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Abstract—Large Language Models (LLMs) are advancing at an amazing speed and have become indispensable across academia,
industry, and daily applications. To keep pace with the status quo, this survey probes the core challenges that the rise of LLMs poses
for evaluation. We identify and analyze two pivotal transitions: (i) from task-specific to capability-based evaluation, which reorganizes
benchmarks around core competencies such as knowledge, reasoning, instruction following, multi-modal understanding, and safety;
and (ii) from manual to automated evaluation, encompassing dynamic dataset curation and “LLM-as-a-judge” scoring.
Yet, even with these transitions, a crucial obstacle persists: the evaluation generalization issue. Bounded test sets cannot scale
alongside models whose abilities grow seemingly without limit. We will dissect this issue, along with the core challenges of the above
two transitions, from the perspectives of methods, datasets, evaluators, and metrics. Due to the fast evolving of this field, we will
maintain a living GitHub repository (links are in each section) to crowd-source updates and corrections, and warmly invite contributors
and collaborators.
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1 INTRODUCTION

Large Language Models (LLMs) have achieved unprece-
dented success in both academia and industry, largely at-
tributed to the rapid advancements in training and evalua-
tion techniques. As the “quality-control system”, evaluation
not only guides the trajectory of technological progress
but also serves as an early-warning mechanism for po-
tential risks. Recent reasoning LLMs like OpenAI o1 or
DeepSeek-R1 further underscore this importance of eval-
uation — by integrating reasoning, evaluation, and sub-
sequent re-reasoning (i.e., refinement or correction) into a
single Chain-of-Thought (CoT), their inference quality got
greatly improved. These advances have invigorated the
evaluation community, producing an ever-expanding array
of benchmarks and assessment studies. To keep pace with
this rapid growth, our survey goes beyond mere cataloging
or facet-specific reviews. Instead, we delve into the funda-
mental challenges by examining how the advent of LLMs
has reshaped the evaluation landscape, a phenomenon we
term the evaluation generalization.

Upon reviewing current research in this area, we identify
two critical transitions. As shown in Figure 1, one transition
in evaluation is from task-specific to capability-based. Tradi-
tional evaluation methods focused on specific tasks (e.g.,
text classification, information extraction). As LLMs unify
various NLP tasks in the same form of natural language
generation, the definition of each task and the boundaries
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between them has become increasingly blurred. In this new
paradigm, each instruction or prompt can be viewed as
an individual task, shifting attention toward assessing the
core capabilities needed to tackle real-world needs. In this
survey, we identify five key capabilities: knowledge, reason-
ing, instruction following1, multi-modal understanding, and
safety. In Section 2, we survey existing benchmarks and cate-
gorize them within this capability framework, further divid-
ing them into more detailed sub-categories. In addition, we
discuss comprehensive evaluations that assess the interplay
between different capabilities and current live leaderboards.
This shift from task-based to capability-based evaluation
enables a comprehensive understanding of a model’s true
potential, beyond its performance in predefined tasks.

Another transition in evaluation is from manual to auto-
mated methods, including data curation and judgment. On
the data side, rapidly evolving model performance demands
increasingly frequent benchmark updates and manual cura-
tion processes have become unsustainable, highlighted by
the accuracy surge on GSM8K (Grade School Math 8K)
from 74% to 95% within two years. Automated pipelines
can address both the cost and efficiency challenges in-
herent in dataset creation. Another benefit of automation
is its potential to mitigate data contamination, where test
data are inadvertently exposed during pre-training or post-
training, leading to overestimated performance. In response,

1. Conventional NLP tasks are considered part of instruction follow-
ing.
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Fig. 1. Illustration of two transitions in the field of evaluation for LLMs.

automated approaches can be one of the solutions, which
continually updates or refines test sets, known as dynamic
benchmarks, ensuring that no test data are seen in advance.
On the judgment side, as mentioned above, the shift to
user prompts brings more open-ended responses, which
pose further complexities: human judgment is expensive.
Automated evaluators (i.e., “LLMs-as-a-judge”) not only
show promise in providing reliable, efficient assessments
but also can produce more detailed, fine-grained evalua-
tions of human-like responses. In Section 3, we provide a
comprehensive survey of these automated methods.

Although researchers have made significant progress
along the two transitions outlined above, we argue that
a fundamental contradiction persists between the training
paradigm implied by scaling laws and the bounded eval-
uation practice. As model parameters, training FLOPs and
data increase, the performance can be improved seemingly
without bound. However, evaluation datasets cannot be
expanded or diversified unbounded in practice considering
the efficiency. That being said, current evaluation pipeline
do not scale in tandem with model capabilities. The result is
a growing mismatch between what models can do and what
our tests can cover. This tension underlies many known
challenges in LLM evaluation. Take data contamination as
an example, because the limited testing dataset can cover
only a subset of a model’s capabilities, different models may
gain heterogeneous advantages during evaluation, leading
to unfair comparisons. That is, if a model has encountered
and memorized the test samples during training, its mea-
sured abilities will align perfectly with what the dataset
evaluates, granting it an outsized edge that does not nec-
essarily reflect stronger true capabilities.

We designate the above problem — how to leverage
a bounded evaluation pipeline to assess an unbounded
model capacity — as the evaluation generalization issue.
In other words, existing evaluation tend to concentrate
on capabilities that models already exhibit or that can be
expressed by a fixed test set, inherently limiting the scope.
Thus, the core challenge of evaluation in the era of LLMs is
to develop generalizable evaluation methods capable of an-
ticipating future or unexpressed abilities. In this survey, we

examine this challenge from different perspectives: datasets,
evaluators, and metrics, and explore potential solutions. For
example, some work focuses on predictive evaluation that
carefully curates various tasks to estimate the performance
of larger scale models based on that of smaller ones [1].
Or, Cao et. al. [2] propose to combine performance and a
new interpretability-based metric, Model Utilization Index
(MUI), for evaluating the potential of LLMs beyond the
given datasets. The basic idea mirrors human assessment
practices: when judging an individual’s overall ability, we
consider both the result and the effort required (i.e., MUI) —
less effort for equal performance denotes greater proficiency.

It is important to acknowledge that LLM evaluation is a
rapidly evolving field. While we have endeavored to catalog
the latest work on text-centric evaluations, many studies
remain at the preprint stage. Consequently, our emphasis
here is on forward-looking insights and research directions.
Inevitably, some omissions or inaccuracies may occur. We
plan to maintain a dedicated GitHub repository and invite
the community to help us for refinement; major contributors
will be gratefully acknowledged or invited as collaborators.

2 CORE CAPABILITIES AND DATASETS

As LLMs unify a wide range of tasks, the first type transition
is from task-specific to capability-based assessment. In this
section, we first discuss five core capabilities: knowledge,
reasoning, instruction following, multimodal, and safety,
with corresponding datasets, followed by their intersections
and current live leaderboards. An illustration is shown
in Figure 6. The Github page we will maintain and wel-
come any collaborators is https://github.com/ALEX-nlp/
Benchmark-of-core-capabilities/tree/main.

2.1 Knowledge Evaluation

Knowledge evaluation determines the models’ ability to ac-
curately recall, understand, and utilize factual information
or human priors. Ensuring that LLMs possess a robust and
reliable knowledge base is crucial for applications where
precision and correctness are paramount. For example, it

https://github.com/ALEX-nlp/Benchmark-of-core-capabilities/tree/main
https://github.com/ALEX-nlp/Benchmark-of-core-capabilities/tree/main
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Fig. 2. The logic of reviewing knowledge evaluation.

focuses on knowledge-intensive questions such as Who is the
president of the United States? or What is the capital of France?.

In the early stage, benchmarks were primarily designed
to assess the breadth of world knowledge in LLMs [3]. These
benchmarks focused on general knowledge derived from
sources such as Wikipedia, ConceptNet, and other knowl-
edge bases, typically adopting a question-answering for-
mat—sometimes accompanied by supporting documents.
Representative examples include TRIVIAQA [4], NATU-
RALQUESTIONS [5], WEBQUESTIONS [6], and COMMON-
SENSEQA [7]. With the advent of LLM scaling laws, vast
pre-training corpora have endowed these models with an
extensive repository of general knowledge. Consequently,
research attention has increasingly shifted from evaluating
the breadth to probing the depth of domain-specific exper-
tise in areas such as finance [8–10] and law [11–13].

Besides the breath and depth, knowledge evaluation also
faces two major challenges. First, when it comes to unfamil-
iar or conflicting knowledge, LLMs may not admit their lack
of understanding as humans do; instead, they may fabricate
information, resulting in hallucinations. Worse still, as LLMs
continue to evolve, they might even learn false information
from the Internet. Consequently, LLMs could generate a
large number of incorrect answers that are deceptive and
potentially misleading to humans, which requires serious
attention. To address this issue, TRUTHFULQA [14] collected
a set of well-known false claims or misconceptions, while
HALUEVAL [15] curated questions that have no answers or
are impossible to answer, requiring the model to point out
that the question is unanswerable instead of generating a
fake answer.

The second challenge concerns the dynamic nature of
knowledge. Early datasets emphasized the timeliness and
chronological order of knowledge [16–21], whereas later
datasets focused more on addressing the data contamination
issue using the latest knowledge from News articles [22],
Wikipedia [23, 24]. The motivation is to accurately assess
model advancements, evaluation datasets need to be con-
tinuously updated to prevent false negatives caused by
outdated information. Moreover, some scholars argue that
consistently updating data can prevent performance over-
estimation due to data contamination, since as long as the
evaluation data pertains to the latest knowledge, the model
would not have been exposed to it, thereby eliminating
data contamination issues. However, other scholars point
out that the risk lies in the difficulty of completely distin-
guishing new from old knowledge based on a specific cutoff
date (such as the model’s release date). For instance, even if
a movie is released after this date and the model should not
have seen it, necessary information might have already been
exposed to the model through early promotions and related

activities [23]. We will detail dynamic datasets in Section 3.1.

2.2 Reasoning Evaluation
Reasoning is a core component of intelligence in applying
logic by drawing valid conclusions from new or existing
information. Its evaluation is the key to gauge the true
cognitive abilities of a model, such as problem solving,
decision-making and human-like thought process. How-
ever, reasoning cannot be fully evaluated from a single
perspective. Instead, researchers have developed methods
to assess reasoning across multiple dimensions. In the fol-
lowing, we highlight several key domains: mathematics,
coding, commonsense, long-context understanding, logic,
planning, and miscellaneous tasks.

2.2.1 Mathematics Evaluation
Mathematical reasoning represents one of the most rig-
orously scrutinized aspects of reasoning evaluation. Its
structured and precise reasoning process facilitates straight-
forward assessment. Furthermore, mathematics, as a cor-
nerstone of abstract thought, is indispensable in scientific
research, engineering, and related fields. As illustrated in
Figure 3, mathematics benchmarks have evolved alongside
the advancements in LLM capabilities, progressing from pri-
mary school-level problems to challenges of Olympiad-level
difficulty. In particular, before 2021, mathematics datasets
mainly focused on primary school-level problems, reflect-
ing the limited capabilities of language models at that
time [25–27], where GSM8K [28] is still widely used. After
2021, research efforts shifted toward high school [29] or
university-level problems [30]. Example datasets include
MATH [31], which comprises 12,500 advanced high school
math competition problems annotated with five difficulty
levels. Since 2024, the rapid advancement of LLMs has
prompted researchers to further escalate the difficulty of
benchmarks to the Olympiad contest level, aiming to ex-
tend the boundaries of these models [32, 33]. Currently,
the most difficult dataset is FrontierMath [34] crafted by
expert mathematicians, covering major branches of modern
mathematics — from computational number theory to ab-
stract algebraic geometry — and often requiring hours or
even days for specialists to solve. Even the most advanced
reasoning LLMs like OpenAI o1 can only achieve around
3% accuracy.

2.2.2 Coding Evaluation
Coding is another widely used reasoning evaluation task.
Compared with mathematics, its reasoning process (i.e.,
code snippets) is also highly rigorous yet holds significant
practical applications. A variety of benchmarks have been
introduced to evaluate LLMs’ capabilities in code under-
standing and generation. We provide a high-level catego-
rization of these benchmarks by programming languages
and the primary coding tasks evaluated in Figure 4. Observe
that most benchmarks concentrate on Python and code
generation task, given its wide adoption in both industry
and academia [35–40]. To further evaluate cross-lingual ca-
pabilities, several benchmarks feature tasks in multiple pro-
gramming languages [41–44]. Beyond language diversity,
some benchmarks explicitly focus on different aspects of
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Fig. 3. Mathematics benchmarks in chronological order. The y-axis
represents four difficulty levels: Primary School, High School, University,
and Olympiad. The area represents the size of each dataset.

the software development life-cycle, including debugging,
clone detection, defect detection, code completion, code-to-
code translation, and requirement switching [45, 46].

Except for precise evaluation criteria, coding tasks
also have strong practical values, which are becoming a
high-visibility benchmark for LLM reasoning. Nevertheless,
they remain especially vulnerable to data contamination
— vast repositories of public code are ingested during
pre-training. To mitigate this, Livecodebench [47] continu-
ously ingests newly released problems from coding com-
petitions on platforms such as LeetCode, AtCoder, and
Codeforces. By annotating each problem with its official
release date, Livecodebench ensures that test items were
unavailable during a model’s pre-training period, effectively
preventing contamination and overfitting and yielding a
trustworthy, time-aware assessment of coding performance.

2.2.3 Logic Reasoning

Another group of reasoning task is logic reasoning, usually
involving three types: deduction (drawing conclusions),
induction (recognizing patterns), and abductive reasoning
(forming explanations). Logic reasoning is similar with math
or coding in its well-defined nature, yet focuses on domain-
independent inference patterns. This means that a model is
expected to follow a structured reasoning process given the
information at hand without any prior knowledge. There-
fore, when benchmarking logic reasoning, except for real-
world scenario, many attempts build a confining setting to
minimize the unfair advantage of accumulated knowledge
or learned information.

Deductive reasoning proceeds from general premises or
rules to a guaranteed specific conclusion. If all premises are
true and the logical steps are valid, the conclusion must
be true, as in classical syllogisms or formal proofs. For
example, given premises “All birds can fly” and “Magpie
is a bird”, a deductive model infers “Magpie can fly”. In
the context of LLM evaluation, deductive benchmarks often
involve determining whether a hypothesis holds true or
false from provided premises [48] or producing a step-by-
step proof [49]. We can see that such tasks require the model
to carry out multi-step logical derivations without introduc-
ing outside knowledge, while there are also other studies
that curate probing benchmarks across different domains

towards practical values, such as everyday situations [50] or
exams [51, 52].

