 (4)

where [·, ·, · · · ] is the concatenation operation. The
mean squared error (MSE) is adopted as the loss
function for the regression task:

Lmain = MSE(ŷ, y) (5)

3.4 Alignment Dynamics Learner (ADL)
The learner has two functional modules, named
as alignment dynamics solver and fitter, as shown
in Fig. 2. It also runs in two functional modes,
namely learning and decoding. ADL works in
learning mode when the model is trained on the
complete data (marked by the solid lines in Fig. 2).
The decoding mode is triggered when one of the
modalities is missing, which happens in the train-
ing time on the missing splits and the entire test
time (marked by the dashed lines in Fig. 2).

Learning Mode In the learning mode, the solver
calculates an alignment matrix which provides the
information about temporal correlations between
the two modality sequences. Similar to the previous
works (Peyré et al., 2019; Chi et al., 2021), this
problem can be formulated as an optimal transport
(OT) task:

min
A

∑
i,j

AijMij (6)

where A is the transportation plan that implies the
alignment information (Peyré et al., 2019) and M

is the cost matrix. The subscript ij represents the
component from the ith timestamp in the source
modality to the j th timestamp in the target modal-
ity. Different from Peyré et al. (2019) and Chi et al.
(2021) which allow alignment between any two
positions of the two sequences, we believe that in
parallel time series, the temporal correlation mainly
exists between signals inside a time-specific “win-
dow” (i.e., |j − i| ≤ W , where W is the window
size) (Sakoe and Chiba, 1978). Additionally, the
cost function should be negatively correlated to the
similarity (distance), as one of the problem settings
in the original OT problem. To realize these basic
motivations, we borrowed the concept of barrier
function (Nesterov et al., 2018) and define the cost
function for our optimal transport problem as:

Mij =

{
1− cos (z1i , z

2
j ), |i− j| ≤ K

∞, |i− j| > K
(7)

where zmi is the representation of modality m at
timestamp i and cos(·, ·) is the cosine value of two
vectors. We will show that such a type of trans-
portation cost function ensures a context-window
style alignment solution and also provide a proof
in appendix C. To solve Eq. (6), a common practice
is to add an entropic regularization term:

min
A

∑
i,j

AijMij − µAij logAij (8)

The unique solution A∗ can be calculated through
Sinkhorn’s algorithm (Peyré et al., 2019):

A∗ = diag(u)Kdiag(v),K = exp (M/µ) (9)

The vector u and v are obtained through the fol-
lowing iteration until convergence:

vt=0 = 1m (10)

ut+1 =
1n
Kvt

, vt+1 =
1n

Kut+1
(11)

After quantifying the temporal correlation into
alignment matrices, we enforce the learner to fit
those matrices so that it can automatically approx-
imate the matrices from the non-victim modality
in the decoding mode. Specifically, a prediction
network composed of a gated recurrent unit (Chung
et al., 2014) and a linear projection layer takes the
shared representations of the complete modality as
input and outputs the prediction value for entries:

T̂ = softmax(Linear(GRU(Z1;ψr);ψp)) (12)



where ψ = {ψr, ψt} is the collection of parameters
in the prediction network. T̂ = {t̂1, t̂2, ..., t̂l} ∈
Rl×(2W+1) are the predictions for A∗ and t̂i ∈
R2W+1 is the prediction for the alignment matrix
segment A∗i,i−W :i+W , i.e., the alignment compo-
nents which span within the radius ofW centered at
current timestamp i. We reckon the mean squared
error (MSE) between “truths" generated from the
solver and predictions to calculate the fitting loss:

Lfit =
1

(2W + 1)l

√√√√∑
i

i+W∑
j=i−W

(A∗ij − T̂ij)2

(13)
where the summation is over the entries within
context windows and we define A∗ij = 0 if j ≤ 0
or j > l for better readability.

