
Beyond Memorization: The Challenge of Random Memory Access
in Language Models

Tongyao Zhu1,2 Qian Liu1 Liang Pang3 Zhengbao Jiang4

Min-Yen Kan2 Min Lin1

1Sea AI Lab 2National University of Singapore
3Institute of Computing Technology, CAS 4Carnegie Mellon University

tongyao.zhu@u.nus.edu {liuqian,linmin}@sea.com
pangliang@ict.ac.cn zhengbaj@cs.cmu.edu knmnyn@nus.edu.sg

Abstract

Recent developments in Language Models
(LMs) have shown their effectiveness in NLP
tasks, particularly in knowledge-intensive tasks.
However, the mechanisms underlying knowl-
edge storage and memory access within their
parameters remain elusive. In this paper, we
investigate whether a generative LM (e.g., GPT-
2) is able to access its memory sequentially
or randomly. Through carefully-designed syn-
thetic tasks, covering the scenarios of full recita-
tion, selective recitation and grounded ques-
tion answering, we reveal that LMs manage
to sequentially access their memory while en-
countering challenges in randomly accessing
memorized content. We find that techniques in-
cluding recitation and permutation improve the
random memory access capability of LMs. Fur-
thermore, by applying this intervention to real-
istic scenarios of open-domain question answer-
ing, we validate that enhancing random access
by recitation leads to notable improvements in
question answering. The code to reproduce our
experiments can be found at https://github.
com/sail-sg/lm-random-memory-access.

1 Introduction

Language models (LMs) have recently showcased
outstanding abilities in NLP tasks with a large
amount of memory stored in their parameters
(Brown et al., 2020; Ouyang et al., 2022). Through
pre-training on large text corpora, LMs memorize
factual knowledge about the world (Zhou et al.,
2023). Consequently, they show great performance
in knowledge-intensive tasks (Petroni et al., 2021)
such as open-domain question answering (Kamal-
loo et al., 2023; Ziems et al., 2023; Mallen et al.,
2023). There is a growing interest in consider-
ing LMs as knowledge bases (Wang et al., 2021;
Heinzerling and Inui, 2021; Petroni et al., 2019;
Cao et al., 2021; AlKhamissi et al., 2022). De-
spite the recent advances in applying LMs to solve
downstream tasks, the fundamentals of how LMs

Out: 20 miles

Challenge 3: Grounded Question Answering

Challenge 1: Full Recitation

In: According to document #2033, from what
distance could the artificial thunder be heard?

In: What is the content of document #2033? Document ID: #1334

Content:
Solar energy is radiant light and heat from
the Sun harnessed using a range of ever-
evolving technologies such as solar heating,
photovoltaics, solar thermal energy, solar
architecture and artificial …

Document ID: #4686

Content:
The domestic dog (Canis lupus familiaris or
Canis familiaris) is a domesticated canid
which has been selectively bred for millenni
for various behaviors, sensory capabilities,
and physical attributes.

Document ID: #2033

Content:
[0] He produced artificial lightning, with
discharges consisting of millions of volts and
up to 135 feet long. [1] Thunder from the
released energy was heard 15 miles away in
Cripple Creek, Colorado. [2] People walking
along the ……

Out: [0] He produced artificial lightning …

In: What is Sentence [1] of document #2033?
Out: [1] He produced artificial lightning …

Language Model

Write to Memory
Access Memory

Challenge 2: Selective Recitation

Figure 1: A illustration of our investigation of mem-
ory access pattern in language models. We find that
the model accesses its parametric memory largely in a
sequential manner, and faces difficulty in randomly ac-
cessing the content in the middle of memorized strings.

store knowledge and access memory in their pa-
rameters remains a subject of ongoing research and
intrigue (Tirumala et al., 2022; Zhu and Li, 2023;
Allen-Zhu and Li, 2023; Berglund et al., 2023).

In this paper, we draw inspiration from memory-
accessing patterns observed in computer systems to
explore whether LMs can access their parametric
memory in a sequential or random manner. We
extrapolate these concepts to investigate LMs and
delineate two memory access patterns: sequential
memory access means that the model starts from
the beginning of a memorized sequence, progress-
ing through the content in consecutive order. Con-
versely, random memory access denotes that the
model can commence from any location within the
memorized content, without needing to start from
the beginning. For instance, reciting a memorized
poem line by line is considered sequential access,
while directly starting from the third line involves
random access.

With these concepts, we design experiments with
both synthetic and real data to evaluate the lan-
guage model’s ability to perform sequential or ran-
dom access to memorized content, as illustrated
in Figure 1. We limit our study to decoder-only
language models due to their increasing popularity

1

ar
X

iv
:2

40
3.

07
80

5v
2

 [
cs

.C
L

]
 1

3
M

ar
 2

02
4

https://github.com/sail-sg/lm-random-memory-access
https://github.com/sail-sg/lm-random-memory-access

and capability (Radford et al., 2019; Brown et al.,
2020; Touvron et al., 2023a,b; Jiang et al., 2023).
We first ask the model to memorize key–value pairs
of various types and show that the model is able to
sequentially read memorized content to a satisfying
degree. Next, we test the model’s random access
ability by training it to recite a sentence or find an
answer to a question in a memorized passage. In
such tasks, the model’s performance falls drasti-
cally when it is required to extract a span in the
middle of a passage, revealing its incapability to
randomly access its memory.

Given that language models struggle to perform
random access to their memory, we pursue two
means for mitigation: recitation at inference time,
and permutation during training. Recitation en-
ables the model to sequentially read its paramet-
ric memory first before performing a task. The
model’s performance can thus be enhanced by uti-
lizing the recited content in its context window. We
also show that simply permuting sentences in a
passage during training to memorize content also
improves performance.

We finally verify the challenge of random ac-
cess through a case study on open-domain question
answering. We reduce the difficulty of the task
by allowing the model to memorize passages with
ground-truth answers, yet we find that the model
benefits the most from such memorization when
it is allowed to recite a relevant passage and then
answer the question. Overall, we make several con-
tributions to further understand the memory access
mechanisms of decoder-only language models:

• We show that language models can access
their memory sequentially and can reproduce
memorized content. In contrast, they en-
counter significant challenges in random mem-
ory access.

• We find solutions to mitigate the challenge of
random access by permuting memorized con-
tent or explicitly reciting the memory before
performing tasks.

• We demonstrate the effect of poor random
memory access ability in open-domain ques-
tion answering, showing that the challenge
could have broader implications on the appli-
cations of language models.