Inductive reasoning is essentially the inverse of deduc-
tion: it draws general conclusions or rules from specific
observations or instances. Here, the inference is probabilistic
rather than certain — the conclusion goes beyond the infor-
mation provided. For example, given observations “Magpie
is a bird” and “Magpie can fly”, an inductive model may
hypothesize “All birds can fly”, which could later be proven
wrong by a counterexample (“Ostrich cannot fly”). Clear,
the more the observations, the higher probability the in-
ferred hypothesis holds true. This type of reasoning is easily
influenced by prior knowledge. Thus, ARC-AGI bench-
mark [53] only assume core knowledge priors (“cognitive
building blocks that are either present at birth or acquired
very early in human development with minimal explicit
instruction”) and design problems in a formal setting: given
a set of input–output examples specifying some behavior
for recognition, which is further simplified to 1-D pixel
pattern in images [54]. Similarly, syntax-guided synthesis
(SyGuS) [55] setup the task based on string transformation,
and CLUTTR [56] focuses on relational logic in narratives.

Abductive reasoning, also known as explanatory rea-
soning, involves generating the most plausible explanation
for a given set of observations or facts. Clearly, certainty
is not guaranteed. The proposed explanation is a guess
that could be wrong, but unlike induction, the goal of
abductive reasoning is not a general rule but rather a specific
hypothesis that accounts for the data. For example, given the
observation “The road is wet”, we may guess “it probably
rained recently”. Such guessing heavily relies on the experi-
ence, so benchmarks for abductive reasoning often requires
commonsense (which will be detailed next section) and an
understanding of likely causal chains in everyday scenarios.
For example, αNLI [57] select the task of story completion
and targets the more plausible connective explanation for
how the characters got from the start to that end. To further
challenge the deep abductive reasoning capabilities, True
Detective benchmark [58] setup the questions in murder-
mystery narratives to ask who the crime is or what explains
the mystery. Considering the impacts of prior knowledge,
there are also attempts like AbductionRules [59], which
constructs synthetic logic puzzles for abduction. It presents
a knowledge base of facts and rules (expressed in natural
language) along with an “unexpected” observation, and the
task is to hypothesize a missing fact or rule that would
explain the observation.

Some recent surveys [60, 61] and comprehensive bench-
marks [62] target all three types of reasoning. An interesting
finding is that LLMs often perform the best for abductive
reasoning and the worse for inductive reasoning. But it is
still challenging how to design benchmarks that truly mea-
sure reasoning and not just language proficiency or shallow
pattern matching. As mentioned above, one proposal is to
abstract away rich semantic content in tasks, so that an
LLM’s performance reflects its grasp of reasoning structure
rather than any prior knowledge. For example, using arbi-
trary symbols or “neutral” facts prevents the model from
relying on memorized world knowledge, forcing it to rely
on pure logic [63]. Indeed, models achieved high scores by
learning the formal patterns, but such content-abstracted
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benchmarks have limits: they risk oversimplifying language
understanding and may introduce unnatural regularities
that models can exploit but that don’t translate to real-world
reasoning [61]. On the other hand, benchmarks within some
domains like science exams or detective stories ensure that
models must deal with realistic language and background
knowledge, but then it becomes harder to disentangle log-
ical reasoning from domain knowledge. The field is grap-
pling with this balance between symbolic abstraction and
natural complexity when evaluating reasoning. Besides, as
the True Detective [58] results indicate, scaling reasoning
to long contexts or more complex problems is still an open
problem. Future benchmarks will likely need to push be-
yond toy tasks and short paragraphs, testing whether LLMs
can maintain logical coherence over extended reasoning
chains or in interactive, multi-turn settings.

2.2.4 Commonsense Reasoning
Commonsense reasoning refers to the fundamental level
of practical knowledge and reasoning about everyday sit-
uations and events that is widely shared among people.
Sometimes it adopts the same form of logic reasoning with
commonsense knowledge. Still, it is essential not only for
humans to navigate daily life and interact with one another
but also for artificial intelligence (AI) systems to better un-
derstand human needs and actions. In terms of scenario, we
can roughly categorize the evaluation into three domains:
social, temporal, and physical commonsense. 1) Social com-
monsense involves understanding interpersonal interac-
tions and human behavior. Representative datasets in this
category include Naive Psychology [64], ROCStories [65],
Social IQa, the Winograd Schema Challenge (WSC) [66],
Choice of Plausible Alternatives (COPA) [67], VCR (visual
commonsense reasoning) [68], and e-CARE [69] (explainable
commonsense). 2) Temporal commonsense pertains to the
sequencing of events, causality, and time-related inferences
like duration, frequency, or ordering. Key datasets here
include MCTaco [70], UDS-T [71], and MavenERE [72]. 3)
Finally, physical commonsense encompasses fundamental
knowledge about the physical world, including object prop-
erties and spatial relationships, such as Physical IQa [73],
HellaSwag [74], Abductive NLI [57], SWAG [75], Common-
senseQA [7], and JHU Ordinal Commonsense [76].

Besides datasets, there are also many commonsense re-
sources available for both training and evaluation purposes.
Early projects were primarily developed by human experts
including Cyc [77] and OpenCyc [78]. These systems en-
coded ontological relationships between objects using for-
mal logic, categorizing entities into types such as entities,
sets, functions, and truth functions, and contained a wealth
of commonsense assertions. Concurrently, a team at the
MIT Media Lab developed the Open Mind Common Sense
project [79], later evolving into ConceptNet [80]. This project
harvested online data and integrated diverse knowledge
sources. The latest version, ConceptNet 5.5, employs auto-
mated extraction techniques and comprises over eight mil-
lion nodes and more than twenty-one million links, incorpo-
rating multilingual resources as well as connections to other
knowledge graphs. Among those automatically curated re-
sources [81, 82], a notable one is ATOMIC [83], a crowd-
sourced knowledge graph that features textual descrip-
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Fig. 4. Coding benchmarks, the programming languages (left), and
coding tasks (right) that each benchmark use. We assign one color to
each benchmark.

tions for around 300,000 event nodes and approximately
877,000 “if-event-then” triplets, capturing nine distinct types
of causal relationships between everyday events. Building
upon these foundations, the VisualComet project [84] ex-
tended the realm of commonsense reasoning into the multi-
modal domain by proposing Visual Commonsense Graphs.
Additionally, there are domain-specific or purpose-oriented
commonsense reasoning resources, such as for sentiment
analysis [85], causal reasoning [86], and e-commerce inten-
tion [87].

Overall, commonsense reasoning has a long research
heritage, supported by extensive resources and benchmark
datasets. More recently, the emergence of LLMs exhibiting
super-human performance on certain commonsense tasks.
However, this does not imply that the challenge has been
completely resolved. In real-world applications, LLMs still
lag behind human capabilities when it comes to complex
commonsense reasoning, especially in multimodal tasks.
Two core challenges underlie this gap: 1) commonsense
knowledge is never explicitly stated in text, images or other
modalities, which hampers acquirement or robust reason-
ing; 2) Unlike mathematics or coding, commonsense tasks
do not possess clear formal structure or single “correct”
answers. This ambiguity complicates both the construction
of datasets and the accurate evaluation of open-ended re-
sponses. To conclude, commonsense task may be the key
in extending reasoning evaluation from clear, well-formed
tasks to more ambiguous, open-world problems in the near
future.

2.2.5 Long Context Reasoning

Text remains the primary medium for interacting with
LLMs, and knowledge can be embedded in long texts in di-
verse forms. As a result, the ability to reason over extended
contexts has become a critical capability. Long-context rea-
soning refers to increasing the input length that LLMs can
process, while ensuring they can effectively understand,
learn from, and reason over the information contained in
these longer inputs.
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We classify it as reasoning because, compared to meth-
ods like retrieval-augmented generation (RAG), which are
more suited for extractive or localized tasks, long-context
reasoning excels in scenarios where the model needs to
perform global reasoning by leveraging all the input infor-
mation. Also, this is highly significant in practical applica-
tions, as it serves both as an important means for integrating
external knowledge, recording historical behaviors or inter-
actions, and following complex instructions [88].

To propel this line of work, long-context LLMs have
adopted techniques such as interpolation [89], extrapola-
tion, fine-tuning, and architectural optimizations to rapidly
extend their supported token windows. Correspondingly,
evaluation benchmarks continuously raise both the maxi-
mum input sequence length and the complexity of tasks,
to ensure that assessment keeps pace with ever-growing
model capabilities. At first, L-Eval [90] and LongBench [91]
are at a moderate scale — contexts from roughly 3K to
60K tokens, including tasks like single-document QA, multi-
document QA, summarization, and code completion. Then,
InfinityBench [92] steps up to ultra-long contexts (about
100K tokens) at domains such as novel and coding. Re-
cently, LongBench v2 [93] is at the extreme frontier, which
pushes to 2 million words of context across 503 ques-
tions in six categories: single- and multi-document QA,
extended in-context learning, long-dialogue comprehension,
large code-repository understanding, and structured-data
reasoning. This benchmark emphasizes deep logical infer-
ence, cross-document linking, and structured-data extrac-
tion at unprecedented scale.

Although there are many efforts mentioned above, the
definition of “context” is still not clear enough [94], which
dictates both dataset structure and evaluation focus when
designing long-context benchmarks. If context is in the form
of a single coherent document, such as a novel or research
paper, the benchmark must ensure tight question–passage
alignment and test a model’s ability to integrate clues spread
across multiple sections. These datasets probe deep read-
ing comprehension and multi-paragraph reasoning but are
costly to curate, subject to copyright constraints, and slow
to refresh. Conversely, if context is provided as an artifi-
cial concatenation of shorter excerpts, e.g., simply group-
ing Wikipedia articles together, benchmarks can be scaled
quickly. Yet the relevance between questions and informa-
tion becomes uneven, and the task shifts toward retrieving
salient facts amid noise, exposing failures such as position
bias or the “lost-in-the-middle” effect.

This dual interpretation poses three core challenges for
evaluation. First, benchmarks must strike a balance between
reading and retrieval skills, ensuring that neither devolves
into trivial keyword matching nor pure long-span mem-
orization. Second, they require reliable metrics of ques-
tion–context relevance; without such controls, high scores
may reflect chance matches rather than genuine under-
standing. Third, as token windows expand, benchmarks
must evolve dynamically: coherent long texts are hard
to source continuously, while concatenated corpora risk
overlapping with pre-training data, demanding fine-grained
de-duplication and release-date tagging to prevent contam-
ination. Addressing these challenges is essential for keeping
long-context evaluation both realistic and forward-looking.

On the other hand, while long-context reasoning can be par-
tially reflected in benchmark results, the specific reasoning
capabilities assessed may be domain-specific, depending on
the nature of the documents used in the benchmarks.

2.2.6 Planning
Planning is a special type of reasoning. Instead of inferring

new knowledge from existing ones, it aims at decompose
high-level objectives to fine-grained, relatively simple steps.
Due to the task’s complexity, this process usually needs to
combine various reasoning skills, setting a high bar for the
model. Nevertheless, planning is the key for models dealing
with dynamic and complex tasks then stepping from simple
textual contexts, to virtual environments and to physical
worlds. According to the model’s working environments,
we examine three dimensions of planning benchmarks: (1)
task planning for textual goal decomposition, (2) agent plan-
ning for autonomous decision-making in virtual, interactive
environments, and (3) embodied agent planning that integrates
physical interaction with spatial reasoning.

Textual task planning focuses on generating structured
sequences of steps to achieve specified goals, often requiring
hierarchical decomposition. Early work in Goal-Oriented
Script Construction (GOSC) [95] established baselines using
the WikiHow [96] benchmark for step sequence generation,
later extended by Instructables [97] to incorporate hierarchi-
cal subgoals. Subsequent benchmarks like PlanBench [98]
systematically evaluate validity and cost-optimality of gen-
erated plans, revealing significant gaps between LLM ca-
pabilities and human reasoning. TaskBench [99] introduces
tool invocation graphs to assess execution consistency
alongside planning precision. Real-world applications are
explored through Natural Plan [100] for trip scheduling and
meeting coordination, WorkBench [101] for digital work-
place task management, and UltraTool [102] for end-to-end
tool utilization in complex problem-solving scenarios.

Virtual agent planning evaluates autonomous systems’
capacity to navigate in simulated or digital environments.
WebShop [103] targets e-commerce simulations requir-
ing complex query interpretation and purchase optimiza-
tion across 1.18 million real products. TravelPlanner [104]
chooses requiring agents to balance budget, logistics, and
commonsense constraints while coordinating multiple in-
formation sources for travel itineraries. SmartPlay [105] tests
adaptive reasoning through six game environments requir-
ing spatial and strategic planning. Theoretical foundations
are strengthened by the tri-modal evaluation framework
(autonomous/heuristic/human-in-the-loop) and the bench-
mark for action reasoning and plan reuse [106, 107]. Robotic
integration is pioneered by SayCan [108], which grounds
planning in physical affordances for real-world mobile ma-
nipulation.

Embodied agent planning bridges digital reasoning with
physical world, demanding tight integration of percep-
tion, environment interaction, and actions. According to
the key components, we discuss the evaluation from two
perspectives of environment and planning types. In terms of
environments, embodied planning benchmarks span from
abstract symbolic worlds to high-fidelity 3D simulations.
For symbolic or text-based virtual environments, which is
different from the aforementioned task planning and virtual
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agent planning, they leverage descriptive language or ab-
stract state representations for rooms and objects instead
of seeing pixels [109]. For 3D simulations, many bench-
marks adopt first-person view based on simulators like
Habitat [110] and iGibson [111] and an agent must interact
with objects or navigate spaces. This type of evaluation
emphasizes photorealism and physics, featuring realistic
lighting, textures, and physical object dynamics. Examples
include ALFRED [112] and BEHAVIOR [113]. By combining
both, ALFWorld [114] is a hybrid platform that aligns a
text-based world with the 3D tasks from ALFRED, allowing
agents to practice in a simplified symbolic setting before
transferring to a realistic simulator.

In terms of planning types, different benchmarks de-
mand different levels of planning granularity. Low-level
action planning requires sequences of fine-grained actions
(navigation steps, motor primitives). For example, an agent
needs to plan a path through a 3D scene, issuing low-
level motions (forward, turn) to reach a target coordinate
or object [110]. This is often framed as visual navigation
and tests short-term planning and obstacle avoidance, al-
beit potentially over long distances. In contrast, high-level
task planning involves deciding on a sequence of sub-
tasks or goals to satisfy an overall objective, e.g., “clean
the coffee cup and put it back”. Examples datasets in-
clude ALFRED [112] and BEHAVIOR [113]. Although high-
level tasks have achieved promising results, some studies
argue the potential overestimation and delve into single-
step planning [115, 116]. Their analysis reveals both types
of evaluation are important since notable drawbacks like
numerical comprehension, heavy selective biases over di-
rectional concepts, or recurrent issues, still exist and may be
critical when transferring to real world.