Decoding Mode In this mode, the learner be-
haves like a decoder that strives to generate mean-
ingful substitution to the missing modality se-
quences. The learner first decodes an alignment
matrix Â via the fitting network whose parame-
ters are frozen during this stage. Afterward, the
imputation of the missing modality at position j
can be obtained through the linear combination of
alignment matrices and visible sequences:

ẑ2j =

j+W∑
i=j−W

Âijz
1
i (14)

We concatenate all these vectors to construct the im-
putation for the missing modality Ẑ2 in the shared
space:

Ẑ2 = [ẑ20 , ẑ
2
1 , ẑ

2
2 , ..., ẑ

2
l ] (15)

where ẑ20 is reassigned by the initial embedding of
the [CLS] token. The imputation results together
with the complete modality sequences are then fed
into the fusion network (Eq. (1) ~(3)) to continue
the subsequent procedure.

3.5 Denoising Training
Inspired by previous work in data imputation (Ky-
ono et al., 2021), we design a denoising training
algorithm to promote prediction accuracy and im-
putation quality concurrently, as shown in Alg. 1.
In the beginning, we warm up the model on the
complete split of the training set. We utilize two
transformer encoders to project input modality se-
quences xm1 and xm2 into a shared feature space,
denoted as Z1 and Z2. Following Han et al.
(2021b), we apply a contrastive loss (Chen et al.,

Algorithm 1: Denoising Training
Input: Dtrain = {Dtrainc ,Dtrainm }, learning rate

ηfit, ηmain, parameters of the backbone
network θ = {θenc, θfu, θout} and the
alignment dynamics learner ψ = {ψd}, batch
size nb, λ

// Warm-up Stage
1 for each warm-up epoch do
2 for each B = {∪nb

i=1(x
m1
i , xm2

i , yi)} ⊂ Dtrainc

do
3 Compute Lmain,Lcon by Eq. (1)~(5), (16),

(17)
4 θ ← θ − ηmain∇θ(Lmain + λLcons)
5 end
6 end
7 for each training epoch do

// Train on the complete split

8 for each B = {∪nb
i=1(x

m1
i , xm2

i , yi)} ⊂ Dtrainc

do
9 Compute A∗ by Sinkhorn algorithm

according to Eq. (7)~(11)
10 Compute Lfit according to (13);

// Tune the dynamics learner
11 ψ ← ψ − ηfit∇ψLfit
12 Compute Lmain,Lcon according to

Eq. (1)~(5), (16), (17)
// Tune the backbone network

13 θ ← θ − ηmain∇θ(Lmain + λLcons)
14 end

// Train on the missing split

15 for each B = {∪nb
i=1(x

m1
i , yi)} ⊂ Dtrainm do

16 Impute the representation sequences of the
missing modality Ẑ2

i by Eq. (14) (15) and
then Lmain by Eq. (1)~(5), (16), (17)
θ ← θ − ηmain∇θLmain

17 end
18 end

2020) as the regularization term to force a similar
distribution of the generated vectors Z1 and Z2:

Lcon = − 1

Nb

∑
i

log
φ(Z1

i , Z
2
i )∑

j φ(Z
1
i , Z

2
j )

(16)

where the summation is over the whole batch of
size Nb and φ is a score function with an annealing
temperature τ as the hyperparameter:

φ(s, t) = exp (sT t/τ) (17)

Next, the denoising training loop proceeds to cou-
ple the ADL and backbone network. In a single
loop, we first train the alignment dynamics learner
(line 9~11), then we train the backbone network on
the complete split (line 12~13) and missing split
(line 15~17). Since the learner training process
uses the modality-complete split, and we found in
experiments (§4.4) that model’s performance stays
nearly constant if the tuning for the learner and the
main network occurs concurrently on every batch,



we merge them into a single loop (line 8~14) to
reduce the redundant batch iteration.