2 Related Work

Memorization in Language Models. Large lan-
guage models store a considerable amount of
knowledge in their parameters (Petroni et al., 2019;
Heinzerling and Inui, 2021). They memorize useful
knowledge such as facts and commonsense (Zhao
et al., 2023), but also sensitive personal informa-
tion such as emails or phone numbers (Carlini et al.,
2020; Huang et al., 2022). Existing approaches to
understanding memorization include fine-grained
analysis to locate the neuron that is associated with
the knowledge (Meng et al., 2022; Liu et al., 2024)
or macro analysis to understand the overall dynam-
ics of memorization (Tirumala et al., 2022; Spe-
icher et al., 2024). In this study, we do not aim
to analyze the mechanisms of writing to language
model’s memory. Instead, we consider the lan-
guage model as a black-box memory store and fo-
cus mainly on how the model accesses its memory.

Knowledge Injection. Our investigation requires
writing new content to the model’s parametric mem-
ory. There are mainly two ways to perform such
knowledge injection without changing the model
architecture (Ovadia et al., 2024; Balaguer et al.,
2024): fine-tuning or retrieval augmentation. Re-
trieval augmentation (Lewis et al., 2020; Shi et al.,
2023) retrieves relevant information and puts it into
the model’s context while fine-tuning directly up-
dates the model parameters. As the goal of our
study is to investigate how the model accesses its
parametric memory after writing to the memory,
we choose finetuning as the method for introducing
new knowledge to the model.

Knowledge Retrieval. Previous works have
shown that using prompts can effectively re-
trieve knowledge stored in large language mod-
els (Bouraoui et al., 2019; Jiang et al., 2021; Wang
et al., 2021). We follow earlier work to use prompts
to query the model to access and regenerate memo-
rized content. However, a notable difference is that
prior work focuses on finding optimised methods
to elicit the model’s knowledge obtained during
pretraining (Youssef et al., 2023; Liu et al., 2023),
while we directly use unique keys for memorizing
and retrieving content.

Language Model as a Document Index. We
consider the language model as a memory store for
passages, which is related to the recent advances
in adopting a language model as an index for doc-
ument storage and retrieval (Metzler et al., 2021;

2

Tay et al., 2022; Wang et al., 2023; Zeng et al.,
2023). In such indexes, each document is associ-
ated with a document identifier (ID), which could
be keywords (Ren et al., 2023; Bevilacqua et al.,
2022; Lee et al., 2023b,a) or numbers (Tay et al.,
2022; Wang et al., 2023; Zhuang et al., 2022; Zhou
et al., 2022). We also follow the practice and assign
an ID to each document for storing and retrieving
the documents. However, we do not ask the model
to retrieve a relevant ID to a question. Instead, we
provide the ID in the input, and investigate the pos-
sibility of sequentially or randomly accessing the
corresponding document content.

3 Investigating Sequential and Random
Memory Access

In this section, we investigate the ability of a lan-
guage model to sequentially or randomly access
its memory stored in the parameters. First, we pro-
vide formulations of language models serving as
a memory bank of passages (§3.1). Within this
framework, we define sequential memory access
as the process of starting from the beginning of a
memorized passage and progressively generating
subsequent content. In contrast, we conceptualize
random memory access as the model’s ability to
initiate recall from any chosen location in a memo-
rized passage and accurately regenerate the subse-
quent content. Based on these definitions, we first
investigate the model’s sequential memory access
ability by requiring it to recite full passages word
by word (§3.2). Next, we test the random memory
access ability of the model by asking it to recite se-
lected sentences from memorized passages (§3.3).
We further assess the model’s random access profi-
ciency through a more challenging task involving
question answering (§3.4).

3.1 Task Formulation

We abstract the language model as a memory bank
and investigate its sequential or random access abil-
ity. We adopt a simple definition of a memory
bank as a key–value store D = {ki : pi}, where ki
represents a unique identifier (ID) assigned to the
content of the i-th passage1.

There are two core functions that a memory bank
needs to support: reading and writing.

Given that our memory bank is embodied as a
language model, it is not straightforward to write

1We use the term “document” and “passage” interchange-
ably in this paper, referring to a chunk of text.

and read the model’s memory. Following previous
work (Zhu and Li, 2023; Wang et al., 2021), for
writing to the memory bank, we use fine-tuning
to update the model’s parameters. For reading,
we use prompting to elicit the model’s memory.
Specifically, for each passage pi with its corre-
sponding identifier ki, we create two types of
data instances: writing, Swrite(ki, pi) and reading,
Sread(ki) → pi, where Swrite and Sread denote the
prompts detailed in Appendix A.1.

As the primary goal of our study is to test
whether the model can read (access) its stored con-
tent sequentially or randomly, we mainly vary the
reading function across different experiments.

Given a corpus consisting of M passages, we
split the corpus into two subsets: T training pas-
sages and V = M − T validation passages. We
adopt a mixed training strategy as described by
Zhu and Li (2023): During the training stage, we
include Swrite and Sread instances of T training
passages, as well as Swrite instances of V valida-
tion passages. Our objective is for the model to
learn to associate each identifier with its passage
content by training on the reading and writing in-
stances of the training passages. During evaluation,
we prompt the model with the Sread instances of
the V validation passages to test the model’s mem-
ory access pattern.

3.2 Sequential Access: Full Recitation

We test the sequential access ability of the language
model by asking it to reproduce the full passage
content. Specifically, given an ID, the model is
prompted to start from the beginning of the cor-
responding memorized passage and generate to-
kens consecutively. We evaluate the model’s perfor-
mance to reproduce the content on the V validation
passages, which requires the model to both mem-
orize the passage content and sequentially access
the memory with the provided key.

Setup. To investigate whether the model can han-
dle identifiers and passage content of different
types, we set T = 400 and V = 40 and consider
the following variations. For the type of passage
content p, we examine two categories: (1) natural
language (NL), comprising Wikipedia paragraphs
from SQuAD (Rajpurkar et al., 2016), and (2) ran-
dom strings (Rand), where each NL passage is sub-
stituted with a space-separated alphanumeric string
maintaining the same number of tokens. Regard-
ing the type of k (i.e., passage IDs), we explore

3

Title (ID) Num (ID) Rare (ID)

psg=NL 96.2 / 85.0 96.7 / 95.0 73.4 / 72.5
psg=Rand 96.7 / 95.0 96.7 / 95.0 96.7 / 95.0

Table 1: BLEU / Exact Match scores of reading from
memory with different types of IDs and passage content.

1k 5k 10k 50k 100k 500k
Training Documents

0

20

40

60

80

Sc
or

es

Memorization Performance v.s. Corpus Size
BLEU
EM

Figure 2: EM and BLEU for reading validation passages,
varying the number of training passages. We calculate
EM using only the first 25 tokens, as the model often
generates beyond the max passage length (25).

three forms: (1) numerical strings (Num), such as
‘#123’; (2) rare random tokens (Rare), adopting the
approach of Ruiz et al. (2022) by random sampling
three infrequent tokens; (3) article title (Title) of
the Wikipedia page to which the passage belongs.