2.2.7 Miscellaneous Reasoning

Apart from the aforementioned reasoning tasks, there exists
a diverse range of reasoning skills that we collectively refer
to as miscellaneous reasoning. Example symbolic reasoning
tasks include coin flip reasoning and last letter concatena-
tion [117]. The basic idea is to define a set of transformation
rules, and the model is required to apply these rules system-
atically to infer the correct outcome given an initial state.
Similarly, there are also some common IQ test puzzles and
algorithmic problems, such as classic puzzles like the tiger-
eats-sheep problem or the gold division problem. Clearly,
these tasks are in-between logical reasoning or instruction-
following.

Other examples include visual reasoning and designs
tasks defined in [118]. These tasks include counting line
intersections, determining the relationship between two
circles, identifying the circled letter, counting overlapping
shapes, counting nested squares, counting the rows and
columns of a grid, and following single-colored paths.
Though simple, most vision language models (VLMs) per-
form unsatisfactory.

Spatial reasoning also attracts many research attention.
The work [119] defines 2D and 3D trajectory labeling and
relationship identification. This work employs the CALVIN
benchmark [120], which assesses LLMs in long-horizon,
language-conditioned robotic manipulation tasks.
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Fig. 5. Illustration of instruction following’s paradigm shift: from tasks,
where tasks are gathered and their descriptions are used as instruc-
tions, to user needs where user prompts are regarded as “fine-grained”
tasks’ instructions.

2.3 Instruction Following

Instruction following aims to assess whether models can
comprehend human inputs and provide appropriate re-
sponses. As model capabilities have advanced, this evalu-
ation method has progressively evolved from conventional
NLP tasks to diverse human needs (Figure 5).

In the early stages, models were limited to perform-
ing single tasks, with training focused on mapping inputs
to outputs on specific datasets. To enhance generaliza-
tion, multi-task learning was introduced, shifting model
predictions from p(y|x) to p(y|x, task description) [121].
Consequently, researchers began aggregating diverse tasks
and crafting detailed task descriptions, resulting in multi-
task fine-tuning datasets collectively known as instruction
tuning. Held-out tasks not included in the training set
were then used for evaluation. Early instruction following
evaluations thus centered on traditional NLP problems,
such as question answering, question generation, and text
classification. Representative benchmarks in this phase in-
cluded NATURAL INSTRUCTIONS [122], TO-EVAL [123], IN-
STRUCTEVAL [124], FLAN [125] and SUPERNI-TEST [126].

As more tasks are included to enhance generalization,
the goal of instruction tuning shifts to real-world human
needs, from which modern NLP tasks are derived. Thus,
task descriptions can be viewed as scientific definitions
of those needs. Researchers then began collecting a di-
verse array of real-world user prompts, moving beyond
the confines of specific tasks, such as SHAREGPT [127],
FREEDOLLY [128], OPENASSISTANT [129]. The release of
ChatGPT further accelerated this trend, as LLMs were
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integrated into online service environments that allow
users to issue a wide variety of instructions framed as
open-world “tasks”. A representative example is CHATBOT
ARENA [130], renowned for its Elo rating score system.
In this platform, users provide instructions to chatbots,
and two randomly selected LLMs generate responses for
direct comparison. Human annotators then select the better
response in real time, with each outcome contributing to an
evolving Elo rating that dynamically quantifies the relative
performance of the models—thereby more closely mirroring
real-world usage scenarios.

This shift from task-specific evaluations to user-driven
needs ensures that models can handle a wide variety of
instructions and respond effectively to the multifaceted
demands encountered in practical applications. However, it
also introduces significant evaluation challenges: responses
become more open-ended and non-structured, making it
difficult to achieve reliable and consistent scores through
human evaluation, which is both resource-intensive and
time-consuming. Consequently, researchers have begun ex-
ploring automated evaluation methods to improve effi-
ciency and scalability. For example, ALPACAEVAL [131] and
VICUNAEVAL [132] have experimented with using LLMs
to score the quality of responses. These studies found that
LLMs can not only generate relatively consistent scores but
also provide detailed explanations for those scores. Further-
more, benchmarks such as ARENA HARD AUTO [133] have
been developed. In these benchmarks, user instructions
collected from online environments are evaluated in a pair-
wise manner — similar to CHATBOT ARENA — where two
LLMs generate responses to the same instruction. The key
difference is that evaluations are conducted by a powerful
LLM, such as GPT-4, rather than human annotators, thereby
improving scalability and efficiency [130].

Nevertheless, this automated approach has faced criti-
cism for introducing potential biases inherent in the judg-
ing LLMs. Such biases, including preferences for verbosity
or specific response styles, may lead to unfair evaluation
outcomes [134–137]. To mitigate these issues, style-control
variants such as STYLECONTROL ARENA[134] and LENGTH-
CONTROLLED ALPACAEVAL[136] have been introduced.
These benchmarks seek to disentangle stylistic factors from
the substantive content of responses, enabling fairer com-
parisons between LLM outputs. A more detailed discussion
of automated evaluation methods will be presented in the
Section 3.

Although pairwise comparison benchmarks are valuable
for assessing relative performance, they do not provide
fine-grained scores for specific capabilities. To address this
limitation, a new class of benchmarks has been developed
to evaluate instruction-following ability in an absolute and
fine-grained manner [138–140]. For instance, IFEVAL [138]
introduced 25 rule-verifiable constraints (e.g., Output your
response in all uppercase letters, within 10 words, without
using the word ”I”, etc.), requiring LLMs to generate re-
sponses that satisfy these constraints. FOLLOWBENCH [139]
extended this idea by expanding the constraints from rule-
verifiable to model-verifiable, wherein another strong LLM
is tasked with verifying whether the generated responses
meet the constraints. WILDBENCH [140] further advanced
this approach by providing a human-annotated checklist for

each instruction, with a judge LLM verifying whether the
generated response satisfies the checklist — thus adding an
additional layer of human oversight.

2.4 Multi-modal Evaluation

Multimodal evaluation measures the ability of LLMs to
process different data modalities beyond text, such as audio
or tabular data. This capability enhances the versatility of
AI models in real-world applications. Several survey pa-
pers [141–143] have focused on evaluations in this domain;
therefore, we select visual information as a complementary
aspect to the text-based capability assessments discussed
above. Below are some representative tasks.

2.4.1 Visual Question Answering
Visual Question Answering (VQA) is to answer questions
based on both textual and visual information. We start
with basic visual perception tasks, like RealWorldQA [144]
that evaluate real-world spatial understanding including
counting, identifying, and locating objects in images. These
tasks are easy for humans but still challenging for models.
To further assess cognitive abilities, MME [141] designs
reasoning, coding, and planning tasks. MMT-BENCH [145]
dives deeper by decomposing visual abilities into 32 meta-
abilities (e.g., counting, locating, and identifying) and con-
structing a comprehensive benchmarks. Except for percep-
tion and cognition, MMMU [146] and MMMU-Pro [146]
curated massive multi-discipline tasks demanding college-
level subject knowledge. While, recent works have shown
that many MMMU samples could be answered without
visual information, this raises concerns about uni-modal
bias [147]. To address this issue, MMSTAR [148], a vision-
indispensable multi-modal benchmark, was proposed. Each
sample in MMSTAR is verified by human to ensure the
visual content is essential to answer the question. Further-
more, hallucination and long-tail issue are also considered
in MMBENCH [149] and HallusionBench [150], respectively.

2.4.2 Visual Document Comprehension
Visual Document Comprehension regards document, in-
cluding text, tables, and diagrams, etc., as visual inputs
(e.g., images) for the following tasks. Compared with tex-
tual document understanding, this type of methods enjoy
an efficient end-to-end manner and can achieve maximum
retention of information. For example, there is no additional
step to parse text from images and the layout is main-
tained. Therefore, benchmarks are curated to evaluate text
understanding from document screenshot [151] or taken in
the wild [152, 153], infographic text comprehension [151],
multi-modal document understanding [154], and scientific
diagram comprehension [155].

2.4.3 Multi-image Understanding
While earlier MLLMs are mostly trained to align single
images with natural language components, one emergent
capability that recent efforts seek to extend is multi-image
understanding, or more broadly, interleaved processing of
(multiple) images and texts. In this context, earlier bench-
marks including multi-image examples typically focus on
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specific scopes of reasoning and do not provide a compre-
hensive assessment [145, 156, 156–158]. Recent efforts assess
MLLMs in multi-image scenarios. For example, MANTIS-
Eval [159] is a human-annotated benchmark comprising 207
examples for multi-image reasoning, such as size percep-
tions and weight comparisons, while DEMON [160] eval-
uates whether MLLMs can follow zero-shot demonstrative
instructions. A milestone benchmark for this challenge is
MuirBench [161]. This comprehensive benchmark contains
11,264 images and 2,600 multiple-choice questions, evalu-
ates on a range of 12 multi-image understanding abilities
(e.g. geographic understanding, diagram understanding,
visual retrieval, etc.) and 10 diverse multi-image relations
(e.g. narrative, complementary, etc.).

Similarly, video understanding can be regarded as an
extension of image understanding to a sequence of images,
considering the temporal and spatial features among im-
ages. For example, MVBench [162] and PerceptionTest [163]
evaluates general video comprehension. Clearly, along with
the increasing video length, MLLMs is required to process-
ing massive images within the context window like “visual
long context reasoning” (visual version of Section 2.2.5).
EgoSchema [164] and Video-MME [165] target the compre-
hension of long-term video up to one hour.

2.5 Safety

Along with the increasing capabilities of LLMs, their de-
ployment raises serious safety concerns. Safety evaluation
aims at assessing a model’s ability to avoid generating
harmful, unethical, or biased outputs, ensuring its align-
ment with human values and societal norms. A recent
survey [166] classified existing works into various attack
and defense groups, including adversarial attacks/defenses,
backdoor & poisoning attacks/defenses, jailbreak attack-
s/defenses, intellectual property protection, membership
inference attacks, data extraction attacks, prompt injection
attacks, etc. While, another survey [167] comprehensively
introduce the open datasets and categorizes them into five
main purposes: broad safety, narrowly defined safety, value
integrity, bias, and other. Differently, our categorization is
driven by analyzing evaluation trends and contains four
directions: 1) content safety, 2) multi-dimensional trustwor-
thiness, 3) adversarial robustness, and 4) agentic safety.

2.5.1 Content Safety
At the most fundamental level, content-safety bench-

marks probe whether an LLM can identify, refuse, or filter
toxic, hateful, violent, or otherwise disallowed text under
non-adversarial conditions. Evaluations appear in three for-
mats. The first one adopts single-sentence classification, e.g.,
ToxiGen [168] includes 274,000 machine-generated state-
ments targeting 13 minority groups, each labeled as either
toxic or benign. Second, recent studies, like RealToxici-
tyPrompts [169], ToxicChat [170], BeaverTails [171], and Di-
aSafety [172], mimic the settings in real-world applications,
which collects prompt-response pairs. Thus, evaluation can
either treat it as text classification, the same as the first
format above, or, third, feed the testing prompt into LLMs
and leverage external tools to judge the newly generated
response. Clearly, two major challenges lie in the design

of prompts and the performance of judge tools, which are
the main focus of adversarial robustness as discussed later.
In addition, there is a growing emphasis on multilingual
content moderation or specific domains such as gender
and sexuality [173]. To conclude, the key challenges for
content safety benchmarks are two-fold: 1) the hate speech
may be nuanced and contain no obvious slurs or profanity,
which motivates ToxiGen [168] to design an adversarial
classifier-in-the-loop generation process. 2) the hate speech
should, as much as possible, originate from or closely re-
semble everyday life. Example datasets including RealToxi-
cityPrompts [169] and DiaSafety [172] then collect data from
real world like Reddit.

2.5.2 Multi-Dimensional Trustworthiness
LLM “safety” is not a single metric. Complementary to
content toxicity or hatefulness as mentioned above, several
recent benchmarks aim to evaluate LLMs holistically across
multiple dimensions like bias [174]. DecodingTrust [175]
assembles tests for eight different aspects including toxicity,
stereotype bias, privacy, ethics, fairness, as well as ad-
versarial and out-of-distribution robustness. HELM Safety2

combines five benchmarks, covering six harm domains: vio-
lence, sexual content, harassment, self-harm, deception, and
discrimination, and draws on specialized sub-benchmarks
for each. The AegisSafety dataset [176] define a broad
taxonomy of 13 critical risk and 9 sparse risk categories.
SorryBench [177] spans 45 fine-grained safety categories
targeting refusal behaviors. Meanwhile, it includes multi-
lingual variations, which is also highlighted by XSafety [178]
and S-Eval [179].

In terms of evaluation format, most benchmarks follows
similar settings with those for content safety and adopt
multi-choice questions, such as SafetyBench [180], Decod-
ingTrust [175], SGBench [181]. To improve the difficulty
levels, SALAD-Bench [182] introduces attack and defense
methods to enhance the prompts categorized into 6 do-
mains, 16 tasks, and 66 specific categories. While, CHiSafe-
tyBench [183] designs a hierarchical benchmark across 5
risk areas and 31 categories to better organize the multiple
safety dimensions. Except for structured tests, scenario-
based tests are gaining popularity for practical values. The
model is placed in a concrete situation and must take a
stance or choose an action consistent with safety or ethics.
For instance, the HHH benchmark [184] compares pairs of
model outputs in different interaction scenarios and asks
which response better aligns with ethical values: Helpful-
ness, Honesty, and Harmlessness. This format, using human
preference judgments on model outputs, checks if the model
can be simultaneously useful, truthful, and non-harmful.
Another example is the ETHICS [185], which poses ethical
dilemmas or scenario-based questions covering dimensions
like justice, deontology, virtue ethics. For better under-
standing model’s safety, DoNotAnswer [186] provides an
explanation for why a response should be refused, enabling
evaluators to check not just if the model refuses, but whether
it understood the risk.

A core challenge in multi-dimensional trust evaluation
is coverage and scalability. While, curating tests for every

2. https://crfm.stanford.edu/2024/11/08/helm-safety.html

https://crfm.stanford.edu/2024/11/08/helm-safety.html
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TABLE 1
Capability-based benchmark taxonomy.
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Physical [7, 57, 73–76]
Domain-Specific [81–84]

Logic:
Deductive [48–52]
Inductive [53–56]
Abductive [57–59]

Planning:
Task [95, 96, 98–102]
Agent [103–108]
Embodied [109–114]

Long context [90–94]

Miscellaneous [117–120]

In
st

ru
ct

io
n

Fo
ll

ow
in

g Task-based [121–126]

Real-World Prompts [127–130]

Automated [130–133]

Style-Control [134–137]

Constraint-based [138–140]
Sa

fe
ty

Content Safety [168–173]

Multi-Dimension [174–188]

Adversarial Robustness [184, 189–206]
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potential risk is labor-intensive. This has led to efforts to
crowdsource3 and automate scenario generation 3. How-
ever, using LLMs to judge other LLMs can introduce error if
not carefully validated [187], which will be further discussed
in Section 3.4.2. Therefore, a clear trend in evaluation design
for trustworthiness is moving beyond static question sets
toward more interactive simulations. For example, some
studies introduce role-playing games to simulate some sce-
narios, so that the involved agents may discover potential
risks and produce training/testing data automatically [188].