4 Experiments

4.1 Datasets

We utilize CMU-MOSI (Zadeh et al., 2016) and
CMU-MOSEI (Zadeh et al., 2018) for sentiment
prediction, and MELD (Poria et al., 2019) for emo-
tion recognition, to create our evaluation bench-
marks. The statistics of these datasets and pre-
processing steps can be found in appendix A. All
these datasets consist of three parallel modality
sequences—text (t), visual (v) and acoustic (a). In
a single run, we extract a pair of modalities and
select one of them as the victim modality which
we then randomly remove p′ = 1 − p of all its
sequences. Here p is the surviving rate for the
convenience of description. We preprocess test
sets as Fig. 1c (remove all victim modality sam-
ples) in setting A and Fig. 1d (randomly remove
p′ of victim modality samples) in setting B. Set-
ting B inherits from Ma et al. (2021) while the
newly added setting A is considered as a comple-
mentary test case of more severe missing situations,
which can compare the efficacy of pure imputation
methods and enrich the connotation of robust in-
ference. We run experiments with two randomly
picking p ∈ {10%, 50%}— dissimilar to Ma et al.
(2021), we enlarge the gap between two p values to
strengthen the distinction between these settings.

4.2 Baselines and Evaluation Metrics

We compare our models with the following relevant
and strong baselines:

• Supervised-Single trains and tests the backbone
network on a single complete modality, which
can be regarded as the lower bound (LB) for all
the baselines.

• Supervised-Double trains and tests the back-
bone network on a pair of complete modalities,
which can be regarded as the upper bound (UB).

• MFM (Tsai et al., 2018) learns modality-specific
generative factors that can be produced from
other modalities at training time and imputes the
missing modality based on these factors at test
time.

• SMIL (Ma et al., 2021) imputes the sequential
representation of the missing modality by linearly

adding clustered center vectors with weights
from learned Gaussian distribution.

• Modal-Trans (Wang et al., 2020; Tang et al.,
2021) builds a cyclic sequence-to-sequence
model and learns bidirectional reconstruction.

The characteristics of all these models are listed
for comparison in Table 1. Previous work relies
on either a Gaussian generative or sequence-to-
sequence formulation to reconstruct the victim
modality or its sequential representations, while
our model adopts none of these architectures. We
run our models under 5 different splits and report
the average performance. The training details can
be found in appendix B.

We compare these models on the following met-
rics: for the sentiment prediction task, we employ
the mean absolute error (MAE) which quantifies
how far the prediction value deviates from the
ground truth, and the binary classification accuracy
(Acc-2) that counts the proportion of samples cor-
rectly classified into positive/negative categories;
for emotion recognition task we compare the aver-
age F1 score over seven emotional classes.

Model Generative
Gaussian Recon Seq2Seq

MFM 7 3 3
SMIL 3 3 7

Modal-Trans 7 3 3
MM-Align (Ours) 7 7 7

Table 1: Model characteristics.

4.3 Results
Due to the particularities of three datasets, We re-
port the results of the smallest p values when most
of these baselines yield 1% higher results than the
lower bound in Table 2, 3 and 4. From them we
mainly have the following observations:

First, Compared with lower bounds, in setting
A where models are tested with only the non-
victim modality, our method gains 6.6%~9.3%,
2.4%~4.9% accuracy increment on the CMU-
MOSI and CMU-MOSEI dataset and 0.6%~1.7%
F1 increment on the MELD dataset (except A→V
and A→T). Besides, MM-Align significantly out-
performs all the baselines in most settings. These
facts indicate that leveraging the local alignment in-
formation as indirect clues facilitates to performing
robust inference on missing modalities.

Second, model performance varies greatly es-
pecially when the non-victim modality alters. It



Method
T→ V V→A A→T

Setting A Setting B Setting A Setting B Setting A Setting B
MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑

LB 1.242 68.6 1.242 68.6 1.442 46.4 1.442 46.4 1.440 42.2 1.440 42.2
UB 1.019 77.7 1.019 77.7 1.413 57.8 1.413 57.8 1.081 75.8 1.081 75.8
MFM 1.103 71.0 1.093 73.2 1.456 43.5 1.452 43.9 1.477 42.2 1.454 42.2
SMIL 1.073 74.2 1.052 75.3 1.442 45.9 1.438 46.5 1.447 43.3 1.439 45.4
Modal-Trans 1.052 75.5 1.041 75.8 1.428 49.4 1.425 49.7 1.435 48.7 1.432 48.9
MM-Align 1.028\ 76.9\ 1.027 77.0 1.416\ 52.0\ 1.411\ 53.1\ 1.426 51.5\ 1.414\ 52.0\