We adopt the GPT2-large model (Radford et al.,
2019) with 774M parameters as the base model.
For better string memorization ability (Stevens and
Su, 2023), we use a pretrained checkpoint2 instead
of training the model from scratch. We fine-tune
the model for 100 epochs to ensure that the model
fully converges, with a learning rate of 3 × 10−5.
We measure memorization using both the BLEU
score (Papineni et al., 2002) and the Exact Match
(EM) score, indicating the similarity between the
generated content and the ground-truth passage.

Discussion. Table 1 shows that the model is
able to sequentially access memorized content,
with high BLEU and EM on validation passages.
The model’s sequential access capability is further
demonstrated by its adaptability to varying types of
IDs and passages. Specifically, using titles or num-
bers as keys for natural language passages achieves
higher performance than using rare tokens. We
suspect that models might have difficulty associat-
ing rare tokens with the natural language content.
Remarkably, the model’s access ability extends to
passages composed of random characters (Rand).

To further test the memory capacity of the model,

2https://huggingface.co/gpt2

we carry out an additional experiment where we
set the passage type to Rand and identifier type to
Rare and construct passages each with 25 random
tokens. As illustrated in Figure 2, we fix V as
1k and increase T gradually from 1k to 500k to
examine the ability of sequential memory access.

We observe that even with a training passage
count of 50k, the model could accurately repro-
duce over 70% of memorized validation passages.
However, there is also a bottleneck in parametric
memory: the performance drops to nearly zero
when the passage count exceeds 100k. We attribute
this bottleneck to the difficulty in training, as the
model fails to converge on memorizing all the pas-
sages. Therefore, in subsequent experiments, we
carefully manage the corpus size to ensure that the
model memorizes all passages.

3.3 Random Access: Selective Recitation

Selective recitation is a straightforward synthetic
task: asking the language model to reproduce a
specific sentence of a memorized passage. This
task is designed for its simplicity, as it does not re-
quire the model’s understanding of passage content.
The focus is solely on the model’s capacity to ac-
cess segments in a memorized passage. Successful
random access would be indicated by the model’s
ability to reproduce any sentence from within mem-
orized passages, regardless of position.

Setup. We follow Mallick et al. (2023) to place
markers at the boundaries of each sentence, ob-
tained by the NLTK sentence splitter3: a pas-
sage is formatted as “[0] sent0 [0] [1] sent1 [1],
...,”. In this case, the model only needs to learn
to copy the content between these markers. Our
selective recitation task requires the model to re-
cite the j-th sentence of passage pi based on the
given passage ID ki. The reading function is now
Sread(ki, j) → pi[j], such as “What is sentence [1]
of Document #2033?”. For reference, we also test
the model’s performance in a baseline where the
passage content is provided in the context window.

As we are testing for exact memorization, we
use BLEU and EM scores to evaluate the model.
Similar to §3.2, we use T = 400 training and V =
40 validation passages, with 1994 sentences and
200 sentences respectively. We set the type of ID
to be Title and only include passages with more
than 3 sentences. All other hyperparameters stay

3https://www.nltk.org/api/nltk.tokenize.sent_
tokenize.html

4

https://huggingface.co/gpt2
https://www.nltk.org/api/nltk.tokenize.sent_tokenize.html
https://www.nltk.org/api/nltk.tokenize.sent_tokenize.html

0 1 2 3 4 5 6 7 8 9
Marker j (sentence index)

0

5

10

15

20

25

30

35

40
Co

un
t

Correct vs Incorrect Predictions
Correct Predictions
Incorrect Predictions

Figure 3: A stacked bar plot showing the accuracy of ID-
guided sentence recitation with different marker num-
bers. The performance decreases significantly as the
sentence index grows.

the same as §3.2.

Discussion. We find that providing the passage
ID does not enable the model to selectively recite
the requested sentences. It scores poorly with a
low EM of 34.5 and a 47.1 BLEU score, in con-
trast to the much higher 97.0 EM and 97.3 BLEU
when the passage content is included in the con-
text. A detailed analysis in Figure 3 reveals that
the correct predictions are largely reciting the first
sentence (j = 0). This verifies that the model can
sequentially access the content to reproduce the
first sentence. However, as the marker index in-
creases, the model is required to skip preceding
sentences and directly access a sentence in the mid-
dle of a passage. The model’s performance sharply
declines, indicating its inability to randomly access
middle or later sentences in memorized passages.

3.4 Random Access: Grounded Question
Answering

Building on our earlier finding §3.2 that the model
can memorize many passages each linked to a
unique ID, we embark on a more pragmatic task:
question answering grounded in a specific passage
ID. This task aims to evaluate whether the model
can provide answers to questions by extracting a
span from its memory. For instance, a question
might be framed as “According to document #3022,
in what year did Chopin become a French citizen?”
and the answer is “1835” in the passage with ID
#3022. We hypothesize that if LMs are capable of
random memory access, they should navigate to the
corresponding passage using the provided ID and
extract the relevant span to answer the questions.

Setup. We experiment with the well-known
SQuAD-v1 (Rajpurkar et al., 2016) dataset because

many of its questions are closely dependent on the
passage, such as “How did the war start?”. This
design compels the model to depend on the mem-
orized IDs and passages rather than pre-existing
knowledge. We explore the grounded QA task with
variants of providing (1) the ID of the golden pas-
sage with the answer, (2) a random non-golden ID
and (3) no ID. For comparison, we also consider
the setups that do not involve writing passages to
the model’s parametric memory. These include (1)
closed-book QA, where the model is fine-tuned
solely on QA pairs, serving as a baseline to assess
the model’s reliance on prior knowledge for an-
swering questions, and (2) open-book QA, where
the golden passage content is concatenated with
the question, setting the upper limit of extractive
QA performance.

We experiment with different types of passage
IDs. To ensure the uniqueness of using titles as
passage IDs, we select T = 442 passages and
V = 48 passages from the full SQuAD dataset,
with over 2,000 and 300 questions respectively.
The model is evaluated on F1 and EM following
the original SQuAD evaluation script. The other
hyperparameters are the same as mentioned in §3.2.

Discussion. The results are presented in Table 2
(the settings with “+Recitation” are discussed in
later sections). As expected, the model performs
the best in the open-book setting, as it only needs
to locate the answer in the golden passage. In con-
trast, the closed-book QA setup yields the worst
performance, as the model has no access to pas-
sages and relies solely on its parametric knowledge
stored during pretraining.

Interestingly, the form of the provided passage
ID has minimal impact on performance. We
observe similar performance regardless of whether
the golden ID is provided, except when the type
of ID is Title. In this case, providing a random
incorrect ID harms performance. We suspect that
this is because the title is usually an entity related
to the passage topic, therefore offering useful clues.
In cases where the ID does not carry semantic
meaning (i.e., Rare and Num), the correctness or
presence of the ID does not significantly affect
the performance, which remains substantially
below the open-book setting, despite the model
memorizing all passages. This further validates
the model’s inability to effectively access random
memory, as it struggles to extract the answer even
when provided with a correct passage ID.