2.5.3 Adversarial Robustness
In previous sections, we primarily focused on detect-
ing whether models generated unsafe content. Bench-
mark datasets usually collect potentially harmful prompts
through pattern matching or rule-based filtering to measure

3. https://github.com/openai/evals

the toxicity probability of model outputs. As LLMs ad-
vanced, researchers recognized that static prompts were in-
sufficient to comprehensively expose risks. This led to a shift
toward adversarial testing or red-teaming methods, where
humans or automated algorithms iteratively refine prompts
to bypass safeguards. Before benchmarks, we first briefly
introduce several typical attack methods as one of the basic
evaluation components. There are two groups of methods:
white-box and black-box attacks [189]. For white-box attack
methods, Gradient-Based Red Teaming (GBRT) [190] uses
model gradients to optimize prompts that trigger policy
violations. In contrast, many black-box strategies treat the
model as an API and use search or another LLM to craft
exploits. Recent methods include reinforcement learning to
generate realistic but harmful queries [191] and persona-
driven attacks, such as SoP [192], which creates multi-
character role-play scenarios to exploit a model’s social

https://github.com/openai/evals
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compliance. To highlight the importance of robust input
processing, fuzzing techniques have been proposed to cap-
ture subtle prompt variations. GPTFuzz [193] mutates seed
prompts and reveal sensitivity to slight input perturbations,
while WordGame [194] conceals harmful requests behind
scrambled text to bypass content filters. These diverse red-
teaming approaches exploit different model vulnerabilities
(from over-confidence and “distractibility” to context ma-
nipulation and timing), greatly expanding the adversarial
toolkit.

Alongside attack methodologies, researchers have built
evaluation datasets to benchmark LLM robustness under
attack. We can roughly classify them into three groups. The
first type adopts single-turn attack, similar with those intro-
duced above yet with intentional design to induce the model
into ignoring its safety guardrails (e.g., a universal adversar-
ial suffix). Example datasets include AdvBench [195], For-
biddenQuestions [196], AART [197], AdvPromptSet [198],
AttaQ [199], CPAD [200], and ALERT [201] that intro-
duces a fine-grained risk taxonomy consisting of 6 macro
and 32 micro categories. Second, datasets like Anthropi-
cRedTeam [202], AnthropicHarmlessBase [184], and Bot-
Adversarial Dialogue (BAD) dataset [203] leverage human
or agent to curate adversarial dialogues with the goal of
exposing model failures in multi-turn interactions. The third
group of datasets aim to proactively spotting vulnerabilities
of models. Recent literature deploys evolutionary red team-
ing processes to optimize attacks. A representative work of
this kind is AutoDan [204] which employs an hierarchical
genetic algorithm to evolve prompts. Unlike previous at-
tacks [205] that require gradient-based optimization, Auto-
Dan efficiently operates mutations and crossovers of attack
prompts as paraphrasing and linguistic exchange of para-
graph content, easily strengthening any manually designed
attacks without losing their semantic meaningfulness. The
more recent follow-up AutoDan-Turbo [206] further extends
such a genetic process to evolve high-level attacking strate-
gies, leading to a life-long learnable red teaming system that
can be generally applicable to discover unforeseen threats to
forthcoming LLMs.

2.5.4 Agentic Safety
The newest frontier in LLM safety evaluation is agentic

safety, which assesses LLMs that act as autonomous agents,
operating tools or navigating environments on behalf of
users. These agents must not only avoid producing harmful
content, but also avoid harmful actions. This introduces
new safety challenges rooted from both users and en-
vironments, which involve handling multifaceted threats
associated with user authorities, system mechanisms and
runtime user-system interaction sessions [207]. In terms of
the environment, many studies focus on web agents like
Mind2Web-SC [208], AdvWeb [209], EIA [210]. To explore
more domains, EICU-AC [211] targets the medical domain
to evaluate access control of LLM agents based on user au-
thorization when processing electronic health records. Safe-
OS [207] evaluates the robustness of OS agents, meanwhile,
investigates a broad range of attacks including prompt in-
jection, system sabbotage attacks, and environment attacks.
Agent-SafetyBench [212] encompasses 349 interactive envi-
ronments (simulated scenarios) with 2,000 total test cases,

covering 8 categories of safety risks and 10 common failure
modes for agent behavior. ASB [213] includes 10 scenarios
and benchmark various attack tools, e.g., prompt injection,
memory poisoning, and backdoor. Instead of building costly
environments, R-judge [214] consists of 569 logs of multi-
turn agent interactions (drawn from various simulated ap-
plications) with annotated risk events covering 27 scenario
types and 10 distinct risk categories. The task is for an LLM
to read the log and correctly flag any unsafe decisions or
outcomes.

Clearly, agentic safety evaluation is inherently more chal-
lenging than static LLM evaluation, because it requires sim-
ulating an interactive environment. Besides, the benchmark
has to define the risk taxonomy, evaluator for open-ended
responses or actions, attack tools for robustness assessment,
etc. Therefore, in the future more environments are expected
to cover various domains. In these simulations, as agents are
intended to handle long-horizon tasks, another evaluation
focus is long-term robustness under distribution shift. An
agent might start aligned, but after many steps or after suc-
cessively encountering adversarial inputs, it could deviate
from policy. Finally, a critical aspect of agentic safety is bal-
ancing utility with safety. If an agent is overly constrained,
it may refuse to use its tools at all or become useless.

2.6 Integrated Capabilities: General-purpose Evalua-
tion

Early benchmarks for LLMs often targeted isolated capa-
bilities, e.g., logical reasoning or instruction following in
separate tests. However, real-world tasks rarely exercise
these skills in isolation. Recent evaluation efforts therefore
emphasize integrated assessment from GLUE to MMLU,
and to Big-Bench, measuring how well an LLM can combine
knowledge, reasoning, instruction following, multi-modal
understanding, and safety together. The goal is to move
beyond concrete ability tests toward holistic evaluation for
general-purpose performance or artificial general intelli-
gence, mirroring the integrated demands of real-world use.
After the discussion on each ability, we summarize their
taxonomy in Figure 6. Now, we will discuss the overlaps
of integrated or comprehensive benchmarks.

2.6.1 Interplay Among Evaluation Capabilities

In practice, while we have detailed the evaluation datasets
and potential challenges for each individual capability in
preceding sections, these capabilities are inherently inter-
twined. In this section, rather than trivially enumerating
every possible combination, we will instead examine se-
lected examples of capability interplay and then discuss
generalized and holistic evaluation.

Knowledge & reasoning. Knowledge and reasoning
are inherently intertwined. Effective reasoning fundamen-
tally depends on a model’s underlying knowledge base.
As illustrated in earlier sections on mathe reasoning, it
assumes mastery of basic mathematical theorems; coding
reasoning requires knowledge of programming languages;
commonsense reasoning often evaluates familiarity with
commonsense knowledge; planning necessitates procedural
knowledge; even purely logical reasoning rarely operates
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in complete isolation from knowledge — even using ar-
bitrary symbols or “neutral” facts to eliminate the influ-
ence of memorized world knowledge, it may risk over-
simplifying language understanding and introduce artifi-
cial patterns that models exploit without generalizing to
real-world reasoning [61]. Conversely, knowledge-intensive
tasks frequently demand reasoning capabilities. For exam-
ple, open-domain QA datasets like HotpotQA [215] and
StrategyQA [216] usually require models to retrieve and
interconnect multiple facts before reaching conclusions, i.e.,
multi-hop reasoning.

Instruction following & Knowledge & Reasoning.
Broadly speaking, instructions, as user inputs to models, can
encompass any task description. This implies that knowl-
edge and reasoning capabilities can also be considered sub-
skills of instruction following. For example, in practice,
users often ask LLMs to perform multi-step tasks via natural
language instructions, “Explain how to solve this math
problem step by step.” or “Analyze the argument in the fol-
lowing paragraph.” Benchmarks like MT-Bench [130] com-
bine instruction following with knowledge, requiring LLMs
to generate responses across diverse topics while adhering
to user directives. Similarly, VicunaEval [132] integrates
inherent knowledge with precise instruction execution. Rea-
soning tasks can also be framed as instructions. They usually
define a set of rules, where LLMs must follow logical
steps to derive final states from initial conditions [117].
Relevant benchmarks also include CodeXGlue [45] and
BigCodeBench [39]. These require LLMs to follow detailed
programming instructions for tasks like code completion,
unit testing, and documentation generation.

Interaction with multi-modal understanding. Multi-
modal understanding is inherently orthogonal to other ca-
pabilities. All previously discussed evaluation benchmarks
can be extended to additional modalities. A clear example is
VQA benchmarks, where models are given an image and
a related question. To succeed, the model must interpret
visual content (detect objects, scenes, text in the image)
and often use world knowledge or reasoning to answer
the question. Benchmarks like OK-VQA [217] specifically
target this intersection, requiring models to integrate exter-
nal knowledge with visual comprehension. For multi-modal
reasoning, specialized benchmarks emerge. Math-Vista [29]
and MathVision [218] targets the evaluation of multi-modal
math reasoning by combining diagrammatic representa-
tions with textual problem statements. MMMU [158] and
MMMU-Pro [146] presents college-level questions that in-
terleave text with heterogeneous visual inputs, demand-
ing both domain-specific knowledge and advanced rea-
soning skills. This dataset pushes models to draw upon
a broad base of subject knowledge while performing de-
liberate, expert-level reasoning across multiple disciplines.
OlympiadBench [33] further pushes difficulty to Olympiad-
level in math and physics context. Similarly, visual instruc-
tion tuning [219, 220] bridges visual understanding with
instruction following, while Huang et al.[221] provide a
comprehensive survey. In summary, multi-modal evalua-
tion expands the scope of integrated assessment. It ensures
LLMs’ general capabilities extends beyond text to interpret
and reason about visual (or auditory, etc.) worlds in con-
junction with language.

Interaction with safety. The safety capabilities of LLMs
are also orthogonal to other competencies yet critically
important for real-world deployment. Increasingly, bench-
marks incorporate safety evaluations alongside knowledge
and reasoning tasks. For instance, TruthfulQA [222] system-
atically tests models with 818 challenging questions span-
ning 38 domains (e.g., health, law, finance) to distinguish
between truthful responses and fluent but factually incorrect
answers that mimic human plausibility. This paradigm eval-
uates not just factual knowledge and linguistic proficiency,
but crucially measures truthfulness alignment, prioritizing
correct, honest responses over eloquently stated misconcep-
tions and thereby integrating factual reasoning with safety
metrics. For intersection with instruction-following capabil-
ities, models that unconditionally obey user requests risk
generating harmful outputs. Effective safety alignment ne-
cessitates the ability to override instructions when appropri-
ate. Contemporary evaluations address this by incorporat-
ing refusal-worthy prompts (Section 2.5.1), where properly
aligned models must demonstrate refusal competence or
safe response redirection. Notably, SafeBench [223] provides
a systematic framework for evaluating multi-modal LLM
safety, extending these principles to complex, real-world de-
ployment scenarios. This comprehensive approach ensures
that safety mechanisms remain robust when models operate
at the intersection of knowledge retrieval, reasoning, and
instruction execution, a critical requirement for trustworthy
AI systems.

2.6.2 Comprehensive Evaluation

Based on the above analysis, the field is progressively in-
tegrating knowledge, reasoning, instruction following, mul-
timodal understanding, and safety into integrated bench-
mark suites, moving beyond isolated skill testing, for a
comprehensive measure of a model’s general-purpose ca-
pabilities. This is not only the abilities are inherently inter-
twined, but also real-world deployment requires the simul-
taneous application of these capabilities. Early initiatives
like GLUE [224] and SuperGLUE [225] pioneered this ap-
proach by aggregating several common NLP tasks, enabling
multifaceted evaluation of pre-trained language models
like BERT during fine-tuning. Subsequent comprehensive
benchmarks expanded the scope. MMLU [226] includes
57 subjects, including elementary mathematics, US history,
computer science, and law. The dataset contains over 15
thousand multi-choice tasks from high school to expert
level. MMLU-Pro [227] updates the MMLU framework with
more challenging reasoning tasks, enhanced robustness, and
reduced dataset noise. As the transition from task-oriented
to capability-centric evaluation occurs, BIG-bench [62] cu-
rates over 200 diverse tasks covering mathematics, lin-
guistics, commonsense reasoning, and social bias analysis
among others. To address computational constraints, BIG-
bench Lite provides a distilled 24-task subset for efficient
performance measurement. Building on that idea, recent
benchmark collections like HELM [228] and VHELM [229]
explicitly report a profile of each model across many aspects,
from accuracy on academic questions to robustness under
input perturbations and fairness in responses. The aim is to
identify not just “which model is best” but in what ways
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a model is strong or weak, and how well it balances the
competing demands of capability and alignment.

Another holistic evaluation frameworks put LLMs into
agent roles, asking them to operate in interactive envi-
ronments or multi-step decision problems, which tests a
convergence of capabilities in scenarios closer to real-world
deployment. Except for prior agent planning (Section 2.2.6)
and agentic safety(Section 2.5.4), there are also some gen-
eral evaluation involving one or multiple LLM agents to
collaborate or compete. LLMs-as-an-Examiner [230] sim-
ulates peer review assessments. Each LLM operates like
an examiner to generate queries and also judge the re-
sponses from other LLMs. By collaboratively determining
the evaluation results, this process reduces biases and en-
hances fairness in evaluations. Auto-Arena [231] introduces
discussion among LLM agents to automate this process.
Inspired by educational assessment processes, AutoDe-
tect [232] employs three LLM-powered agents — Exam-
iner, Questioner, and Assessor — that collaborate to gen-
erate test scenarios and analyze model responses. Agent-
CQ [233] leverages LLMs to automate the creation and
assessment of clarifying questions in conversational search
systems, while LEGALAGENT [13] pushes the evaluation
further to agent-based legal reasoning. There are also vi-
sual agent evaluation framework to evaluate the abil-
ity of MLLMs to perform complex real-world tasks like
UI operation on mobile devices [234], robotic control in
household tasks [235], card-based games [236], and naviga-
tion [116, 237, 238]. Other similar frameworks include IQA-
Eval [239], ALI-Agent [240], ChatEVal [241], MATEval [242],
and AgentSims [243]. Unlike static datasets, this type of
interactive benchmarks also test adaptability and decision-
making. An agent can observe new information and must
decide its next action. More practically, a model might
initially answer a question incorrectly, but in an interactive
setting it could be given feedback or detect the error and
correct itself. Metrics for such evaluations can include suc-
cess rate, efficiency (steps taken), and qualitative ratings of
the agent’s behavior.

