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Abstract
We propose Factual News Graph (FANG), a novel graphical 
social context representation and learning framework for 
fake news detection. Unlike previous contextual models 
that have targeted performance, our focus is on represen-
tation learning. Compared to transductive models, FANG 
is scalable in training as it does not have to maintain the 
social entities involved in the propagation of other news 
and is efficient at inference time, without the need to repro-
cess the entire graph. Our experimental results show that 
FANG is better at capturing the social context into a high-
fidelity representation, compared to recent graphical and 
nongraphical models. In particular, FANG yields signifi-
cant improvements for the task of fake news detection and 
is robust in the case of limited training data. We further 
demonstrate that the representations learned by FANG gen-
eralize to related tasks, such as predicting the factuality of 
reporting of a news medium.

1. INTRODUCTION
Social media have emerged as an important source of infor-
mation for many worldwide. Unfortunately, not all infor-
mation they publish is true. During critical events such as 
political elections or pandemic outbreaks, disinformation 
with malicious intent,21 commonly known as “fake news,” 
can disturb social behavior, public fairness, and rationality. 
Many sites and social media have devoted efforts to identify 
disinformation. For example, Facebook encourages users 
to report noncredible posts and employs professional fact 
checkers to expose the news in question. Manual fact- 
checking is also used by fact-checking websites such as 
Snopes, FactCheck, PolitiFact, and Full Fact. In order to 
scale with the increasing amount of information, auto-
mated news verification systems consider external knowl-
edge databases as evidence.23 Evidence-based approaches 
achieve high accuracy and offer potential explainability, 
but they also take considerable human effort. Moreover, 
fact-checking approaches for textual claims based on tex-
tual evidence are not easily applicable to claims about 
images or videos.

Recent work has taken a different tack, by exploring the 
contextual features of the news-dissemination process. 
They observed distinctive engagement patterns when social 
users face fake versus factual news.6, 13 For example, the fake 
news as shown in Table 1 had many engagements shortly 

The original version of this paper was published in 
Proceedings of the 29th ACM Intern. Conf. on Information 
and Knowledge Management, Oct. 2020.

after its publication. These are mainly verbatim recircula-
tions with negative sentiment of the original post explained 
by the typically appalling content of fake news. After that 
short time window, we see denial posts questioning the 
validity of the news, and the stance distribution stabilizes 
afterwards with virtually no support. In contrast, the real 
news example in Table 1 leads to moderate engagement, 
mainly comprised of supportive posts with neutral senti-
ment that stabilize quickly. Such temporal shifts in user 
perception serve as important signals to distinguish fake 
from real news.

Previous work proposed partial representations of 
social context with (i) news, sources, and users as major 
entities and (ii) stances, friendship, and publication as 
major interactions.5, 16, 17, 22 However, they did not put much 
emphasis on the quality of the representation, on model-
ing the entities and their interactions, and on minimally 
supervised settings.

Naturally, the social context of news dissemination can 
be represented as a heterogeneous network where nodes 
and edges represent the social entities and the interactions 
between them, respectively. Network representations have 
several advantages over some existing Euclidean-based 
methods11, 18 in terms of structural modeling capability 
for several phenomena such as echo chambers of users 
or polarized networks of news media. Graphical models 
also allow entities to exchange information, via (i) homo-
geneous edges, that is, user–user relationship, source–source 
citations; (ii)  heterogeneous edges, that is, user–news 
stance expression, source–news publication; as well as 
(iii) high-order proximity (such as, between users who con-
sistently support or deny certain sources, as illustrated in 
Figure 1). This allows the representation of heterogeneous 
entities to be dependent, leveraging not only fake news 
detection but also related tasks such as malicious user 
detection and source factuality prediction. Here, we focus 
on improving contextual fake news detection by enhancing 
the representations of social entities.

Our contributions can be summarized as follows:
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dimensionality reduction on the user cosharing adjacency 
matrix and combined it with news engagement features 
obtained from a recurrent neural network (RNN).

The Tri-Relationship Fake News (TriFN) detection 
framework22—although similar to our approach—neither 
differentiated user engagements in terms of stance and 
temporal patterns nor modeled source–source citations. 
Also, matrix decomposition approaches, such as CSI,18 can 
be expensive in terms of graph node counts and ineffective 
for modeling high-order proximity.