5

Title (ID Type) Rare (ID Type) Num (ID Type)

Setup EM F1 EM F1 EM F1

w.o. passage memorization
Closed-Book QA 9.0 16.6 9.0 16.6 9.0 16.6
Open-Book QA 73.7 79.3 73.7 79.3 73.7 79.3

w. passage memorization
Grounded QA w. Golden ID 26.7 35.6 20.7 28.7 24.3 32.6

↪→ + Recitation 59.7 68.0 54.7 62.1 57.7 66.2
Grounded QA w. Random ID 20.7 28.9 20.7 28.3 23.3 31.6

↪→ + Recitation 16.0 20.4 18.7 23.6 18.7 23.1
Grounded QA w.o. ID 22.0 31.0 22.0 31.0 22.0 31.0

↪→ + Recitation 26.3 33.1 26.3 33.1 26.3 33.1

Table 2: EM and F1 scores for grounded question answering tasks, as well as baselines on closed-book and
open-book QA. Numbers in bold represent the best performance in the grounded QA setting.

Setup BLEU EM

Baseline 47.1 34.5
↪→ + Recitation 99.3 98.5
↪→ + Permutation (first) 100.0 100.0
↪→ + Permutation (random) 98.0 97.0

Table 3: BLEU score and EM score of selective sen-
tence recitation experiments after introducing passage
recitation and permutation.

In summary, our findings validate the hypoth-
esis that LMs can effectively function as a mem-
ory bank, enabling sequential access to its mem-
ory. However, there are significant limitations in
the model’s ability to randomly access its memory.
Across both the simple selective recitation and the
complex grounded question-answering tasks, the
model consistently fails to accomplish the tasks
by leveraging its memory, despite being explicitly
provided with the corresponding passage IDs.

4 Mitigating Random Access Challenge

The earlier experiments show that in general, lan-
guage models perform well in sequentially access-
ing their parametric memory, but encounter chal-
lenges in random memory access. This naturally
raises the question: How can we mitigate the short-
comings in random memory access?

4.1 Proposed Method

To address the challenge, we start from the two
operations supported by LMs as a memory store:
reading and writing. During the writing phase, we
hypothesize that performing permutation on the
passage content can naturally enhance the model’s
random access ability: any part of the content can

Question: According to document #2033, from what
distance could the artificial thunder be heard?

Language
Model

Direct Answer:
20 miles Document #2033: He produced

artificial lightning, with discharges
consisting of millions of volts and
up to 135 feet long. Thunder from
the released energy was heard 15
miles away in Cripple Creek …

Answer: 15 miles

Recitation and Answer:

Figure 4: A illustration of the recitation method. The
model first recites the corresponding passage content
and subsequently extracts the answer in the context, in
contrast to directly answering the question.

be the starting point of a memorized sequence. In
this setup, we change the sequential order of pas-
sage content to achieve random access.

On the other hand, during the reading phase,
leveraging the model’s context window presents a
viable strategy. The attention mechanism (Vaswani
et al., 2017) enables the model to access any to-
ken within the context window, thereby inherently
supporting random access (Packer et al., 2023; Ge
et al., 2023). For tasks with a given ID, we could
ask the model to sequentially recite the passage
first, place it within the context, and subsequently
query the model to perform span extraction tasks
utilizing this context, as illustrated in Figure 4. Our
subsequent experiments are designed to evaluate
the effectiveness of these two methods. Through
empirical evaluation, we validate that content per-
mutation during writing or recitation during read-
ing can largely mitigate the challenge of random
memory access and enhance performance.

6

Setup. We extend the earlier experiments by inte-
grating recitation and permutation into the respec-
tive reading and writing stages.

First, we add a setup to the selective sentence
recitation task: Based on the given ID, the model
is tasked to first recite the entire content of the cor-
responding passage and then the specific sentence,
altering the reading operation to Sread(ki, j) →
(pi, pi[j]). Similarly, for the grounded QA task, we
ask the model to recite the passage associated with
the input passage ID before answering the question.
In the setup without an ID, the model is still trained
to recite the golden passage.

To explore the effect of permutation during the
writing stage, we perform permutation among sen-
tences in a passage to create diverse Swrite in-
stances. For a J-sentence passage we tested: (1)
first, moving each sentence to the passage’s begin-
ning to create J unique instances;

(2) random, randomly shuffling the sentences k
times to create k instances, where k is set to 4 by
default;

Discussion. Reciting the passage content effec-
tively boosts the performance of selective recita-
tion, as evidenced in Table 3. With recitation, the
model first sequentially accesses the content from
its memory using the provided passage ID and sub-
sequently loads this passage in the context to allow
for random access. Conditioned on the recited con-
tent in the context, the model can therefore easily
identify the correct sentence.

Similarly, explicitly reciting the golden pas-
sages markedly enhances question-answering per-
formance, as shown in Table 2. This observation
is consistent across all three types of passage IDs.
Conversely, intentionally prompting the model to
recite a random passage leads to a decline in per-
formance. This is likely because random passages
introduce irrelevant information and confuse the
model. Surprisingly, the recitation of relevant pas-
sages benefits performance even without an ID,
although the improvement is smaller than with the
golden ID. This verifies the effectiveness of recita-
tion in more general settings of question answering.

Another way of enhancing random access is to
perform permutation of sentences, as presented in
Table 3. Simply bringing every sentence to the start
of the passage once (first) or randomly permuting
the sentences many times (random) helps to solve
the challenge of accessing the middle content of a
passage. We also find that permutation enhances

grounded QA performance (Appendix C) from 26.7
to 31.3 in terms of EM. However, it is noteworthy
that permutation does not alter the inherent sequen-
tial access pattern of parametric memory. Rather,
by permuting the sentences and disrupting their
original order, we allow more sentences to be se-
quentially accessible via the ID.

5 Case Study: Open-Domain Question
Answering

Our findings indicate that language models struggle
with random memory access, unless the memory is
explicitly recited and thus loaded into the context
which can be accessed randomly. Building on this
insight, we extend our study to the task of open-
domain question answering, a challenging task that
requires the model to first retrieve relevant memo-
ries and reason over them. This is different from
previous experiments as the passage IDs are no
longer provided as the input: The reading operation
becomes Sread(q) → ans. The model therefore
needs to find relevant passages to the query without
the aid of passage IDs, which is a non-trivial task
(Pradeep et al., 2023). As the goal of our study is
not on retrieval performance and our earlier results
(§3.3) show that the model has limited memoriza-
tion capacity, we reduce the difficulty of retrieval
by limiting the number of passages written to the
model’s memory: we only include positive pas-
sages that contain answers to at least one question.