3 AUTO-EVALUATION

In Section 2, we introduced commonly used datasets catego-
rized by five core capabilities and discussed their interplay.
However, these static datasets lead to delayed updates of
test sets, hindering their alignment with model progress.
Additionally, they are still susceptible to performance over-
estimation due to data contamination. In this section, we
first introduce several dynamic benchmarks and live leader-
boards, followed by methods for automated dataset curation
and evaluation. The Github page we will maintain and wel-
come any collaborators is https://github.com/ALEX-nlp/
Chapter3 Awesome Paper List.

3.1 Dynamic benchmarks

Dynamic benchmarks aim at continuously updating the
testing data to offer a fairer assessment. There are mainly
two types of advantages. First, it considers the dynamic
nature of world knowledge, thus preventing false negatives
caused by outdated information and accurately assessing

model latest advancements. Early works highlight the time-
liness of knowledge by introducing timestamp, where a
piece of knowledge holds true only within its own times-
tamps. To obtain accurate timestamp, common sources for
dataset curation include WIKIDATA [16], news articles [18],
or existing datasets annotated by crowd-sourcing work-
ers [17]. The target of such evaluation is similar with tem-
poral commonsense reasoning in Section 2.2.4. Building on
top of them, recent benchmarks target real-time evaluations.
REALTIMEQA [19] evaluates models weekly on approx-
imately 30 multiple-choice questions derived from recent
news events. This benchmark highlights the importance of
continual learning and real-time knowledge integration for
accurate and timely responses. KOLA [20] and KNOT [21]
take a step further by not only evaluating the coverage of
the rapidly changing world knowledge but also the ability
of models to integrate the new knowledge with the existing
knowledge.

The second advantage of dynamic benchmarks is that
consistently updating data can mitigate the data contamina-
tion issue. There are two type of methods. The first group
still leverages the timeliness of knowledge. Since as long
as the evaluation data pertains to the latest knowledge,
the model would not have been exposed to it, thereby no
testing data shall be seen during training. However, other
researchers also point out that the risk lies in the difficulty of
completely distinguishing new from old knowledge based
on a specific cutoff date (such as the model’s release date).
For instance, even if a movie is released after this date and
the model should not have seen it, necessary information
might have already been exposed to the model through
early promotions and related activities [23]. Representative
works include EvoWiki [23] and AntiLeak-Bench [24]. For
example, EvoWiki is an evolving dataset that categorizes
information into stable, evolved, and uncharted states. By
comparing the information before and after the LLM’s cut-
off date, stable data do not change and evolved data indicate
an update. While, uncharted data only involve those events
happened thereafter.

Instead of the timeliness of knowledge, another line of
research highlights the dynamics of data — as long as the
evaluation data keeps changing, they are hardly exposed
to the model during evaluation. Dynabench [244] is an
open-source platform that incorporates human-and-model-
in-the-loop dataset creation. Unlike traditional static bench-
marks, Dynabench enables annotators to craft examples that
challenge current models, revealing their weaknesses and
promoting the development of more robust systems. This
dynamic approach directly integrates human feedback into
the evaluation process. Livebench [22] aims at releasing new
questions monthly, sourced from recent information such as
math competitions, arXiv papers, and news articles, thereby
ensuring that models are assessed on fresh, unseen data.
It encompasses six categories: math, coding, reasoning, lan-
guage comprehension, instruction following, and data anal-
ysis, each with tasks that have verifiable ground-truth an-
swers. Focusing on specific coding task, Livecodebench [47]
instead continuously collects new problems from coding
competitions on platforms like LeetCode, AtCoder, and
CodeForces. Beyond code generation, LiveCodeBench also
assesses capabilities in self-repair, code execution, and test

https://github.com/ALEX-nlp/Chapter3_Awesome_Paper_List
https://github.com/ALEX-nlp/Chapter3_Awesome_Paper_List
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output prediction, providing a holistic view of an LLM’s
coding proficiency.

Live Leaderboard To facilitate a convenient evaluation,
some researchers develop and maintain real-time evaluation
platforms that are updated either manually or automatically.
Chatbot Arena [245] is an open evaluation platform based
on human preferences. Users can engage in side-by-side
conversations with anonymous AI models and vote for their
preferred responses, facilitating direct comparisons of AI
capabilities in real-world scenarios. The platform employs
the Elo rating system to rank models based on user votes.
Since its launch in May 2023, Chatbot Arena has attracted
millions of participants and collected over 800,000 votes,
becoming a critical resource for live, community-driven
LLM evaluation.

EvalPlus Leaderboard [246] is a platform for code gen-
eration. It utilizes enhanced benchmarks, such as Hu-
manEval+ and MBPP+, which offer significantly more test
cases than their original versions, to assess models’ code
correctness and efficiency. By ranking models based on
metrics like pass@1 using greedy decoding, the leaderboard
provides insights into each model’s coding proficiency and
robustness.

Open LLM Leaderboard [247] tracks, ranks, and eval-
uates open-source LLMs and chatbots. It provides a cen-
tralized resource for comparing the performance of various
models across multiple benchmarks, facilitating informed
decisions for researchers and developers in the AI commu-
nity. Users can submit their models for automated evalua-
tion on Hugging Face’s GPU cluster, ensuring standardized
assessments. The leaderboard is continuously updated, re-
flecting the latest advancements.

C-Eval Leaderboard [248] is a comprehensive Chinese
evaluation suite, consisting of 13,948 multiple-choice ques-
tions spanning 52 diverse disciplines, including humani-
ties, science, and engineering, and is structured across four
difficulty levels: middle school, high school, college, and
professional. Notably, C-Eval includes a challenging subset
known as C-Eval Hard, which focuses on subjects requiring
advanced reasoning skills, such as advanced mathematics
and college physics.

Clearly, to ensure the high quality of dynamic bench-
marks, the key is how to automate dataset curation and
evaluation, which will be detailed in the next section.

3.2 Automated Dataset Curation

Qualified human-annotated data requires substantial bud-
gets and time cost, thus being particularly vulnerable to
the rapid outdatedness and potential information leakage.
Accordingly, more and more evaluation datasets are con-
structed in auto-synthesized manners. In this section, we
summarize the common auto-synthesis strategies into three
main branches: compilation, derivation and generation. (1)
Compilation involves combining or selecting existing anno-
tations to align with the intended use of the dataset. (2)
Derivation utilizes existing datasets but modifies annotations
or adds new components to serve specific purposes. (3) Gen-
eration involves partially or completely constructing datasets
by automatically generating new contexts or annotations,
often with the assistance of LLMs. We detail these three

strategies as below. Note that the strategies summarized
here are not exclusive: the construction of one evaluated
dataset can leverage multiple strategies.

3.2.1 Compilation
Compilation is the most simple and widely-used approach
for building a new evaluation dataset. It can be further
divided into Combination and Selection.
Combination integrates existing annotations into a new, sin-
gle benchmark. These benchmarks are designed to evaluate
the general capabilities of LLMs [22, 62, 145, 224, 225], or
assess specific abilities in a more comprehensive and robust
manner like math/STEM [31, 33, 249, 250], coding [38, 47],
long-context understanding [90, 91, 251], information re-
trieval [252–255], etc. The biggest challenge for combination
is how to construct the benchmark a hierarchical and rea-
sonable taxonomy. The taxonomy in existing benchmarks
are usually designed in the following dimensions:

• Target abilities. For example, MathVista [29] sum-
marizes seven mathematical reasoning capabili-
ties. MMBench [149] designs a three-level, twenty-
subclass taxonomy tree to evaluate the perception
and reasoning abilities of LVLMs. Recently, MEGA-
Bench [256] includes over 500 real-world tasks within
the hierarchical taxonomy.

• Discipline and/or difficulty. Most benchmarks
sourced from examinations or exercises [158, 226,
248, 249, 257] are usually categorized by disciplines
and/or difficulties. For instance, MMLU [226] and
MMMU [158] incorporate questions from 57 and 30
subjects, respectively. MATH [31] and M3Exam [257]
divide their questions into 5 and 3 difficulty levels.

Given the critical importance and relatively limited scale
of the taxonomy, it still heavily relies on human design.
Traditionally, the taxonomy is entirely designed by the main
contributors of the benchmarks. However, as the taxonomy
scale expands, the responsibility for its expansion is dis-
tributed. For example, BIG-Bench [62] encourages the entire
community to submit pull requests for new tasks. MEGA-
Bench [256] initially provides a draft two-level taxonomy
and invites all project members to contribute to its growth.
When the taxonomy is completed, they either collect previ-
ous datasets (such as GLUE [224], SuperGLUE [225], BIG-
bench [62], and MathVista [29]) or gather annotations from
multiple sources like websites, textbooks, or real-world data
(such as MMLU [226], MATH [31], OlympiadBench [33], C-
Eval [248], M3Exam [257] and MMMU [158]).
Selection involves filtering annotations to create new bench-
marks. Such process usually serves for three purposes:

• Scale control. Some benchmarks, especially those
constructed in combination way, sample annotations
randomly from previous datasets to control the scale
of the curated datasets [91, 258].

• Preliminary filtering. The raw data crawled from
real-world are sometimes noisy. It requires a pre-
liminary selection to improve the recall of qualified
data with the minimum time and budget cost. Sim-
ple but effective heuristic rules are usually adopted.
For example, ELI5 [259] and BRIGHT [260] select
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high-quality posts and/or answers (measured by
views, votes, URL numbers) in the Reddit or Stack-
Exchange. Benchmarks for tabular task like Hy-
bridQA [261] and FinQA [262] retain moderate-size
tables (measured by row and column numbers) to
balance the information amount and task difficulty.
SciToolBench [263] picks out tools (Python functions)
passing the unit tests to ensure the correctness of
these tools.

• Post-refinement. When the annotations have been
made from scratch or collected from previous
datasets, an additional selection (after the main
construction process) further benefit the dataset
from various aspects like quality, diversity, diffi-
culty, etc. Compared to pre-filtering, it requires more
customized assessment and often involves LLM-
s/LVLMs as judges. For instance, MMLongBench-
Doc [264] evaluates the document understanding
abilities of LVLMs (instead of their intrinsic knowl-
edge) and thus employs GPT-4o to remove sample
candidates which can be directly answered with-
out the access to documents. VisRAG-Bench [265]
introduces Llama-3 to filter out context-dependent
queries which are not appropriate for open-domain
retrieval task. MMStar [148] evaluates the visual
mathematical reasoning abilities and thus employs
GPT-4 to remove sample candidates which can be an-
swered by text-only information. HaluEval [15] and
MMHal-Bench [266] introduce ChatGPT and LLaVA
to rank and select high-quality hallucinated answers
(i.e., more plausible and close to the correct answers)
from previous generations. For a simple approach to
achieve strong reasoning during test-time inference,
S1 [267] has conducted post-refinements regarding
quality, difficulty, and diversity. For quality, they
filter out low-quality examples by checking if they
contain any string patterns with formatting issues,
such as ASCII art diagrams, non-existent image ref-
erences, or inconsistent question numbering. For dif-
ficulty, they first use Claude3.5 to select the correct
responses, and then measure the problem difficulty
through the token length of each response including
the reasoning process. For diversity, they introduce
the Mathematics Subject Classification (MSC) sys-
tem (e.g., geometry, dynamic systems, real analysis,
etc.) and classify each question into these specific
domains using Claude 3.5 Sonnet, keeping balanced
distribution across different domains.

3.2.2 Derivation
Derivation is an automatic construction strategy somewhat
between compilation and generation. It still heavily relies
on existing annotations, but introduces significant modifi-
cations. We further categorize derivation into two subtypes,
Transfer and Supplementary, as detailed below.
Transfer usually occurs when we evaluate the identical
or highly-similar tasks/abilities under different settings.
In such cases, creating new benchmarks from scratch is
neither necessary nor economical. The common choice is
to make new benchmarks by transferring from an exist-
ing, well-developed ones. For similar tasks, BEIR [252]

and ViDoRE [254] are information retrieval benchmarks
collected from multiple QA datasets by simple conver-
sion: (i) from question to query. (ii) merge passages
as retrieval corpus. Being an open-domain QA dataset,
OTT-QA [268] rewrites the queries in HybridQA [261]
for decontextulization. To explore the long-context/multi-
page settings, MP-DocVQA [269] and LongBench [91] in-
crease the document lengths in previous datasets like
DocVQA [151] by incorporating additional context pages
or similar paragraphs. For the same tasks at different
modalities, with the development of LVLMs, benchmarks
for many critical capabilities and practical task in text
domains are converted to visual domains and used to
evaluate LVLMs. For example, Multimodal-Mind2Web [270]
and SWE-bench Multimodal [271] trace back the web-
page screenshots which are used as textual format in
Mind2Web [272] and SWE-bench [38] to evaluate the agent
and coding abilities of LVLMs. Similarly, Wiki-VISA [273]
and M3DocVQA [274] render the Wikipedia URLs in NQ [5]
and MultimodalQA [275] datasets towards the evaluation of
visualized document understanding and grounding.
Supplementary usually occurs when we have the bench-
mark about some tasks and aim to evaluate their fur-
ther/successive tasks. In such cases, it is a natural choice
to build corresponding benchmarks in supplementary ap-
proach, i.e., adding new annotations based on the original
ones. To explore whether retrieval benefits code genera-
tion models, CodeRAG-Bench [276] is derived from coding
benchmarks [42, 47] by augmenting collected documents as
retrieval corpus. HellaSwag [74] is synthesized from Activ-
ityNet [277] as a QA dataset in which the negative choices
are adversarially synthesized. RuleBench [278] induces rules
from multiple logic-related datasets and add these rules
to form a new benchmark for inferential rule-following
evaluation. MMLongBench-Doc [264] and MuirBench [279]
add unanswerable ones by replacing keywords in original
questions, thereby detecting potential hallucinations. Upon
annotated events, MAVEN-FACT [280] automatically gen-
erate their factualities for Event Factuality Detection (EFD)
task.

3.2.3 Generation
When there are no corresponding qualified annotations for

reuse and/or edition, generation becomes the indispensable
choice for automatic data construction.