V→ T A→V T→A
Setting A Setting B Setting A Setting B Setting A Setting B

MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑

LB 1.442 46.3 1.442 46.3 1.440 42.2 1.440 42.2 1.242 68.6 1.242 68.6
UB 1.019 77.7 1.019 77.7 1.413 57.8 1.413 57.8 1.081 75.8 1.081 75.8
MFM 1.479 42.2 1.429 51.9 1.454 42.2 1.455 42.2 1.078 72.9 1.082 73.7
SMIL 1.448 44.2 1.447 43.3 1.442 45.9 1.438 47.3 1.060 75.5 1.089 74.9
Modal-Trans 1.429 50.3 1.420 53.1 1.439 47.4 1.442 48.3 1.052 75.2 1.073 74.3
MM-Align 1.415\ 52.7\ 1.410 53.4 1.427\ 49.9\ 1.426\ 50.7\ 1.028\ 76.7\ 1.032\ 76.6\

Table 2: Results on the CMU-MOSI dataset (p = 10). The reported results are the average of five runs using
the same set of hyperparameters and different random seeds. “A→ B” means the imputation from the complete
modality A to the missing modality B at the test time. \: results of our model are significantly better than the
highest baselines with p-value < 0.05 based on the paired t-test.

Method
T→ V V→A A→T

Setting A Setting B Setting A Setting B Setting A Setting B
MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑

LB 0.687 77.4 0.687 77.4 0.836 61.3 0.836 61.3 0.851 62.9 0.851 62.9
UB 0.615 81.3 0.615 81.3 0.707 79.5 0.707 79.5 0.613 80.9 0.613 80.9
MFM 0.658 79.2 0.645 80.0 0.827 61.5 0.818 61.9 0.836 64.3 0.830 63.6
SMIL 0.680 78.3 0.648 78.5 0.819 64.3 0.816 63.6 0.840 62.9 0.839 63.0
Modal-Trans 0.645 79.6 0.647 79.6 0.818 64.7 0.815 65.4 0.827 64.9 0.823 65.6
MM-Align 0.637\ 80.8\ 0.638\ 81.1\ 0.811\ 65.9\ 0.813 66.2\ 0.824 65.3 0.817 66.3

V→ T A→V T→A
Setting A Setting B Setting A Setting B Setting A Setting B

MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑

LB 0.836 61.3 0.836 61.3 0.851 62.9 0.851 62.9 0.687 77.4 0.687 77.4
UB 0.615 81.3 0.615 81.3 0.707 79.5 0.707 79.5 0.613 80.9 0.613 80.9
MFM 0.821 62.0 0.817 61.7 0.842 62.7 0.828 63.9 0.658 79.1 0.645 79.7
SMIL 0.820 63.1 0.816 63.5 0.838 63.2 0.842 62.4 0.684 78.5 0.684 77.4
Modal-Trans 0.817 65.1 0.814 65.7 0.832 64.6 0.823 65.1 0.643 79.9 0.645 79.4
MM-Align 0.811\ 66.2\ 0.806\ 66.9\ 0.822\ 65.4\ 0.818 65.7 0.635\ 81.0\ 0.637\ 80.9\

Table 3: Results on the CMU-MOSEI dataset (p = 10). Notations share the same meaning as the last table.

has been pointed out that three modalities do not
play an equal role in multimodal tasks (Tsai et al.,
2019). Among them, the text is usually the predom-
inant modality that contributes majorly to accuracy,
while visual and acoustic have weaker effects on
the model’s performance. From the results, it is
apparent that if the source modality is predominant,
the model’s performance gets closer to or even
surpasses the upper bound, which reveals that the
predominant modality can also offer richer clues to
facilitate the dynamics learning process than other
modalities.

Third, when moving from setting A to setting
B by adding parallel sequences of the non-victim
modality in the test set, results incline to be con-
stant in most settings. Intuitively, performance
should become better if more parallel data are

provided. However, as most of these models
are unified and must learn to couple the restora-
tion/imputation module and backbone network, the
classifier inevitably falls into the dilemma that it
should adapt more to the true parallel sequences or
the mixed sequences since both are included pat-
terns in a training epoch. Hence sometimes setting
B would not perform evidently better than setting
A. Particularly, we find that when Modal-Trans en-
counters overfitting, MM-Align can alleviate this
trend, such as T→A in all three datasets.