We aim to test the model’s ability to perform
random access in real applications. Specifically,
we investigate whether the model, having mem-
orized many passages, can accurately extract an-
swers from its memory. Similar to the previous
experiments, we also aim to observe the difference
in the model’s performance when it is trained to
recite relevant passages and subsequently answer
the question. We opt not to experiment with per-
mutation due to the high training cost associated
with sentence permutation across a large number
of passages, and leave this avenue for future work.

5.1 Experimental Setup

We use Natural Questions (Kwiatkowski et al.,
2019) processed by Karpukhin et al. (2020) for
single-hop QA, selecting 6000 training and all of
the 6489 validation questions, with a total of 10.9k
passages. For multi-hop question answering, we
use HotpotQA (Yang et al., 2018) where each ques-
tion has two golden passages. We select 8k training

7

NQ Hotpot QA

EM F1 Recite BLEU EM F1 Recite BLEU

Closed-Book QA 10.1 14.8 - 13.1 20.1 -

Closed-Book QA w. Mix Training 12.6 18.2 - 15.7 22.8
↪→ + Recitation 16.1 20.1 28.6 21.0 28.4 51.3

Closed-Book QA w. Continual Training 10.3 15.5 - 15.1 22.4 -
↪→ + Recitation 13.4 16.9 25.6 18.1 25.2 48.3

Table 4: EM and F1 of open-domain question answering datasets. We report the BLEU score of the recitation when
the model is trained to recite the passage first and then offer an answer. Best performances are in bold.

and all the 7405 validation questions in the distrac-
tor subset, with a total of 26.9k passages.

We start from a baseline setup where the training
only involves QA pairs, i.e., closed-book QA. Next,
we consider two types of training strategies to write
the passages into the memory. In the mixed setting,
the model is fine-tuned on a mixture of the Swrite

instances of all passages and training QA pairs. In
the continual setting, the model is fine-tuned on
Swrite of all passages first, followed by fine-tuning
on QA. To test the effectiveness of recitation, we
also include settings where the model is trained to
recite the golden passage(s) before answering.

As the task requires the model to perform both
passage retrieval and question answering, we ex-
pect that the model size should be sufficiently large.
Therefore, we opt for GPT2-XL with 1.5B parame-
ters. In the mixed setting, we train the model for 20
epochs with a learning rate of 3e-5. In the contin-
ual setting, we first train 20 epochs on the passages,
followed by another 20 epochs on QA pairs. We
report the best performance based on the EM score
on validation questions.

5.2 Results and Discussion

The results presented in Table 4 demonstrate that
writing golden passages into the model’s memory,
with either mixed or continual training, leads to im-
proved performance over the baseline closed-book
setting. This aligns with our expectations, as we
deliberately inject passages containing the answers
to the questions into the memory, enriching the
model’s knowledge.

Moreover, recitation significantly enhances the
model’s ability to utilize and access memorized
passages, leading to a noticeable improvement in
performance. This is observed in both the mixed
and continual training settings. The exact match
score increases significantly by more than 3% in
both single and multi-hop QA. When the model
explicitly recites the passages and loads them into

the context for random access, the original open-
domain QA task is reduced to an easier task of
extractive QA. However, the low recitation BLEU
score suggests that the model does not always ac-
curately recite the golden passage. We expect that
the performance could be further enhanced if it can
accurately retrieve relevant passages from memory.

The mixed training strategy outperforms the con-
tinual training setup. This is likely because the
model’s memory of passage content is refreshed
constantly in mixed training. In continual training,
however, the second stage only involves QA pairs
on training passages, potentially leading to fading
memory of validation passages. Consequently, the
recitation becomes less accurate, as shown by a
decrease in the BLEU score.

Our results are consistent and complementary
to the findings of Wei et al. (2023) and Sun et al.
(2023): introducing intermediate steps or gener-
ating relevant passages helps to improve model
performance on various tasks. We provide an alter-
native interpretation for this phenomenon: loading
the parametric memory into the context window
facilitates enhanced random access to memorized
information, and the model benefits from such en-
hancements.

6 Conclusion

We empirically study how language models ac-
cess their parametric memory. Our experiments
on both synthetic and realistic data demonstrate
that while language models can adequately repro-
duce memorized content in a sequential manner,
they struggle with the random access of segments
in the middle of memorized content. We identify
two effective strategies of recitation and permuta-
tion to mitigate the limitation of random memory
access. Furthermore, through a controlled case
study on open-domain question answering, we il-
lustrate that allowing the model to recite and ran-

8

domly access its memory significantly improves
performance. Overall, our study not only provides
a deeper understanding of memory access patterns
in language models, but also highlights the impli-
cations of limited random memory access ability
in practical application of language models.

Limitation

In this work, we mainly explore the memory ac-
cess pattern of decoder-only language models of
the GPT2 family. Future research is needed to un-
derstand whether our conclusions apply to other
types of language models based on transformers
such as encoder-only models and encoder-decoder
models. Furthermore, we do not extend our study
to larger models beyond 1.5B parameters due to
computing resource constraints. It might be worth-
while to explore the scaling behavior of memory
access patterns in larger language models. In ad-
dition, we mainly conduct controlled experiments
on a text corpus of fixed size. Further investigation
may be needed to explore how the findings can
apply to large-scale pretraining corpus and their
implications on pretrained language models.

Ethical Considerations

As the method suggests techniques to enhance ac-
cess to the model’s memory, there could be mali-
cious use of the recitation method to extract sensi-
tive personal information from the model’s mem-
ory. We use open-source English datasets including
questions and contexts from SQuAD-v1 (Rajpurkar
et al., 2016), Natural Questions (Kwiatkowski et al.,
2019), and Hotpot QA (Yang et al., 2018). We also
use open-source English language models, GPT2,
with different sizes (Radford et al., 2019). There
might be potential biases in these datasets and mod-
els.

Acknowledgements

We appreciate the suggestions and comments by
Do Xuan Long, Yanxia Qin, Yisong Miao, and
other members in NUS WING. Tongyao Zhu is
supported by the Industry PhD Program of Sea AI
Lab.

References
Badr AlKhamissi, Millicent Li, Asli Celikyilmaz,

Mona T. Diab, and Marjan Ghazvininejad. 2022.
A review on language models as knowledge bases.
ArXiv, abs/2204.06031.

Zeyuan Allen-Zhu and Yuanzhi Li. 2023. Physics of
language models: Part 3.2, knowledge manipulation.
ArXiv, abs/2309.14402.

Angels Balaguer, Vinamra Benara, Renato Luiz de Fre-
itas Cunha, Roberto de M. Estevão Filho, Todd
Hendry, Daniel Holstein, Jennifer Marsman, Nick
Mecklenburg, Sara Malvar, Leonardo O. Nunes,
Rafael Padilha, Morris Sharp, Bruno Silva, Swati
Sharma, Vijay Aski, and Ranveer Chandra. 2024.
RAG vs fine-tuning: Pipelines, tradeoffs, and a case
study on agriculture.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita
Balesni, Asa Cooper Stickland, Tomasz Korbak, and
Owain Evans. 2023. The reversal curse: LLMs
trained on "A is B" fail to learn "B is A".

Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis,
Scott Yih, Sebastian Riedel, and Fabio Petroni. 2022.
Autoregressive search engines: Generating substrings
as document identifiers. In Advances in Neural Infor-
mation Processing Systems, volume 35, pages 31668–
31683. Curran Associates, Inc.

Zied Bouraoui, José Camacho-Collados, and Steven
Schockaert. 2019. Inducing relational knowledge
from bert. In AAAI Conference on Artificial Intelli-
gence.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingy-
ong Yan, Meng Liao, Tong Xue, and Jin Xu. 2021.
Knowledgeable or educated guess? revisiting lan-
guage models as knowledge bases. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1860–1874, Online.
Association for Computational Linguistics.

Nicholas Carlini, Florian Tramèr, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Xiaodong
Song, Úlfar Erlingsson, Alina Oprea, and Colin Raf-
fel. 2020. Extracting training data from large lan-
guage models. In USENIX Security Symposium.

Yingqiang Ge, Yujie Ren, Wenyue Hua, Shuyuan Xu,
Juntao Tan, and Yongfeng Zhang. 2023. LLM as OS,
agents as apps: Envisioning AIOS, agents and the
AIOS-agent ecosystem. ArXiv, abs/2312.03815.

9

https://api.semanticscholar.org/CorpusID:248157206
https://api.semanticscholar.org/CorpusID:262898066
https://api.semanticscholar.org/CorpusID:262898066
http://arxiv.org/abs/2401.08406
http://arxiv.org/abs/2401.08406
http://arxiv.org/abs/2309.12288
http://arxiv.org/abs/2309.12288
https://proceedings.neurips.cc/paper_files/paper/2022/file/cd88d62a2063fdaf7ce6f9068fb15dcd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cd88d62a2063fdaf7ce6f9068fb15dcd-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:208512764
https://api.semanticscholar.org/CorpusID:208512764
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/2021.acl-long.146
https://api.semanticscholar.org/CorpusID:229156229
https://api.semanticscholar.org/CorpusID:229156229
https://api.semanticscholar.org/CorpusID:266694338
https://api.semanticscholar.org/CorpusID:266694338
https://api.semanticscholar.org/CorpusID:266694338

Benjamin Heinzerling and Kentaro Inui. 2021. Lan-
guage models as knowledge bases: On entity repre-
sentations, storage capacity, and paraphrased queries.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1772–1791, Online.
Association for Computational Linguistics.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang.
2022. Are large pre-trained language models leaking
your personal information? In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2022,
pages 2038–2047, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gi-
anna Lengyel, Guillaume Lample, Lucile Saulnier,
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2023. Mis-
tral 7b. ArXiv, abs/2310.06825.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How can we know when language
models know? on the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962–977.

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and
Davood Rafiei. 2023. Evaluating open-domain ques-
tion answering in the era of large language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5591–5606, Toronto, Canada.
Association for Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Hyunji Lee, JaeYoung Kim, Hoyeon Chang, Hanseok
Oh, Sohee Yang, Vladimir Karpukhin, Yi Lu, and
Minjoon Seo. 2023a. Nonparametric decoding for
generative retrieval. In Findings of the Associ-
ation for Computational Linguistics: ACL 2023,
pages 12642–12661, Toronto, Canada. Association
for Computational Linguistics.

Sunkyung Lee, Minjin Choi, and Jongwuk Lee. 2023b.
GLEN: Generative retrieval via lexical index learn-
ing. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing,
pages 7693–7704, Singapore. Association for Com-
putational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459–
9474. Curran Associates, Inc.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9).

Yan Liu, Yu Liu, Xiaokang Chen, Pin-Yu Chen,
Daoguang Zan, Min-Yen Kan, and Tsung-Yi Ho.
2024. The devil is in the neurons: Interpreting and
mitigating social biases in language models. In The
Twelfth International Conference on Learning Repre-
sentations.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 9802–9822, Toronto,
Canada. Association for Computational Linguistics.

Prabir Mallick, Tapas Nayak, and Indrajit Bhattacharya.
2023. Adapting pre-trained generative models for ex-
tractive question answering. ArXiv, abs/2311.02961.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in gpt. In Advances in Neural Information
Processing Systems, volume 35, pages 17359–17372.
Curran Associates, Inc.

Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork.
2021. Rethinking search: making domain experts
out of dilettantes. SIGIR Forum, 55(1).

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Oded Ovadia, Menachem Brief, Moshik Mishaeli, and
Oren Elisha. 2024. Fine-tuning or retrieval? compar-
ing knowledge injection in LLMs.

Charles Packer, Vivian Fang, Shishir G. Patil, Kevin
Lin, Sarah Wooders, and Joseph E. Gonzalez. 2023.
MemGPT: Towards LLMs as operating systems.
ArXiv, abs/2310.08560.

10

https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.18653/v1/2022.findings-emnlp.148
https://doi.org/10.18653/v1/2022.findings-emnlp.148
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2023.findings-acl.801
https://doi.org/10.18653/v1/2023.findings-acl.801
https://doi.org/10.18653/v1/2023.emnlp-main.477
https://doi.org/10.18653/v1/2023.emnlp-main.477
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://openreview.net/forum?id=SQGUDc9tC8
https://openreview.net/forum?id=SQGUDc9tC8
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://api.semanticscholar.org/CorpusID:265033906
https://api.semanticscholar.org/CorpusID:265033906
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://doi.org/10.1145/3476415.3476428
https://doi.org/10.1145/3476415.3476428
http://arxiv.org/abs/2312.05934
http://arxiv.org/abs/2312.05934
https://api.semanticscholar.org/CorpusID:263909014

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Maillard,
Vassilis Plachouras, Tim Rocktäschel, and Sebastian
Riedel. 2021. KILT: a benchmark for knowledge
intensive language tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2523–2544, Online.
Association for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Ronak Pradeep, Kai Hui, Jai Gupta, Adam Lelkes, Hon-
glei Zhuang, Jimmy Lin, Donald Metzler, and Vinh
Tran. 2023. How does generative retrieval scale to
millions of passages? In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1305–1321, Singapore. As-
sociation for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Ruiyang Ren, Wayne Xin Zhao, Jing Liu, Hua Wu, Ji-
Rong Wen, and Haifeng Wang. 2023. TOME: A
two-stage approach for model-based retrieval. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 6102–6114, Toronto, Canada.
Association for Computational Linguistics.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael
Pritch, Michael Rubinstein, and Kfir Aberman.
2022. Dreambooth: Fine tuning text-to-image dif-
fusion models for subject-driven generation. 2023
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 22500–22510.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and

Wen tau Yih. 2023. Replug: Retrieval-augmented
black-box language models.