Rule-based Generation is still widely-used in the era
of LLMs due to its efficiency and deterministic, especially
under the following scenarios. (1) Mine real-world data.
The data for some tasks like math, coding and knowl-
edge base are entailed in related informative platforms and
knowledge-rich sources. It is natural to design automatic
pipelines and extract these real-world high-quality data as
evaluation benchmark. For example, LeanDojo [281] and
SWE-Bench [38] extract proofs from Lean and pull requests
from GitHub repositories, respectively. RealTimeQA [282]
extracts questions from news websites which requires latest
knowledge. AntiLeak-Bench [24] leverages the knowledge
among entities from Wikidata and synthesizes QA pairs for
contamination-free evaluation. Recently, CODEELO [283]
extracts updated coding problems from CodeForces. (2)
Synthesize for certain capability evaluation. To evaluate some
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specialized capabilities of LLMs/LVLMs, it is also bene-
ficial to create somewhat artificial but targeted datasets.
To assess the comprehensive reasoning abilities across dif-
ferent modalities, MultimodalQA [275] creates cross-modal
questions from single-modal questions by pre-defined, com-
positional templates. Similarly, RuleTaker [284] generates
facts and rules in logic, performs forward inference to
derive all its implications, and obtains questions expressed
in (synthetic) English using simple natural language tem-
plates. MM-NIAH [285] concatenates interleaved image-text
sequences from the OBELICS [286] dataset to create long-
context documents, referred to as multimodal haystacks.
POPE [287] employs templates which convert image in-
stances with object detection annotations to QA pairs for
object hallucination evaluation.

LLM-based Generation has been an important approach
and research topic for automated dataset construction.
The motivation of LLM-based generation can be catego-
rized into four aspects. (1) Label generation. Here the
raw corpus already exists. An LLM replaces human an-
notators by producing labels, rationales, or exemplar re-
sponses. Example methods cover multiple scenarios like
role-playing [288], multi-agent communication [289], multi-
turn interaction [258, 290], code generation [39, 291], tool-
use [292], etc.. (2) Context generation. This aims to complete
the missing parts of existing benchmarks, e.g., generating
responses or options in multi-choice questions. In such
cases, the generations are exactly the evaluation targets
of the benchmarks. For example, HaluEval [15] and Fav-
aBench [293] focus on hallucination evaluation and thus
leverages ChatGPT to generate contexts with potential er-
rors. A series of benchmarks [294–297] focus on reward
model evaluation and therefore generate a pair/group of
LLM-generated responses which are fed to reward model.
(3) Reference-based revision. This type of methods aim at
generating new data based on provided reference. Rep-
resentative works include WizardLM [298] and follow-up
works. They treat an existing dataset as scaffolding and
issue editing instructions: add constraints, deepen reason-
ing, inject noise, or rephrase, to an LLM, which rewrites
each item into harder variants. Ying et al. [299] proposed
two types of methods, mimicking and extending, to sys-
tematically update test sets to mitigate possible data con-
tamination issue. This approach preserves topical relevance
yet upgrades difficulty and coverage, functioning as control-
lable “data augmentation for evaluation”. (4) From-scratch
generation. When no suitable seed corpus exists, carefully
designed prompts elicit an LLM to invent both tasks and
solutions. Self-Instruct [300] pioneers this method by sup-
plying a handful of seed exemplars and letting the model
extrapolate thousands of similar instruction–response pairs.
LLM-as-Examiner [301] considers both evaluation breadth
and depth to generate diverse evaluation data. For breadth
of knowledge, they collects thousands of domain descrip-
tions as instructions. For depth, they prompt LLMs to gen-
erate follow-up questions as well as the responses. Note that
the first three generation approaches mentioned above can
also be viewed as data synthesis methods — they reprocess
existing data to maintain quality while ensuring flexibility.

3.3 Pipeline of Automated Dataset Curation

To conclude, towards a qualified benchmark, current works
carefully consider and design the following steps: (1) Well-
defined taxonomy. Under each topic and/or task type, per-
sonalized generation strategies or instructions are adopted
by LLMs and significantly improves the coverage and qual-
ity of LLM generations (See more details about the tax-
onomy construction in previous discussion). For example,
[145, 147, 302, 303] categorize multiple tasks and feed task-
specific instructions to LLMs for generate more high-quality
QA pairs. (2) Step decomposition. The auto-annotation
of benchmark is usually decomposed into several sub-
sequent steps. For instance, many QA-formatted bench-
marks [289, 292, 296, 304] separately generate the question-
s/instructions, answers/responses. Regarding more com-
plicated task, [305] synthesizes instances for Summary of
Haystack task by four sub-steps: insight generation, docu-
ment generation, query generation and summary genera-
tion. (3) Prompt strategy. Most earlier benchmarks [263, 292]
draw inspirations from In-context Learning (ICL; [306]) and
provide seed examples in prompts. These examples explic-
itly instruct LLMs to generate annotations with desired
contents and formats. Moreover, more detailed prompts,
higher quality the generation content, making prompts writ-
ten in detailed instructions become more and more popu-
lar [273, 303]. (4) Verification. The preliminary generation
from LLMs shall undergo verification procedure before use.
For math and coding tasks, the easiest verification occurs
when ground-truth answers are known and the generation
result are deterministic or executable. In such cases, rule-
based parsers or programming executor [263, 307, 308] are
adopted for verification. Also, LLM-as-a-judge evaluators
can efficiently assess the generation quality (More details in
the coming section).

3.4 Evaluator

As LLMs have unified a variety of natural language process-
ing tasks through natural language generation, a significant
shift has occurred in how open-ended responses are evalu-
ated. Traditionally, evaluation relied on task-specific metrics,
calculated by directly comparing model outputs to reference
texts. For example, in classification tasks [309], metrics such
as accuracy, precision, recall, and F1 score are commonly
employed; in ranking tasks [310], metrics like NDCG are
typically used. Similarly, a similar approach was adopted for
natural language generation tasks. BLEU [311], for instance,
is an automatic metric that measures the quality of machine-
generated translations by calculating the overlap of n-grams
between the output and reference texts. A higher overlap
indicates better alignment with the reference, suggesting
higher translation quality. Likewise, ROUGE [312] evaluates
the quality of summaries in the same way by calculating
word overlap between the evaluated summary and human-
generated ideal summaries. However, BLEU and ROUGE
primarily rely on lexical matching, often overlooking lexical
order and meaning. METEOR [313] improves upon BLEU
by not only considering unigram overlap but also incor-
porating lexical stem and semantic matching, which better
captures linguistic diversity in translations. Additionally,
METEOR accounts for recall and the ordering of lexical



CAO et al.: TOWARD GENERALIZABLE EVALUATION IN THE LLM ERA: A SURVEY BEYOND BENCHMARKS 17

matches, allowing for a more accurate assessment of ma-
chine translation quality. Despite these improvements, such
metrics still heavily rely on surface-level lexical overlap,
which often fails to capture deeper semantic nuances, co-
herence, or logical consistency.

In response, many embedding-based evaluation meth-
ods have emerged to assess model-generated responses at
the semantic level. BERTScore [314], for example, evaluates
the quality of machine-generated text by comparing the se-
mantic similarity between the generated text and reference
using contextual embeddings from BERT. Unlike traditional
metrics that focus solely on lexical overlap, BERTScore cap-
tures deeper meaning by comparing the cosine similarity
of token embeddings, which makes it more effective in
handling synonyms, paraphrasing, and variations in sen-
tence structure. However, BERTScore still heavily relies on
the availability of reference answers. In evaluation tasks
where references are scarce or difficult to obtain, this de-
pendence significantly limits its applicability. Furthermore,
while BERTScore shifts from word-level to semantic-level
evaluation, it struggles to capture aspects beyond semantics
such as helpfulness and harmlessness. These limitations
have highlighted the need for the development of reference-
free and multi-aspect evaluation methods.

As the performance of LLM has progressively advanced,
GPT and other models are introduced to replace BERT as
evaluators with or without reference, a.k.a., the proposal
of the LLM-as-a-judge concept [130]. Moreover, thanks to
the strong knowledge memorization and instruction fol-
lowing capabilities, LLM-as-a-judge can even evaluate the
responses from multiple aspects, like informative, engaging,
etc. A typical example is GPTScore [315], which utilizes
LLMs (including GPT-3 [316], OPT [317], and FLAN [318]) to
evaluate text quality across multiple aspects without relying
on reference responses.

Currently, the development of LLM-as-a-judge is contin-
ually progressing, and the definition of LLM-as-a-Judge has
gradually taken on a clear and formal expression. A formal
definition of LLM-as-a-Judge is as follows:

Pθ(X
n, C) → R

• Pθ : The LLM-as-a-Judge fulfilled by any LLM, which
can be either foundation LLMs or fine-tuned version.
The generation process is the auto-regressive process.

• Xn: The samples to be evaluated. They can be of any
available type, such as text, images, or videos. Here
n represents the number of samples to be evaluated:
When n = 1, it becomes a point-wise judgment,
where the evaluation result is a score. When n = 2, it
becomes a pair-wise judgment, where the evaluation
result is a comparison. When n > 2, it becomes
a list-wise judgment, where the evaluation result is
presented as a ranking.

• C : The context of the input x, which includes rele-
vant evaluation examples, historical information in
the dialogue, or the definition of evaluation criteria.

• R: The final evaluation result obtained from the
LLM-as-a-Judge can be a relative or absolute score
with rationale or not.

Based on the above definition, in this section, we in-
troduce four strategies for making LLM-based evaluators
more effective and robust: suitable prompt context, multi-
evaluator collaboration, human-LLM collaboration, and bet-
ter base LLMs.

3.4.1 Suitable prompt context
Careful prompt design is crucial for guiding an LLM judge
to produce accurate and consistent evaluations. By tailoring
the prompt with context, examples, or structured reasoning
steps, researchers aim to align the model’s judgments with
human criteria. Below we review current methods that
optimize the evaluation prompt from the perspectives of in-
context samples, reasoning instruction, fine-grained criteria,
and role-play augmentation.
In-context Samples. Demonstration plays an important role
in the in-context learning. Many works [306, 319, 320]
have discussed the effectiveness regarding the sample se-
lection, order, etc. Focusing on evaluation, a few high-
quality demonstrations can calibrate the LLMs’ expecta-
tions, guiding them in understanding and applying as-
sessment standards. Methods like GPTScore [315] provide
example answers with known quality to help the model
learn how to assess text quality on the fly. Kotonya et
al. [321] shows the effectiveness of combining multiple
prompt design methods with zero-shot and one-shot in-
context samples, and the CoT prompt-based method shows
considerable potential for assessing the quality of generated
summaries. Few-shot prompts make evaluation training-
free and adaptable, but they can also introduce bias if the se-
lected examples are unrepresentative. To mitigate such bias,
ALLURE [322] iteratively refines the in-context examples by
identifying erroneous evaluation outcomes, correcting them,
and incorporating the revised results as updated examples.
Alternatively, Song et al. [323] introduce two types of many-
shot in-context learning prompts, Many-Shot with Reference
(MSwR) and Many-Shot without Reference (MSoR), to com-
bat position or symbol biases.
Reasoning instruction. Evaluation also requires the rea-
soning ability to verify or infer the relationship between
the response and the question. We roughly classify existing
methods into two groups: CoT and planning instruction.
A representative work in the first group is G-Eval [324],
which designs an auto-CoT framework that instructs LLMs
to automatically generate evaluation steps given criteria
before scoring. This framework with GPT-4 as the backbone
model significantly improves the assessment of text sum-
marization and dialogue generation tasks, achieving a high
correlation with human evaluations. To further evaluate the
effectiveness of G-Eval, Chiang et al. [325] examine how
specific details in G-Eval’s evaluation process influence the
correlation between ratings provided by LLMs and those
given by humans. Their findings indicate that the auto CoT
used in G-Eval does not always enhance alignment with
human ratings. However, they also find that prompting
the LLM to explain its own ratings consistently improves
the correlation between ChatGPT’s evaluations and human
judgments. Domain-specific evaluators like ICE-Score [326]
for code generation go further. The prompt includes de-
tailed evaluation steps, criteria, and task definitions, leading
the LLM through a checklist (e.g. correctness, efficiency)
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when scoring code. The second group of methods target
the planning ability — one can improve the evaluation
performance by reducing the evaluation difficulty through
task decomposition. [327] proposes the Branch-Solve-Merge
(BSM) framework to evaluate responses by dividing tasks
into parallel sub-tasks, then solving each sub-task sepa-
rately, and finally merging the results into an overall assess-
ment. While, SocREval [328] introduces the Socratic method
to leverage a sequence of probing questions to refine the
reasoning instruction.

Fine-grained criteria. Another prompt strategy is to explic-
itly embed evaluation criteria or rubrics into the prompt,
so the LLM judge assesses each aspect independently. This
criteria decomposition makes the evaluation more trans-
parent and objective. For example, some users prefer to
informative responses while others may expect concise an-
swers. Some researchers have explored fine-grained evalua-
tions by indicating specific aspects (e.g., Fluency, Coherence,
etc.) [301, 329, 330] and detailed rubrics [331] [332] via in-
context learning. For instance, Jain et al. [333] investigate
the efficacy of LLMs as multi-dimensional evaluators: coher-
ence, relevance, consistency, and fluency, each with two ex-
ample scores. Their findings indicate that the prompt design
strategies perform on par with traditional evaluation frame-
works in text summarization tasks. Similarly, FineSurE [334]
exemplifies this by breaking summarization quality into
dimensions like faithfulness, completeness, and conciseness;
the LLM performs fact-checking and key fact alignment for
each before outputting an overall judgment. Furthermore,
HD-EVAL [335] enhances principle-driven prompting with
hierarchical criteria. The authors first decompose the eval-
uation aspects using an LLM and assign scores to each
sub-metric. Then, an aggregator combines these sub-metric
scores into a total score, with human-labeled results used
to train the aggregator. To investigate whether the evaluator
can recognize and differentiate between various evaluation
criteria, Hu et al. [336] summarize and define an explicit
hierarchical classification system consisting of 11 criteria.
Using these criteria to test the evaluation capabilities of
models, they identify that LLMs often confuse different
criteria. To address this issue, they train the evaluator using
clearly defined criteria to mitigate the potential confusion
of different evaluation standards by LLMs. More studies on
tuning evaluators will be introduced later.

Multi-turn & role-play augmentation. To better align with
human judgment, recent methods have introduced multi-
turn or role-play instructions. AutoCalibrate [337] leverages
a multi-stage prompt refinement process: the LLM is first
prompted to draft initial evaluation criteria for a task, then
revise them, and finally apply them. Another approach is
to give the LLM a specific role or persona [338] like “You
are a strict grammar teacher” or “You are a helpful peer
reviewer”. This can inject diverse evaluative perspectives
and make the LLM more adaptable to different contexts.
However, there are also some concerns: overly narrow roles
or poorly chosen criteria can bias the evaluation. The goal of
all these prompt-based techniques is to supply just enough
contextual guidance so that the LLM’s inherent knowledge
is steered toward accurate judging, minimizing randomness
or bias in its responses.