Other work on citation source network,9 propagation 
network,14 and rumor detection2 proposed models opti-
mized solely for the objective of fake news detection, with-
out accounting for representation quality, and therefore 
they are not robust to limited training data and cannot 
be generalized to other downstream tasks, as we show in 
Section 5.

2.2. Graph Neural Networks (GNNs)
GNNs have successfully generalized deep learning meth-
ods to model complex relationships and interdepen-
dencies on graphs and manifolds. Graph Convolutional 
Networks (GCNs) are among the first methods that effec-
tively approximate convolutional filters.7 However, GCNs 
impose a substantial memory footprint in storing the 
entire adjacency matrix. They are also not easily adaptable 
to our heterogeneous graph, where nodes and edges with 
different labels exhibit different information propagation 
patterns. Furthermore, GCNs do not guarantee generaliz-
able representations and are transductive, requiring the 

(1)  We propose a novel graph representation that models 
all major social actors and their interactions (see 
Figure 1).

(2)  We propose the Factual News Graph (FANG), an 
inductive graph learning framework that effectively 
captures social structure and engagement patterns, 
thus improving representation quality.

(3)  We report significant improvement in fake news 
detection when using FANG, and we further show 
that our model is robust in the case of limited train-
ing data.

(4)  We show that the representations learned by FANG 
generalize to related tasks such as predicting the fac-
tuality of reporting of a news medium.

(5)  We demonstrate FANG’s explainability thanks to the 
attention mechanism of its recurrent aggregator.

2. RELATED WORK
2.1. Contextual fake news detection
Previous work on contextual fake news detection can be cat-
egorized based on the approach used to represent and learn 
its social context.

Euclidean approaches represent the social context as a 
flat vector or a matrix of real numbers. They typically learn 
a Euclidean transformation of the social entity features that 
best approximates the fake news prediction.16

However, given our formulation of social context as a 
heterogeneous network, Euclidean representations are less 
expressive. Although pioneering work used user attributes 
such as demographics, news preferences, and social fea-
tures, for example, the number of followers and friends,21 
such work did not capture the user interaction landscape, 
that is, what kind of social figures they follow, which news 
topics they favor or oppose, and so forth. Moreover, in 
terms of FANG’s graphical representation, node variables 
are no longer constrained by the independent and identi-
cally distributed assumption, and thus they can reinforce 
each other’s representation via edge interactions.

Having acknowledged the above limitations, research-
ers have started exploring non-Euclidean or geometric 
approaches. In particular, they generalized the idea of using 
the social context when modeling a target user or the news 
source network and by developing representations that cap-
ture structural features about the entity.

The Capture, Score, and Integrate (CSI) model18 used linear 
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Figure 1. Graph representation of social context.

Table 1. Engagement of social media users with respect to fake and real news articles.

Column 2 shows the time since publication, and columns 4–7 show the distribution of stances (S: Support, D: Deny, C: Comment, and R: Report).

News title (label) Time # Posts S D C R Noticeable responses

Virginia Republican Wants Schools  
To Check Children’s Genitals 
Before Using Bathroom (Fake)

3 h 38 0.00 0.03 0.19 0.78 “DISGUSED SO TRASNPHOBIC,” “FOR GODS SAKE GET 
REAL GOP,” “You cant make this up folks”

3h–6h 21 0.00 0.10 0.10 0.80 “Ok This cant be real," “WTF IS THIS BS," “Rediculous RT”
 6 h+ 31 0.00 0.10 0.14 0.76 “Cant make this up," “how is this real," “small government," 

“GOP Cray Cray Occupy Democrats”
1,100,000 people have been killed by
guns in the U.S.A. since John Lennon 
was shot and killed on December 8, 
1980 (Real)

3 h 9 0.56 0.00 0.00 0.44 “#StopGunViolence," “guns r the problem”
3 h+ 36 0.50 0.00 0.11 0.39 “Some 1.15 million people have been killed by firearms 

in the United States since Lennon was gunned down," 
“#StopGunViolence”
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inferred nodes to be present at training time. This is espe-
cially challenging for contextual fake news detection or 
general social network analysis, as their structure is con-
stantly evolving.

With these considerations in mind, we build our work 
on GraphSage, which can generate embeddings by sam-
pling and aggregates features from a node’s local neighbor-
hood.4 GraphSage offers substantial flexibility in defining 
the information propagation pattern with parameterized 
random walks and recurrent aggregators. It is well-suited 
for representation learning with an unsupervised node 
proximity loss and generalizes well in minimal supervi-
sion settings. Moreover, it uses a dynamic inductive algo-
rithm that allows the creation of unseen nodes and edges 
at inference time.