Till Speicher, Aflah Mohammad Khan, Qinyuan Wu,
Vedant Nanda, Soumi Das, Bishwamittra Ghosh, Kr-
ishna P. Gummadi, and Evimaria Terzi. 2024. Un-
derstanding the mechanics and dynamics of memori-
sation in large language models: A case study with
random strings.

Samuel Stevens and Yung-Chun Su. 2023. Memoriza-
tion for good: Encryption with autoregressive lan-
guage models. ArXiv, abs/2305.10445.

Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and
Denny Zhou. 2023. Recitation-augmented language
models. In International Conference on Learning
Representations.

Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni,
Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe
Zhao, Jai Gupta, Tal Schuster, William W. Cohen,
and Donald Metzler. 2022. Transformer memory as
a differentiable search index.

Kushal Tirumala, Aram H. Markosyan, Luke Zettle-
moyer, and Armen Aghajanyan. 2022. Memorization
without overfitting: Analyzing the training dynamics
of large language models. ArXiv, abs/2205.10770.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

11

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2023.emnlp-main.83
https://doi.org/10.18653/v1/2023.emnlp-main.83
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2023.acl-long.336
https://doi.org/10.18653/v1/2023.acl-long.336
https://api.semanticscholar.org/CorpusID:251800180
https://api.semanticscholar.org/CorpusID:251800180
http://arxiv.org/abs/2301.12652
http://arxiv.org/abs/2301.12652
https://openreview.net/forum?id=ILStlRb1Sp
https://openreview.net/forum?id=ILStlRb1Sp
https://openreview.net/forum?id=ILStlRb1Sp
https://openreview.net/forum?id=ILStlRb1Sp
https://api.semanticscholar.org/CorpusID:258762168
https://api.semanticscholar.org/CorpusID:258762168
https://api.semanticscholar.org/CorpusID:258762168
https://openreview.net/forum?id=-cqvvvb-NkI
https://openreview.net/forum?id=-cqvvvb-NkI
http://arxiv.org/abs/2202.06991
http://arxiv.org/abs/2202.06991
https://api.semanticscholar.org/CorpusID:248986465
https://api.semanticscholar.org/CorpusID:248986465
https://api.semanticscholar.org/CorpusID:248986465
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288

Cunxiang Wang, Pai Liu, and Yue Zhang. 2021. Can
generative pre-trained language models serve as
knowledge bases for closed-book QA? In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3241–3251, Online.
Association for Computational Linguistics.

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming
Miao, Shibin Wu, Hao Sun, Qi Chen, Yuqing Xia,
Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie,
Hao Allen Sun, Weiwei Deng, Qi Zhang, and Mao
Yang. 2023. A neural corpus indexer for document
retrieval.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Paul Youssef, Osman Koraş, Meijie Li, Jörg Schlötterer,
and Christin Seifert. 2023. Give me the facts! a
survey on factual knowledge probing in pre-trained
language models. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
15588–15605, Singapore. Association for Computa-
tional Linguistics.

Hansi Zeng, Chen Luo, Bowen Jin, Sheikh Muham-
mad Sarwar, Tianxin Wei, and Hamed Zamani. 2023.
Scalable and effective generative information re-
trieval. ArXiv, abs/2311.09134.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023. Large
language models as commonsense knowledge for
large-scale task planning. In RSS 2023 Workshop on
Learning for Task and Motion Planning.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:
Less is more for alignment.

Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Yu Wu,
Peitian Zhang, and Ji rong Wen. 2022. Ultron: An
ultimate retriever on corpus with a model-based in-
dexer. ArXiv, abs/2208.09257.

Zeyuan Allen Zhu and Yuanzhi Li. 2023. Physics of
language models: Part 3.1, knowledge storage and
extraction. ArXiv, abs/2309.14316.

Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei,
Ming Gong, Guido Zuccon, and Daxin Jiang. 2022.
Bridging the gap between indexing and retrieval for

differentiable search index with query generation.
arXiv preprint arXiv:2206.10128.

Noah Ziems, Wenhao Yu, Zhihan Zhang, and Meng
Jiang. 2023. Large language models are built-in au-
toregressive search engines. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 2666–2678, Toronto, Canada. Association for
Computational Linguistics.

A Prompts

A.1 Full Recitation

Given a key-value pair (ki, pi), the prompts are as
follows:
Swrite = “Article {ki} , Content: {pi}”
Sread(ki) → pi = “Article {ki} : What is

the content of this article?” → “{pi}”

A.2 Selective Recitation

In this experiment, we follow the same prompt of
Swrite, as described in Appendix §A.1, and only
change Sread

Swrite = “Article {ki} , Content: {pi}”
Sread(ki, j) → pi[j] = “Article {ki} : What

is Sentence [{j}] of this article?” →
“{pi[j]}”

A.3 Grounded Question Answering
experiments

In this experiment, we follow the same prompt of
Swrite, as described in Appendix §A.1, and only
change Sread to questions related to pi. Src

read(ki, q)
represents the instances where the recitation of the
passage content is prepended before the answer.
Swrite = “Article {ki} , Content: {pi}”
Sread(ki, q) → ans = “Article {ki} \n

Question: {q} \n Answer: ” → “{ans}”
Src
read(ki, q) → (pi, ans) = “Article {ki} \n

Question: {q} \n Answer: ” → “ {pi} ||
Answer: {ans}”

A.4 Open-Domain Question Answering

In the setup of open-domain question-answering
experiments, we no longer have a pre-assigned ID
for each document. Our Swrite becomes:
Swrite(pi) = “Document: {pi}”
Similarly, the reading operation now does not

have any ID associated with it, but only a question.
It becomes:
Sread(q) → ans = “Question: {q} \n

Answer: ” → “{ans}”

12

https://doi.org/10.18653/v1/2021.acl-long.251
https://doi.org/10.18653/v1/2021.acl-long.251
https://doi.org/10.18653/v1/2021.acl-long.251
http://arxiv.org/abs/2206.02743
http://arxiv.org/abs/2206.02743
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://doi.org/10.18653/v1/2023.findings-emnlp.1043
https://api.semanticscholar.org/CorpusID:265213270
https://api.semanticscholar.org/CorpusID:265213270
http://arxiv.org/abs/2305.11206
http://arxiv.org/abs/2305.11206
https://api.semanticscholar.org/CorpusID:251710261
https://api.semanticscholar.org/CorpusID:251710261
https://api.semanticscholar.org/CorpusID:251710261
https://api.semanticscholar.org/CorpusID:262825178
https://api.semanticscholar.org/CorpusID:262825178
https://api.semanticscholar.org/CorpusID:262825178
https://doi.org/10.18653/v1/2023.findings-acl.167
https://doi.org/10.18653/v1/2023.findings-acl.167

In the case of recitation, our prompts for train-
ing the model include the passage containing the
answer.
Src
read(q) → (pgolden, ans) = “Question: {q}”

→ “Related documents: {pgolden} \n Answer:
{ans}”

B Additional Selective Recitation
Experiments

We provide additional experimental results for our
selective recitation task of reciting sentences. All of
the experiments lead to a consistent conclusion that
the model is unable to randomly extract a sentence
from a memorized passage.