Additionally, MM-Align acquires a 3~4× speed-
up in training. We record the time consumption and
provide a detailed analysis in appendix D and E.
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Figure 3: An example from CMU-MOSI dataset. The text below the time axis is aligned to the starting time of its
pronunciation. The pictures are the central frame of each cluster that lasts the same time interval. The dashed lines
connect each word with the frames of its appearance in the video.

Method A B A B A B
T→ V V→A A→T

LB 54.0 54.0 31.3 31.3 31.3 31.3
UB 55.8 55.8 32.1 32.1 55.9 55.9
MFM 54.0 53.9 31.3 31.3 31.3 43.1
SMIL 54.4 54.2 31.3 31.3 31.3 43.5
Modal-Trans 55.0 54.8 31.3 31.4 31.5 44.4
MM-Align 55.7 55.7 31.9 31.9\ 31.5 45.5

V→ T A→V T→A

LB 31.3 31.3 31.3 31.3 54.0 54.0
UB 55.8 55.8 32.1 32.1 55.9 55.9
MFM 31.4 43.6 31.3 31.3 54.2 54.1
SMIL 31.4 43.9 31.3 31.3 54.5 54.2
Modal-Trans 31.6 44.2 31.3 31.3 55.0 54.8
MM-Align 32.3 45.4 31.3 32.0 55.6 55.7

Table 4: Results on MELD (p = 50%). Notations share
the same meaning as the last table.

Settings T→ V V→A A→T
MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑

MM-Align 1.028 76.9 1.416 52.0 1.426 51.5
w/o Lcon 1.037 76.7 1.422 51.8 1.432 49.5
w/o Lfit 1.085 72.2 1.437 47.3 1.448 44.6
w/o SI 1.033 76.6 1.425 51.9 1.419 51.8

Table 5: Results of ablation experiments on CMU-
MOSI dataset.

4.4 Ablation Study

We run our model under the following ablative set-
tings on three randomly chosen modality pairs from
the CMU-MOSI dataset in setting A: 1) removing
the contrastive loss which serves as the invariant
space regularizer; 2) removing the fitting loss so
that the ADL only generates a random alignment
matrix when running in the inference mode; 3)
separating the single iteration (SI) over the com-
plete split that concurrently optimizes the fitter and
backbone network in Alg. 1 into two independent
loops. The results of these experiments are dis-
played in Table 5. We witness a performance drop
after removing the contrastive loss, and the drop is
higher if we disable the ADL, which implies the

benefits from the alignment dynamics-based gener-
alization process on the modality-invariant hidden
space. Finally, merging two optimization steps will
not cause performance degradation. Therefore it is
more time-efficient to design the denoising loop as
Alg. 1 to prevent an extra dataset iteration.

5 Analysis

Impact of the Window Size To further explore
the impact of window size, we run our models by in-
creasing window size from 4 to 256 which exceeds
the lengths of all sentences so that all timestamps
are enclosed by the window. The variation of MAE
and F1 in this process is depicted in Fig. 4. There
is a dropping trend (MAE increment or F1 decre-
ment) towards both sides of the optimal size. We
argue that it is because when the window expands,
it is more probable for the newly included frame to
add noise rather than provide valuable alignment
information. In the beginning, the marginal benefit
is huge so the performance almost keeps climb-
ing. The optimal size is reached when the marginal
benefit decreases to zero.
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Figure 4: Performance variation under different win-
dow sizes. The optimal sizes for the three pairs are 9,
10, 10.

To explain this claim, we randomly select a raw
example from the CMU-MOSI dataset. As shown



in Fig. 3, the textual expression does not advance in
a uniform speed. From the second to the third word
1.80 seconds elapses, while the last eight words are
covered in only 2.53 seconds. Intuitively we can
assume all the frames in the video that span across
the pronunciation of a word are causally correlated
with that word so that the representation mappings
from the word to these frames are necessary and
can benefit the downstream tasks. For example, for
the word “I” present at t = 1 in text, it can benefit
the timestamps until at least t = 5 in the visual
modality. Note that we may overlook some poten-
tial advantages that could not be easily justified
in this way and possess different effect scope, but
we deem that those advantages would like-wisely
disappear as the window size keeps growing.