3. METHODOLOGY
3.1. Fake news detection using social context
Let us first define the social context graph G with its entities 
and interactions as shown in Figure 1:

(1)  A = {a1, a2, …} is the list of news articles in question, where 
each ai (i = 1, 2, …) is modeled as a feature vector xa.

(2)  S = {s1, s2, …} is the list of news sources, where each 
source sj (  j = 1, 2, …) has published at least one article 
in A and is modeled as a feature vector xs.

(3) U = {u1, u2, …} is the list of social users, where each 
user uk (k = 1, 2, …) has engaged in spreading an article 
in A or is connected with another user; uk is modeled 
as a feature vector xu.

(4) E = {e1, e2, …} is the list of interactions, where each e = {v1, 
v2, t, xe} is modeled as a relation between two entities v1, 
v2 ∈ A ∪ S ∪ U at time t; t is absent in time-insensitive interac-
tions. The interaction type of e is given as a label xe.

Table 2 summarizes the characteristics of different types 
of interactions, both homogeneous and heterogeneous. 
Stance is a special type of interaction, as it is not only charac-
terized by edge labels and source/destination nodes but also 
by temporality as shown in the examples in Table 1. Recent 
work has highlighted the importance of incorporating 
temporality not only for fake news detection18 but also for 
modeling online information dissemination.

We can now formally define our task as follows:

Definition 3.1. Context-based fake news detection: Given a 
social context graph G = (A, S, U, E) constructed from 
news articles A, news sources S, social users U, and social 
engagements E, context-based fake news detection is 
defined as the binary classification task to predict whether 

a news article a ∈ A is fake or real, in other words, FC : a → 
{0, 1} such that,

3.2. Graph construction from social context
News articles. Textual22 and visual24 features have been 
widely used to model news article contents, by feature 
extraction, unsupervised semantics encoding, or learned 
representation. We use unsupervised textual representa-
tions as they are relatively efficient to construct and opti-
mize. For each article a ∈ A, we construct a TF.IDF19 vector 
from the text body of the article. We enrich the representa-
tion of news by weighting the pretrained embeddings from 
GloVe15 of each word by its TF.IDF score, forming a semantic 
vector. Finally, we concatenate the TF.IDF and the semantic 
vector to form the news article feature vector xa.

News sources. We focus on characterizing news media 
sources using the textual content of their websites.9 
Similar to article representations, for each source s, we 
construct the source feature vector xs as the concatenation 
of its TF.IDF vector and its semantic vector derived from 
the words in the Homepage and the About Us section, as 
some fake news websites openly declare their content to be 
satirical or sarcastic.

Social users. Online users have been studied extensively 
as the main propagator of fake news and rumors in social 
media. Shu et al.22 conducted feature analysis of user pro-
files and pointed out the importance of signals derived from 
profile description and timeline content. A text description 
such as “American mom fed up with anti american leftists and 
corruption. I believe in U.S. constitution, free enterprise, strong 
military and Donald Trump #maga” strongly indicates the 
user’s political bias and suggests the tendency to promote 
certain narratives. We construct the user vector xu as a con-
catenation of a TF.IDF vector and a semantic vector derived 
from the textual description in the user profile.

Social interactions. For each pair of social actors (vi, vj) ∈  
A ∪ S ∪ U, we add an edge e = {vi, vj, t, xe} to the list of social 
interactions E if they are linked via interaction type xe. 
Specifically, for the followership interaction, we examine 
whether user ui follows user uj; for the publication interac-
tion, we check whether news article ai was published by 
source sj; for the citation interaction, we examine whether 
the Homepage of source si contains a hyperlink to source sj. 
In the case of time-sensitive interactions, that is, publication 
and stance, we record their relative timestamp with respect 
to the article’s earliest time of publication.