In both of the experiments below, we include
setups of (1) in-context: the passage is included in
the context window. (2) ID-guided: the basic ver-
sion of the selective recitation task where a passage
ID is provided. and (3) with passage recitation: the
passage is recited first before sentence recitation.

B.1 Reciting the first/second/last sentence
As a basic setting of the selective sentence recita-
tion task, we ask the model questions like “What
is the [first/second/last] sentence of
Article #123?”.

The results are shown in Table 5. The model al-
most always recites the first correctly, while recita-
tion performance drops significantly for the second
or last sentence. This shows that the model is per-
forming sequential access: following the article
ID, the model can only access content immediately
after the ID – the first sentence. It is unable to
directly access the second or last sentence.

We observe that even for the in-context setting
where the passage is in the context window, the
model does not perform perfectly, especially for
extracting the last sentence. This is because the
model also needs to learn what first, second or
last means, which involves numerical reasoning
ability to count the index. Therefore, in the main
experiments, we put markers on both ends of a
sentence to reduce the task difficulty.

B.2 Reciting the next/previous sentence
We perform experiments to find the sentence be-
fore and after an input sentence in a given pas-
sage. In other words, our Sread operation becomes
Sread(ki, sj) → sj+1/j−1, where sj is the input
sentence. The results are shown in Table 6.

We observe that finding the sentence after the
input sentence is always easy, while the reverse task

is much more difficult. This also reveals that the
model reads its memory sequentially. It is unable
to randomly access the sentence before the input sj ,
even if the target sentence is adjacent to the input
sentence.

C Additional Grounded Question
Answering Experiments with
Permutation

We conduct additional experiments showing the
effect of performing permutations of sentences
of memorized passages in the grounded question-
answering task.

In Table 7, we show the effect of augmenting
the Swrite instances to include sentence permuta-
tions of the original passage. We observe that the
model’s performance generally improves as we per-
form permutation. This validates our findings that
performing permutation enhances random access
to the passage content.

D Additional Open-Domain Question
Answering Experiments

To ensure that our conclusion is consistent with dif-
ferent dataset sizes, we vary the number of training
and validation documents and questions to observe
the performance difference. For NQ, we select 5k
training and 5k validation QA pairs, forming a cor-
pus containing around 9k passages. For Hotpot
QA, we select 5k training and 5k validation ques-
tions in the distractor subset, with a total of 18.2k
passages.

In Table 8, we obtain similar conclusions that
recitation greatly enhances question-answering per-
formance, and using a mixed training strategy is
better than continual training because of the in-
crease in recitation score.

E Additional Training Details

We conduct all experiments in a cluster with
NVIDIA Tesla A100 GPUs (with 40G or 80G mem-
ory). Experiments in §3.2 take a total of 48 hours
on 4 GPUs. Selective sentence recitation experi-
ments in §3.3 and §4 take a total of 41 hours on 4
GPUs. Grounded QA experiments take a total of
132 hours on 4 GPUs. The open-domain QA exper-
iments need 3 days to complete with 32 GPUs.

We use the Huggingface transformers library for
all experiments. We use a learning rate of 3e-5. We
set a constant learning rate schedule for the open-
domain QA experiments. For all other experiments,

13

Recite First Recite Second Recite Last

BLEU EM BLEU EM BLEU EM

In-context 97.2 95.0 94.3 95.0 91.8 87.5
ID-guided 99.0 97.5 14.1 5.0 17.6 0.0

↪→ + Recitation 99.6 95.0 98.8 87.5 98.7 85.0

Table 5: BLEU and EM score of reciting the first, second or last sentence of a memorized passage.

Recite Next Sentence Recite Previous Sentence

BLEU EM BLEU EM

In-context 98.0 96.0 82.7 79.0
ID-guided 86.9 81.0 20.1 18.5

↪→ + Recitation 98.4 85.0 96.5 81.0

Table 6: BLEU and EM score of reciting the next or previous sentence given an input sentence.

ID=Title ID=Rare ID=Num

Setup EM F1 EM F1 EM F1

Grounded QA w. Golden ID 26.7 35.6 20.7 28.7 24.3 32.6
↪→ + Permutation (first) 27.7 39.8 27.0 37.7 27.7 37.7
↪→ + Permutation (rand-1) 25.7 35.0 19.0 27.5 19.7 28.1
↪→ + Permutation (rand-2) 26.0 35.6 25.7 33.7 23.7 32.8
↪→ + Permutation (rand-4) 29.7 38.5 25.3 35.6 25.0 34.2
↪→ + Permutation (rand-8) 31.3 40.1 27.7 36.7 29.0 38.3

Table 7: The EM and F1 score of performing sentence permutation during the writing phase. rand-k means that
permutation is performed k times.

NQ Hotpot QA

EM F1 Recite BLEU EM F1 Recite BLEU

Closed-Book QA 9.1 13.7 - 13.3 20.4 -

Closed-Book QA w. Mix Training 11.5 17.2 - 15.9 23.6
↪→ + Recitation 15.7 19.7 29.1 20.8 28.4 50.9

Closed-Book QA w. Continual Training 10.3 15.5 - 15.1 22.8 -
↪→ + Recitation 12.3 15.8 24.2 18.2 25.6 49.2

Table 8: EM and F1 of the model’s QA performance on different subsets of NQ and Hotpot QA datasets. We report
the BLEU score of the recitation when the model is trained to recite the passage first and then provide an answer.
The bold numbers are the best-performing setup.

we use a warmup ratio of 0.05 and a linear decay
learning rate. We evaluate the model’s performance
on the validation set at the end of each epoch.

14

	Introduction
	Related Work
	Investigating Sequential and Random Memory Access
	Task Formulation
	Sequential Access: Full Recitation
	Random Access: Selective Recitation
	Random Access: Grounded Question Answering

	Mitigating Random Access Challenge
	Proposed Method

	Case Study: Open-Domain Question Answering
	Experimental Setup
	Results and Discussion

	Conclusion
	Prompts
	Full Recitation
	Selective Recitation
	Grounded Question Answering experiments
	Open-Domain Question Answering

	Additional Selective Recitation Experiments
	Reciting the first/second/last sentence
	Reciting the next/previous sentence

	Additional Grounded Question Answering Experiments with Permutation
	Additional Open-Domain Question Answering Experiments
	Additional Training Details