6 Conclusion

In this paper, we propose MM-Align, a fast and
efficient framework for the problem of missing
modality inference. It applies the theory of optimal
transport to learn the alignment dynamics between
temporal modality sequences for the inference in
the case of missing modality sequences. Experi-
ments on three datasets of demonstrate that MM-
Align can achieve much better performance and
thus reveal the higher robustness of our method.
We hope that our work can inspire other research
works in this field.

Limitations

Although our model has successfully tackled the
two missing patterns, it may still fail in more com-
plicated cases. For example, if missing happens
randomly in terms of frames (some timestamps
within a unimodal clip) instead of instances (the
entire unimodal clip), then our proposed approach
could not be directly used to deal with the problem,
since we need at least several instances of complete
parallel data to learn how to map from one modality
sequences to the other. However, we believe these
types of problems can still be properly solved by
adding some mathematical tools like interpolation,
etc. We will consider this idea as the direction of
our future work.

Besides, the generalization capability of our
framework on other multimodal tasks is not clear.
But at least we know the feasibility highly depends
on the types of target tasks, especially the input
formats—they have to be parallel sequences so
that temporal alignment information between these

sequences can be utilized. The missing patterns
should be similar to what we described in section
2, as we discussed in the first paragraph.
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A Dataset Statistics and Preprocessing

The statistics of the two datasets are listed in Ta-
ble 6. MELD is originally a dialogue emotion
detection dataset, where each dialogue contains
many sentences. Since we want to make it compat-
ible with tested models, we extract all sentences
and remove those that lack at least one modality
(text, visual, acoustic). Following previous work,
for MOSI and MOSEI we use COVAREP (Degot-
tex et al., 2014) and P2FA (Yuan et al., 2008) to
respectively extract visual and acoustic features.
For MELD, we use ResNet-101 (He et al., 2016)
and Wave2Vec 2.0 (Baevski et al., 2020) to extract
visual and acoustic features.

Dataset Train Dev Test Total
CMU-MOSI 1284 229 686 2299

CMU-MOSEI 16326 1871 4859 22856
MELD 9988 1108 2610 13706

Table 6: Statistics of three datasets we use for experi-
ments.

B Hyperparameter Search

All these models are trained on a single RTX
A6000 GPU. We use Glove (Pennington et al.,
2014) 300d to initialize the embedding of all the
tokens. We perform a grid search for part of the
hyperparameters as Table 7.

HP-name CMU-MOSI CMU-MOSEI MELD
ηmain 1e-3,2e-3 1e-4 1e-3,1e-4
ηfit 1e-4,5e-4,1e-3 2e-5,1e-4 5e-4,5e-5

attn_dim 32,40 32,40 32,64
num_head 4,8 4,8 4,8

nb 32 32 32
warm-up 1,2 1,2 1
patience 10 5 5

λ 0.05,0.1 0.05,0.1 0.05,0.1
K 4,5,8,9,10 4,5,6,7,8 3,4,5,8

Table 7: The hyperparameter search for three datasets

Figure 5: The average absolute entry values of the pro-
duced alignment matrices (window size=8).

C OT Solution

C.1 Visualization of Solutions

To verify our statement in Section 3.4 that the
learned dynamics matrices are in the window style,
we calculate and visualize the mean absolute values
for each entry. Due to various sentence lengths, the
values are averaged over all matrices whose corre-
sponding input sequences’ lengths are no smaller
than 20. We visualize the heat map of the average
entry values in Fig. 5. It can be clearly viewed that
the values outside the window stay nearly 0 (black
squares), implying that they are always close to 0.

C.2 Proof of solution pattern

We formalize the window style solution in mathe-
matical language.

Theorem 1. Given the optimal transport formula-
tion as Eq. (6)~ (8). All the entries a∗ij that satisfy
|i− j| > W in the optimal transport plan A∗ are
0, where W is the window size.