3.4.2 Multi-Evaluator Collaboration
Relying on the results from a single LLM judge may not be
reliable due to the various biases inherent in LLMs. Typical
biases include:

• Position Bias. Position bias refers to the tendency
of LLMs to favor answers based on their position
in the response. This bias is common in various
natural language processing tasks [301, 339] as well
as in human decision-making processes [340]. Even
advanced LLMs like ChatGPT and GPT-4 encounter
this issue when acting as evaluators [130, 341].

• Knowledge Bias. Knowledge bias occurs when the
pre-trained data fails to include certain essential
tasks or introduces potentially harmful knowledge,
which can undermine the generative performance of
LLMs. In the evaluation scenario, this bias occurs
when the knowledge required for evaluation tasks
exceeds the scope of the LLM judge’s training.

• Style Bias. Style bias in LLMs refers to the tendency
to favor certain writing styles or tones due to the pat-
terns in the pre-trained data. This bias can affect the
LLM’s judgment, leading to assign higher scores to
outputs that align with its preferred style, regardless
of content quality.

• Format Bias. Format bias refers to the situation where
a judge is fine-tuned without a reference but vali-
dated with a reference, or vice versa, resulting in a
mismatched format. LLM judges perform poorly in
these mismatched formats.

To overcome this limitation, several architectures and
techniques use multiple LLMs [242] (or multiple instances
of an LLM [330, 342]) that either cooperate or compete,
and then combines their outputs. The intuition is that ag-
gregating multiple perspectives can cancel out individual
errors or biases and lead to more reliable outcomes. There
are two main types of methods: cooperative approaches and
aggregation approaches.

The first group is aggregated multi-agent evaluation,
where models judge independently and their results are
fused later. Representative works include Language-Model-
as-an-Examiner [301], which let a panel of LLMs generate
probing questions about a candidate answer and then in-
dependently evaluate the answer, aggregating their scores.
This peer-questioning plus voting mimics how a commit-
tee of examiners might each test a student with different
questions, leading to a well-rounded evaluation. The benefit
of voting ensembles is their simplicity and parallelizability.
However, if all models share a blind spot, the ensemble
won’t fix it. Also, how to ensemble their results is critical in
the final evaluation quality. 1) Beyond simple voting, more
sophisticated aggregation methods assign different weights
or roles to each evaluator. One idea is to weight judges by
their past agreement with humans. PRE [343] conducts a
“qualification exam” to select LLMs as reviewers, and then
weights their ratings based on how well each aligns with hu-
man judgments. Differently, PiCO [344] treats the evaluation
problem as a constrained optimization. Multiple models
answer questions and evaluate each other’s answers, and an
algorithm finds weights for each model’s opinion to maxi-
mize overall consistency within the group. 2) Apart from
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weighting by quality, we can also assign different evaluation
criteria to different models. AIME [345] gives each of several
LLM judges a specific aspect to score (e.g. one model focuses
only on factual accuracy, another only on fluency), and then
concatenating or fusing these aspect-specific scores into an
overall evaluation. Similarly, HD-Eval [335] uses a panel of
evaluators where each handles a hierarchically decomposed
subset of criteria. 3) Advanced aggregation schemes also
borrow from consensus algorithms. For example, Gao et
al. [346] applied Bayesian models to calibrate win rates
when many LLM evaluators are voting, correcting biases
in pairwise preference aggregation. Others construct a pref-
erence graph from multiple weak judges and then use graph
algorithms to derive a final ranking that is more transitive-
consistent [347].

Another group of method is cooperative multi-agent
evaluation, where multiple LLMs interact, sharing informa-
tion or engaging in debate, to reach a consensus. In these
setups, each model might handle a different sub-task or
provide feedback on others. For example, WideDeep [348]
uses an architecture that lets models share information at
a “neuro-level”, effectively merging their intermediate rep-
resentations to improve joint decision-making. Other work
borrows from human workflows. Xu et al. [349] simulate an
academic review process — each agent drafts a solution,
then reviews others’ work and revises its own answer
based on received critiques. Similarly, ABSEval [350] assigns
four distinct agent roles (answer synthesis, critique, execu-
tion, commonsense reasoning) that sequentially interact to
evaluate an answer. By role assignment in a collaborative
workflow, the evaluators complement each other’s strengths
(one agent might catch logical errors, another factual er-
rors, etc.). However, a notable risk is “groupthink”. If the
models have similar biases or training backgrounds, their
agreement may simply reinforce a shared bias rather than
provide truly independent perspectives. Designing agent
diversity (e.g. using different model architectures or prompt
viewpoints) may be a potential solution. Therefore, another
line of works is to have LLMs debate or challenge each
other’s answers in a competitive fashion. In such frame-
works, LLMs take on roles of debaters and a separate
judge (which could itself be an LLM or an ensemble of
LLMs) decides the winner of the debate. An example work
is Auto-Arena [342], where candidate models engage in
multi-round debates over a question, pointing out flaws
in each other’s responses. Extensions of this idea, like the
MORE and SAMRE architectures [351], involve multiple
advocate agents and iterative rebuttal rounds, resembling
a courtroom with opposing counsel and a verdict delivered
after several back-and-forths. By contrast, decentralized de-
bate structures let all models freely converse without a
single controller. ChatEval [352] assigns diverse roles to
multiple LLMs (e.g. one may emphasize precision, another
creativity) and lets them discuss an open-ended question
collectively. Similarly, PRD [353] has models not only rank
each other’s answers but also discuss them, which helped
reduce biases like self-enhancement (where a model favors
responses similar to itself) and positional bias (favoring the
first presented answer). Competitive debates tend to reveal
flaws through contradiction and defense, leading to a more
nuanced judgment. The challenge, however, is complexity

and cost: multi-round debates consume more computation,
and if not carefully orchestrated, the interactions could go
in circles or become incoherent. Nonetheless, adversarial
multi-LLM evaluation is a promising way to stress-test
answers and achieve consensus closer to human critical
analysis.

For efficiency, a variant of multi-evaluator systems is the
cascade approach, where judges are arranged in tiers of
increasing strength or cost. The idea is to use cheaper (or
less powerful) models to handle easy evaluations and re-
serve expensive state-of-the-art models for the tricky cases,
thereby optimizing resource use while maintaining accu-
racy. Jung et al. [354] propose Cascaded Selective Evalua-
tion, where a small judge model first evaluates; only if its
confidence is low or a decision boundary is ambiguous,
a larger model (like GPT-4) is called in. Similarly, Cascad-
edEval [355] combines open-source fine-tuned judges with
proprietary models in a pipeline, leveraging the strengths
of each. The fine-tuned judge handles routine cases and
the proprietary model corrects its failures. Such cascades
illustrate a pragmatic collaboration between models of dif-
ferent caliber. The main challenge is designing a reliable
gating mechanism to decide when to escalate to the next
tier. If tuned well, cascaded systems can be both efficient
and robust, effectively forming a safety net where the final
tier (strongest model or even a human) only handles the
most uncertain evaluations.

3.4.3 Human-LLM Collaboration
Despite advances in automated evaluation, human insight
remains essential, especially for open-ended tasks where
nuanced understanding or ethical considerations are critical.
Human–LLM collaboration frameworks aim at combining
both merits: the efficiency of LLM judgments and the re-
liability of human oversight. A straightforward solution
is humans as verifier. The LLM judge operates almost
autonomously, but a human performs a final check or ad-
justment on its outputs [325, 356].

Another line of work is humans as assistant. In this
setup, LLMs generate initial judgments, which humans
then refine before a final judgment is made. For example,
HMCEval [357] proposed a human-machine collaborative
framework for dialogue evaluation. it optimizes evaluation
reliability while minimizing human effort. Through a sam-
ple assignment approach, it reduces human involvement by
half while maintaining 99% evaluation accuracy, demon-
strating a highly efficient solution for reliable dialogue
evaluation. While, CoEval [358] lets LLMs first generate
task-specific evaluation metrics, which are then judged by
humans for their usefulness. Afterward, carefully selected
metrics are input to the evaluator to obtain evaluation
results, which are further refined by humans. EvalGen [359]
tackles the problem of “criteria drift”, where an LLM’s
tendency to unintentionally change its evaluation standards
over many responses. In EvalGen, humans periodically
provide feedback on the LLM’s judging criteria, keeping
them aligned over time. This iterative refinement of the
evaluation rubric, driven by human judgment, was found
to improve the consistency and fairness of long-running
automated evaluations. In addition to assisting in the gener-
ation of evaluation metrics, evaluators can also be employed
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TABLE 2
Comparisons of example evaluators in general or specific domains.

Method Format Critiques Multi-rubrics Data Tuning Example rubrics

Shepherd pointwise yes Overall Human SFT Error Analysis

Themis pointwise yes Multiple GPT-4 SFT Cohesiveness; Likability; Clarity;
Length; Engagement; etc.

PandaLM pairwise yes Multiple w/o ratings GPT-3.5 SFT Relative Conciseness; Clarity; Comprehensiveness;
Formality; Adherence to Instructions; etc.

JudgeLM pointwise & pairwise yes Multiple w/o ratings GPT-4 SFT Helpfulness; Relevance; Accuracy;
Level of Details of Responses

AUTO-J pointwise & pairwise yes Multiple w/o ratings GPT-4 SFT Core Idea Capturing; Concise; Coverage; Harmlessness;
Creativity; Engagement; Information Richness; etc.

Prometheus pointwise & pairwise yes Multiple GPT-4 SFT Each sample is assigned a specific evaluation measure

TIGERScore pointwise yes Multiple w/o ratings GPT-4 SFT Comprehension; Accuracy; Informativeness; Coherence;
Fact Consistency; Fluency; Accuracy; etc.

CritiqueLLM pointwise & pairwise yes Multiple GPT-4 SFT Accuracy; User Satisfaction; Logical Coherence;
Creativity; Richness; Overall Score

HALU-J pointwise yes Overall GPT-4o DPO Hallucination

Safety-J pointwise yes Overall Human & GPT-4 SFT Safety

to help generate test samples. Ribeiro and Lundberg [360]
introduce AdaTest, a human-LLM collaborative approach
for automatically generating unit tests to identify and fix
bugs in NLP models. AdaTest significantly improves bug
detection efficiency, making users 5-10x more effective than
traditional methods. Additionally, Rastogi et al.[361] en-
hance the AdaTest auditing tool with human-AI collabora-
tion, creating AdaTest++ to rigorously evaluate commercial
language models like GPT-3 and Azure’s sentiment analysis.
Their tool leverages human strengths in sensemaking and
hypothesis testing, effectively identifying a wide range of
failure modes. Another work by Wang et al. [362] introduced
a calibration framework to correct known biases of LLM
judges via human guidance.

The benefit of human-in-the-loop methods is a high
assurance of quality: before any score is finalized, a person
has vetted the process. Besides, Human–LLM collaboration
can also be used to continuously improve the evaluator over
time. By analyzing where the LLM’s judgments disagree
with humans, developers can refine prompts or fine-tune
the model. While, the downside is scalability — it requires
human labor for each evaluation or each batch of evalua-
tions, so it may not be as fast or cheap as fully automated
methods. Thus, these approaches are often more useful for
high-stakes settings (e.g. medical evaluation) where accu-
racy outweighs speed. Or, in open-ended tasks where the
“ground truth” is subjective and context-dependent, human
guidance helps keep the automated judge aligned with
social values and the specific goals of the evaluation.

3.4.4 Better base LLMs

All of the aforementioned methods enhance the LLM’s eval-
uation capability without modifying the LLM parameters
themselves. In this section, we focus on training LLMs
specially for evaluation usage. There are general-purpose
evaluators as well as domain-specific evaluators focusing on
particular issues (e.g. safety compliance or factual accuracy).
Below, we survey these advances from the perspectives of
evaluation data curation and tuning techniques, followed by

highlighting some representative systems. Finally, we out-
line key trends and trade-offs between fine-tuned evaluators
and prompting-based evaluation.

Evaluation data construction. In Section 3.2, we have de-
tailed automated dataset curation methods including com-
pilation, derivation, and generation. Therefore, we will not
repeat those methods and only focus on the construction
of evaluation data. The difference is that the training data
for evaluators need to include LLMs’ responses, which
we classified into “context generation” in Section 3.2.3. To
annotate these responses, there are mainly two types of
approaches: manually-labeled and auto-synthetic.

To obtain manual labels, a straightforward solution to
hire experts for annotation [363]. This usually results in
high-quality, nuanced feedback, but it is costly and slow
to scale. To lower the cost, some works leverage existing
resources like online community feedback or crowdsourced
annotations. Shepherd [363] collects user feedback from two
well-known communities: Stack Exchange and the Pushshift
Reddit. They treated the title and subtitle of a post as a
question, the top-level comments as answers, and the replies
to these comments as critiques. The quality of these critiques
can be evaluated based on the net upvotes and downvotes.
Similarly, Vu et al. [364] curated a large and diverse set of
over 100 quality assessment tasks, encompassing more than
5 million human evaluations from publicly released hu-
man feedback. Such community-sourced critiques provide
diverse, real-world error examples. However, these relies
written by human and the standards for their feedback may
differ from benchmarking’s needs.

For auto-synthetic data, a common strategy is to have a
powerful model directly generate assessment scores given
the LLM’s response. For example, Auto-J [329] implement
a “divide-and-conquer” approach, where GPT-4 generates
two critiques for each response, which are then merged into
a more thorough critique before providing a final rating.
Except for pointwise ratings, many works favor pairwise
comparisons. The above Auto-J [329] integrates both. For
pairwise data, they provide two responses to the evaluator
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and ask them to identify the criteria where the evaluations
differ between the two. PandaLM [341] re-formulates and
completes the samples from Alpaca 52K as tuple (instruc-
tion, input, response1, response2), and ask GPT to generate
output tuples (evaluation result, evaluation reason, refer-
ence response). JudgeLM [365] adopts a similar way but
leverages GPT-4 acted as a “teacher” judge. Except for the
data format (i.e., comparison or ratings), scoring rubrics
are also critical. Prometheus [366] ues GPT-4 to enhance
a set seed of manual rubrics and generate more. These
newly generated rubrics not only provide clearer standards,
but also are more favorable for GPT judge, thereby high-
quality evaluation data. According to various rubrics, the
corresponding error analysis or critiques provide additional
interpretability. TIGERScore [367] builts a dataset called
MetricInstruct with instruction prompts that ask for error
analysis, where each entry includes a model output and a
list of errors (with types and severity) as the label.