Proof. We use the proof by contradiction. Assume
there is an entry Ai′j′ in A∗ outside the window,
i.e., |i′−j′| > W , andAi′j′ > 0. Then we have the
cost C =

∑
A∗ijMij ≥ Ai′j′ ×Mi′j′ → ∞. It is

easy to find another path i′ → k1 → k2 → · · · →
kn → j′, where max(|i′ − k1|, |kt − kt−1|, |j′ −
kn|) ≤ W . In this new transport plan A′ simply
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we have
∑
A′ijMij <∞, which means A∗ is not

the optimal transport plan and contradicts our basic
assumption. Hence, by applying this kind of cost
function we can obtain a window-style solution.

D Complexity Analysis

We conduct a simple analysis of the computational
complexity of MM-Align and Modal-Trans. We
are concern about the stage that occupies the most
time in one training epoch—training on the missing
split when the ADL works in the decoding mode.
Suppose the average sequence length, the embed-
ding dimension, the window size are l, d and w
(here w stands for the value of 2W + 1 for sim-
plicity), respectively. The complexity (number of
multiplication operations) of the alignment dynam-
ics fitter is the summation of the complexity from
GRU and the linear projection layer:

O(c1ld
2) +O(c2wld) ≈ O(ld2) (18)

The time spent on the alignment dynamics solver
can be ignored since it is a non-parametric module
so that no gradients are back-propagated through
it and the number of iterations required for conver-
gence is very little (about 5). The complexity of the
transformer decoder is the summation of the com-
plexity from encoder-decoder attention, encoder &
decoder self-attention, and linear projections:

O(c1l
3d)+O(c2ld

2)+O(c3l
2d) ≈ O(l3d) > O(ld2)

(19)
The last inequality is an empirical conclusion, since
in our experiments l ≈ 10 while d = 32 in most
situations.

Particularly, the complexity of encoder-decoder
attention can be calculated by the summation of l
times individual attention in the decoding proce-
dure:

O(

l∑
i=1

(ild+ ild)) = O((1 + l)l × ld) ≈ O(l3d)

(20)
It should be highlighted that the computation only
counts the number of multiplications into account.
Since sequence-to-sequence decoding can not be
paralleled, it takes more time to train.

E Inference Speed

As we mentioned before, the most competitive
baseline, Modal-Trans, is a variant of the most ad-
vanced sequence-to-sequence model. Apart from

the performance improvement, MM-Align also
speeds up the training process. To show this, we
run and calculate the average batch training time
between MM-Align and Modal-Trans. As shown
in Table 8, MM-Align achieves over 3× training
acceleration over Modal-Trans but can produce se-
quential imputation of higher quality. We also pro-
vide an estimation for the computational complex-
ity in the appendix.

Model CMU-MOSI CMU-MOSEI MELD

Modal-Trans 0.811 1.270 0.954
MM-Align (window size=8) 0.278 0.340 0.312

Table 8: The average training time of the imputation
module (seconds) per batch.

F Additional Results

In the main text, we present the results of the min-
imum p in both settings. Here we also provide
the results when tested in setting A for the two
preservation in Table 9, 10 and 11.



Method
T→ V V→A A→T

10% 50% 10% 50% 10% 50%
MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑

Supervised-Single (LB) 1.242 68.6 1.242 68.6 1.442 46.4 1.442 46.4 1.440 42.2 1.440 42.2
Supervised-Both (UB) 1.019 77.7 1.019 77.7 1.413 57.8 1.413 57.8 1.081 75.8 1.081 75.8
MFM 1.103 71.0 1.098 73.1 1.456 43.5 1.471 42.2 1.477 42.2 1.451 42.7
SMIL 1.073 74.2 1.060 75.0 1.442 45.9 1.471 42.7 1.447 43.3 1.473 45.3
Modal-Trans 1.052 75.5 1.031 75.9 1.428 49.4 1.417 51.1 1.435 48.7 1.415 53.7
MM-Align (Ours) 1.028 76.9 1.015 77.1 1.416 52.0 1.410 53.2 1.426 51.5 1.414 54.9

V→ T A→V T→A
10% 50% 10% 50% 10% 50%

MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑

Supervised-Single (LB) 1.442 46.4 1.442 46.4 1.440 42.2 1.440 42.2 1.242 68.6 1.242 68.6
Supervised-Both (UB) 1.019 77.7 1.019 77.7 1.413 57.8 1.413 57.8 1.081 75.8 1.081 75.8
MFM 1.446 45.5 1.429 48.3 1.454 42.2 1.467 42.2 1.078 72.9 1.083 73.3
SMIL 1.448 44.2 1.461 46.1 1.442 45.9 1.441 46.4 1.060 75.5 1.091 74.9
Modal-Trans 1.429 50.1 1.398 54.2 1.439 47.4 1.431 52.5 1.052 75.2 1.028 76.7
MM-Align (Ours) 1.415 52.7 1.399 55.4 1.427 49.9 1.413 56.6 1.028 76.7 1.025 76.7

Table 9: CMU-MOSI results in setting A (Fig. 1c), where p = 10% and 50%.

Method
T→ V V→A A→T

10% 50% 10% 50% 10% 50%
MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑

Supervised-Single (LB) 0.687 77.4 0.687 77.4 0.836 61.3 0.836 61.3 0.851 62.9 0.851 62.9
Supervised-Both (UB) 0.615 81.3 0.615 81.3 0.707 79.5 0.707 79.5 0.613 80.9 0.613 80.9
MFM 0.658 79.2 0.641 78.7 0.827 60.7 0.816 62.4 0.830 64.5 0.836 63.5
SMIL 0.680 78.3 0.654 78.5 0.819 64.3 0.815 64.6 0.840 62.9 0.835 63.5
Modal-Trans 0.645 79.6 0.641 79.5 0.818 64.7 0.814 64.7 0.827 64.9 0.820 64.7
MM-Align (Ours) 0.637 80.8 0.623 81.0 0.811 65.9 0.808 66.1 0.824 65.3 0.817 65.7

V→ T A→V T→A
10% 50% 10% 50% 10% 50%

MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑ MAE↓ Acc-2↑

Supervised-Single (LB) 0.836 61.3 0.836 61.3 0.851 62.9 0.851 62.9 0.687 77.4 0.687 77.4
Supervised-Both (UB) 0.615 81.3 0.615 81.3 0.707 79.5 0.707 79.5 0.613 80.9 0.613 80.9
MFM 0.821 62.0 0.820 64.5 0.842 62.7 0.835 62.4 0.658 79.1 0.659 78.9
SMIL 0.820 63.1 0.817 63.5 0.838 63.2 0.829 64.2 0.684 78.5 0.658 79.4
Modal-Trans 0.817 64.9 0.815 64.9 0.832 64.6 0.825 64.7 0.643 79.9 0.648 79.7
MM-Align (Ours) 0.812 65.2 0.807 66.9 0.822 65.4 0.819 66.0 0.635 81.0 0.626 80.9

Table 10: CMU-MOSEI results in Setting A (p = 10% and 50%).

Method 10% 50% 10% 50% 10% 50%
T→ V V→A A→T

Supervised-Single (LB) 54.0 54.0 31.3 31.3 31.3 31.3
Supervised-Both (UB) 55.8 55.8 32.1 32.1 55.9 55.9
MFM 54.0 54.0 31.3 31.3 31.3 43.1
SMIL 54.1 54.4 31.3 31.3 31.3 43.5
Modal-Trans 54.2 55.0 31.3 31.4 31.5 44.4
MM-Align (Ours) 54.2 55.7 31.3 31.9 31.5 45.5

V→ T A→V T→A

Supervised-Single (LB) 31.3 31.3 31.3 31.3 54.0 54.0
Supervised-Both (UB) 55.8 55.8 32.1 32.1 55.9 55.9
MFM 31.4 43.6 31.3 31.3 54.2 54.1
SMIL 31.4 43.9 31.3 31.3 54.5 54.2
Modal-Trans 31.6 44.2 31.3 31.3 55.0 54.8
MM-Align (Ours) 32.3 45.4 31.3 32.0 55.6 55.7

Table 11: Results on MELD (p = 10% and 50%) in
setting A.