The above two methods each has its own merits. Often
the best results come from combining human expertise
with LLM generation. For example, InstructScore [368] and
TIGERScore [367] uses explicit human instruction (defining
what to evaluate) together with GPT-4’s implicit knowledge
to label data. While, Safety-J [369] leverages human refine
or review initial safety critiques.
Tuning techniques. Given an evaluation dataset, the next
step is to train the LLM to produce desired judgments or
critiques via standard post-training techniques, e.g., super-
vised finetuning (SFT) [363, 365, 366, 370] or direct prefer-
ence optimization (DPO) [371–373]. By contrast, traditional
RL is less commonly used for training evaluators, since
obtaining a numeric reward for a correct evaluation is not
trivial — one would need a “meta-evaluator”. However,
RLHF (human feedback) is introduced for improvements.
For example, Safety-J [369] employs an iterative preference
learning loop, which uses its own critiques to perform
meta-evaluation and then prefers revisions that improve
its performance. Over iterations, this is akin to the model
reinforcing behaviors that lead to more accurate safety
judgments. Of course, when letting the evaluator evaluate
its own outputs and improve, the strategy is related to self-
RL (e.g. “Self-Refine” and “Self-Reward” methods).

Complementary to the above tuning techniques, some
tricks were introduced to make an evaluator be stable and
unbiased in its judgments — some irrelevant factors like
the order in which answers are presented may be captured
during tuning. To mitigate positional bias, JudgeLM [365]
conducted swap-augmentation (shuffling answer order),
and used reference support/drop techniques to teach the
judge to rely on content rather than position or formatting.
For robustness, GPT-4-based evaluators have been shown to
exhibit variability if prompts are paraphrased4. To counter
this, recent research [372] generated many paraphrased in-
structions and fine-tuned models to give consistent prefer-
ences.

Each of the above models has a unique emphasis. Table 2
lists some representative evaluators including general and
some specialized evaluators, e.g., Safety-J [369] for safety
judgement or Halu-J [371] for assessing hallucinations,

4. https://eugeneyan.com/writing/llm-evaluators/

which prompt GPT-4 to generate multiple pieces of evidence
for each instance as well as the final critique based on
evidence.

4 OPEN CHALLENGES AND FUTURE DIRECTIONS

In this section, we discuss three core challenges that charac-
terize the path towards generalizable evaluation in the era
of LLMs.

4.1 Challenges in Capability-Based Evaluation

As LLMs unify various tasks and show human-like abilities,
we conclude the transition from task-centric to capability-
based evaluation. Section 2 provides a comprehensive sur-
vey of capability-based benchmarks including isolated and
integrated evaluation. Based on them, we observe two core
challenges.

On one hand, how to achieve optimal balance be-
tween the efficiency and generalization of evaluation?
We can see that those comprehensive benchmarks face
inherent scalability challenges. Unlike training data which
benefits from scaling laws, benchmark expansion cannot
indefinitely cover all desired competencies. Even for the
agent-based evaluation, they also face their own efficiency-
generalization trade-offs due to dependency on environ-
ment design. The core challenge lies in selecting optimal
task combinations that maximize evaluation efficiency while
enabling reliable prediction of model full capability spec-
trum with limited test data. Preliminary solutions incorpo-
rating interpretability techniques like MUI [2] have been
proposed, but these represent only initial steps.

On the other hand, should the evaluation focus on
fine-grained capabilities or comprehensive integration?
Integrated datasets enable multi-dimensional analysis of
model capabilities to identify strengths and weaknesses as
guidance for training, yet they often overlook the tightly
coupled nature of these competencies. While, agent-based
evaluation naturally integrates multiple capabilities’ testing
via some environments. The high competency threshold
for meaningful participation often excludes smaller models.
Meanwhile, it typically lacks granular interpretability, thus
offering little guidance for model optimization.

4.2 Challenges in Automated Evaluation

As LLM capabilities expand, creating suitable evaluation
data by hand and judging the model’s responses become
a bottleneck. Automation promises to keep pace with rapid
model progress and reduce our reliance on expensive hu-
man labeling. For the transition from manual to automated
evaluation, Section 3 provides a comprehensive survey of
dataset curation and evaluators. Now, we discuss the core
challenges from the two aspects.

Recent progress in automated benchmarking shows a
striking dependence on LLMs for data curation, yet gen-
erating harder, more diverse, and genuinely high-quality
test data remains challenging. First, the quality ceiling of
synthetic data is bounded by the current capability of the
generator model. As one tries to raise difficulty — longer
contexts, more intricate reasoning, multimodal grounding

https://eugeneyan.com/writing/llm-evaluators/
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— the fidelity of LLM-generated content drops sharply. Al-
though LLMs will keep improving, evaluation difficulty will
rise in tandem, preserving the difficulty–quality trade-off.
In practice, many researchers now resort to teacher–student
distillation: crafting challenging prompts with a stronger
“teacher” model and using them to train or benchmark
smaller systems. Ultimately, however, a true closed loop of
continuous model improvement demands generation tech-
niques that surpass current capability ceiling, not merely
mirror it. Second, verifying the quality of synthetic data is
itself non-trivial. If one needs an even stronger “super-LLM”
to vet examples, the workflow becomes circular: how does
one generate or validate data for that super-LLM? When ex-
isting human-curated corpora are exhausted, the field risks
a “chicken-and-egg” bottleneck in which no component can
improve without better data from the other. Third, although
“diversity” is widely acknowledged as crucial, there is no
unified measurement or definition. Recent work has pro-
posed counting domains, capability categories, or difficulty
levels [267], and Shypula et al. [374] introduce a new metric
for data diversity and quality. Yet we still lack a fine-grained
formalism that links specific diversity dimensions to learn-
ing efficiency. An even deeper question is whether optimal
diversity should be model-specific? The data needed to ex-
pose weaknesses in a retrieval-augmented LLM may differ
from that required for a domain-specific LLM. Addressing
these gaps will be pivotal for next-generation evaluation
pipelines, which we will further discuss it later.

For evaluators, a straightforward question is prompt-
based or tuned evaluators. Compared with prompt-based
evaluation, tuned evaluators offer substantial advantages in
cost and throughput, yet they cannot fully replace a strong
foundation model when factual knowledge or sophisticated
reasoning is required. When fine-tuning data are sparse or
poorly curated, a tuned judge is prone to new biases, and its
generalization seldom matches that of the underlying base
model. Even so, tuned evaluators remain highly promising.

In specific, the current trend of evaluation data curation
favors large-scale synthetic labeling using LLMs, some-
times combined with human annotations. This looks like
knowledge distillation, tuned evaluators ultimately will be
capped by the teacher model. But, through some well-
designed tricks and human involvements, tuned evalua-
tors can be more robust. Furthermore, some studies let an
evaluator critique its own judgments and retrain on those
critiques, forming a self-refinement loop that can yield ever-
improving judges. Thus, we vision a rise of specialized
“judge” models that focus on particular concerns, e.g.,
safety, bias, factuality, reasoning [375], or on domains such
as math [376]. These niche evaluators incorporate domain
knowledge (retrieval for factuality, step-by-step solution
checking for math) that a general judge might not possess.
The trend suggests an ensemble of evaluators, each an ex-
pert in checking a certain aspect, could be used together for
thoroughly evaluation. Finally, fine-grained, explainable
judgments also attract increasing research attention. This
not only builds user trust but also transforms evaluation
into a form of error analysis. It enables using the judgments
to directly improve the generative model, thus closing the
loop between evaluation and revision.

4.3 Challenges in Generalizable Evaluation

The core challenge in the era of LLMs is ensuring that
our evaluation method keep up with the essentially un-
bounded capabilities of future LLMs. Traditional evaluation
is bounded in the sense that it uses a fixed set of test
examples and metrics, often reflecting the existing capa-
bilities of LLMs. But actually LLMs are moving targets —
their abilities grow with scale and training, while evaluation
can not be expanded infinitely considering the efficiency.
We are increasingly observing that an evaluation which a
new model excels at might no longer be discriminative (the
model “outgrew” the test), or conversely, a model might
possess latent capabilities that the evaluation fails to reveal.
This mis-match between what models can do and what we
measure them on is widening. Thus, a core future direction
is designing generalizable evaluations that anticipate and
extrapolate to new model behaviors, rather than being one-
off, static tests.

One aspect of this is forecasting model capabilities from
the perspective of evaluation method. If we had reliable
ways to predict how a model will perform on a broad
range of tasks before actually testing it (or before the model
even exists), we could design better benchmarks and safety
checks proactively. Scaling laws can be regarded as a typical
early work. They provide empirical relationships between
model size, training compute, or data and performance,
so that we may know the LLMs’ future performance even
during the early training stage. The BIG-Bench [1] was
also motivated by extrapolating performance, tasks in BIG-
Bench were chosen to be beyond the reach of smaller mod-
els, with the expectation that progress would be measurable
as models scale up. A recent work proposed to reduce the
number of tasks by training a generic assessor for predic-
tive performance [377]. Indeed, its results indicated that
some tasks improve smoothly with model size while others
show discontinuous leaps at certain scales. Understanding
these patterns (why some abilities suddenly “activate” at
a threshold) is crucial for forecasting. If we can identify
predictors in smaller models or early training phases that
correlate with later emergent capabilities, we could flag po-
tential breakthroughs in advance. These predictions, while
not perfect, help benchmark designers include tasks that
will remain challenging at the next generation of models,
thereby “future-proofing” evaluations to some extent. That
is, generalizable evaluation cares about “How predictable
are LLM capabilities?” We may use integrated ability and
cross-scenario data to forecast performance of yet-unseen
models.

Another direction of generalizable evaluation is dealing
with the inherent coverage problem from the perspective of
datasets. An LLM’s possible behaviors are virtually infinite
(suppose our ultimate target is AGI or ASI), but any test
set is finite. How can we ensure that a finite evaluation set
meaningfully probes the vast space of model competence?
One idea is to focus on maximizing diversity and coverage
with minimal data (as discussed above). To do so, instead of
one-test-set-for-all, future evaluations might be adaptive or
model-specific. For example, an evaluator could iteratively
find areas where the model’s performance is problematic
and add more tests there, until performance stabilizes. This
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resembles adaptive testing in education, where questions
are chosen based on a student’s previous answers to pin-
point their proficiency. In the LLM context, we may need to
keep generating follow-up questions with suitable difficulty
to map out the boundaries of its capabilities. If the model
easily handles all math questions but struggles with certain
logic puzzles, the system would concentrate evaluation on
the latter to fully characterize the weakness. Some prelim-
inary work in the safety domain in this direction includes
adversarial testing and red teaming methods, where an aux-
iliary model or algorithm tries to find inputs that make the
model fail. Going forward, model-specific diversity could
become standard [2]. Each new model might be evaluated
with a tailored set of stress tests chosen to cover its potential
blind spots (as identified by prior models or preliminary
runs). The goal is to achieve broad coverage (knowledge,
reasoning, multi-modal, instruction following, safety, etc.)
with as few test items as possible by targeting representa-
tive challenges rather than exhaustively enumerating trivial
cases. This not only makes evaluation more efficient but
also more generalizable: a well-chosen small test suite could
predict performance on a much larger distribution of tasks
because it captures the essential difficulties.

The third direction of generalizable evaluation seeks to
predict as-yet-uncovered abilities given limited testing
sets from the perspective of metric. An preliminary attempt
is the Model Utilization Index (MUI) [2]. MUI augments
traditional, outcome-oriented scores by incorporating mech-
anism interpretability techniques, whereas classical metrics
concern what result the model produced on a fixed test
set, MUI additionally measures how much internal effort
the model expended to obtain that result. Extensive experi-
ments reveal an intuitive law: performance score is inversely
correlated with MUI. The basic idea is when judging a
human’s overall proficiency we weigh both outcome and
effort, where equal performance achieved with less effort
(lower MUI) signals greater competence. Nevertheless, this
line of work remains constrained by the present limits of
interpretability research. Neuron-localization methods, for
example, have been criticized for imperfectly disentangling
functional sub-skills, potentially undermining MUI’s preci-
sion. Sparse-Autoencoder (SAE) approaches, while more ex-
pressive, currently lack off-the-shelf generalizability; train-
ing a SAE for every new foundation model is prohibitively
expensive. Moreover, both families of the above techniques
require white-box access and are inapplicable to closed-
source LLMs. Despite these hurdles, the marriage of inter-
pretability and evaluation presents a promising path for-
ward. By looking inside the model we may transcend the
intrinsic ceiling of finite test sets, inferring latent strengths
or weaknesses that static outcome metrics miss. In short,
explainable-aware metrics such as MUI demonstrate how
one can “see the whole from a part”, uncovering a model’s
true potential with limited external data.

The last intriguing direction of generalizable evaluation
is using a model’s minor signals or reasoning traces
to discover hidden capabilities or weaknesses, probably
from the perspective of evaluators. As LLMs increasingly
can show their work (through CoT prompting, rationale
outputs, or just the open-ended response itself), we have
new data to judge what the model “knows” or where it

falls short. Some recent works focus on evaluating reason-
ing traces [378]. Anthropic’s study [379] shows that CoT
explanations are not always faithful. Although a reasoning
model occasionally discloses which prompts or intermedi-
ate deductions it used, in most cases the verbalized CoT
only partially reflects the model’s actual computation. Even
so, CoT monitoring remains valuable. Because unexpected
behaviors,especially ones that unfold over several steps,
often leave detectable artefacts in the trace, a fine-grained
analysis can still surface hidden patterns. In other words,
by inspecting the style, structure, or subtle irregularities in
a model’s explanation, evaluators can uncover clues about
latent strengths or systematic flaws that would be invisible
in a simple right/wrong score. Such process-oriented eval-
uation does more than mark an answer incorrect; it reveals
why it is wrong, and that diagnostic insight generalizes to
many other inputs, not just the specific question posed. By
treating the model’s own explanations as data to be checked
for factual alignment and logical validity, the boundary
between outcome evaluation and process evaluation begins
to blur. If the underlying reasoning process is demonstrably
sound — even on problems we did not explicitly test — we
gain confidence in the model’s broader reliability.

5 CONCLUSION

LLMs are improving at a pace that outstrips conventional
evaluation pipelines. In this survey, we mapped that ten-
sion onto two transitions and highlight the core limitation.
1) From tasks to capabilities, we re-organize benchmarks
around five core abilities, knowledge, reasoning, instruc-
tion following, multi-modality and safety. This yet raises
two open questions: Efficiency vs. generality and Gran-
ularity vs. integration. 2) From human-curated to LLM-
automated evaluation. Automation is essential for keeping
pace, but it introduces its own difficulties like generating
harder, more diverse, high-quality data and tuning explain-
able, fine-grained LLM judges. 3) Toward generalizable
evaluation, the core obstacle is a coverage gap: finite test
sets cannot scale with unbounded model abilities. We thus
discuss the potential directions including predictive evalua-
tion, adaptive datasets, generalizable metrics, and see-the-
whole-from-a-part evaluator. Addressing these challenges
demands a hybrid toolbox. Only by scaling our evaluations
as aggressively as we scale our models can we ensure that
performance claims remain meaningful, reliable and fair.
In the future, because the field evolves month-by-month,
we will maintain a living repository5, and warmly invite
contributions that refine, correct or extend the taxonomy
presented here.
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