Stance detection. The task of characterizing the 

Interaction Linking entities Link type Description Temporal

Followership User–user Unweighted, undirected Whether a user follows another user on social media No
Citation Source–source Unweighted, undirected Whether sources refers to another source via a hyperlink No
Publication Source–news Unweighted, undirected Whether the source published the target news Yes
Stance User–news Multilabel, undirected The stance of the user with respect to the news Yes

Table 2. Interactions in FANG’s social context network.
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viewpoint of a text with respect to another one is known 
as stance detection. In the context of fake news detection, 
we are interested in the stance of a user reply with respect 
to the title of a news article in question. We consider four 
stances: support with neutral sentiment or neutral support, 
support with negative sentiment or negative support, deny, 
and report.

We classify a post as verbatim reporting of the news 
article if it matches the article title after cleaning the text 
from emojis, punctuation, stop words, and URLs. We train 
a stance detector to classify the remaining posts as support 
or deny using our own dataset for stance detection between 
social media posts and news articles, which contains 2527 
labeled source–target sentence pairs from 31 news events. 
For each event with a reference headline, the annotators 
were given a list of related headlines and posts, and they 
labeled whether each related headline or post supports or 
denies the claim made by the reference headline. Aside 
from the reference headline–related headline or the head-
line–related post sentence pairs, we further made second-
order inferences for related headline–related post sentence 
pairs. If such a pair expressed a similar stance with respect 
to the reference headline, we inferred a support stance for 
the related headline–related post, and deny otherwise. Table 
3 shows statistics about the dataset. The interannotator 
agreement is substantial, with a Cohen’s Kappa of 0.78. 
We fine-tuned a RoBERTa-large transformer10 on this data, 
achieving Accuracy of 0.8857, F1 score of 0.8379, Precision of 
0.8365, and Recall of 0.8395.

To further subclassify support posts into such with 
neutral and with negative sentiment, we fine-tuned a 
RoBERTa-large-based sentiment classifier on the Yelp 
ReviewPolarity dataset.a Altogether, the stance of a user-
article engagement e is given as stance(e).

3.3. Factual News Graph (FANG) framework
We now describe our FANG learning framework on the social 
context graph described in Section 3.2. Figure 2 shows an 
overview of our FANG model. Although optimizing for the 
fake news detection objective, FANG also learns generaliz-
able representations for the social entities. This is achieved 
by optimizing three concurrent losses: (i) unsupervised 
Proximity Loss, (ii) self-supervised Stance Loss, and (iii) super-
vised Fake News Detection Loss.

Representation learning. We first discuss how FANG 
derives the representation of each social entity. Previous 
representation learning frameworks such as node2vec3 
computed a node embedding by sampling its neigh-
borhood, as defined by the graph structure, and then 

a	 https://www.kaggle.com/irustandi/yelp-review-polarity, last accessed 18 
May 2021.

optimizing for the  proximity loss, similar to word2vec. 
These methods use the neighborhood structure only, 
and they are suitable when the auxiliary node features 
are unavailable or incomplete, that is, when optimiz-
ing for each entity’s structural representation separately. 
Recently, GraphSage4 was proposed to overcome this 
limitation by allowing auxiliary node features to be used 
jointly with proximity sampling as part of the representa-
tion learning.

Let GraphSage(⋅) be GraphSage’s node-encoding func-
tion. Thus, we can now obtain the structural representa-
tion zu ∈ d of any user and source node as zr = GraphSage(r), 
where d is the structural embedding dimension. For news 
nodes, we further enrich their structural representation 
with user engagement temporality, which we showed to be 
distinctive for fake news detection in Section 1. This can 
be formulated as learning an aggregation function F(a, U) 
that maps a news a in question, and its engaged users U to 
a temporal representation  that captures a’s engage-
ment pattern. Therefore, the aggregating model (that 
is, the aggregator) has to be time-sensitive. RNNs fulfill 
this requirement: specifically, the Bidirectional LSTM 
(Bi-LSTM) with attention can capture long-term depen-
dencies in the information sequence in both the forward 
and backward directions.12 By examining the model’s 
attention, we learn which social profiles influence the 
decision, thus mimicking human analytic capability.

Our proposed LSTM input is a user–article engagement 
sequence {e1, e2, …, e|U|}. Let meta(ei) ∈ l = (time(ei), stance(ei)) 
be the concatenation of ei’s elapsed time since the news 
publication and a one-hot stance vector. Each engage-
ment ei has its representation xei = (zUi, meta (ei )), where 
zUi = GraphSage (Ui).

A Bi-LSTM encodes the engagement sequence and outputs 
two sequences of hidden states: (i) a forward one, 

 which starts from the beginning of the 
engagement sequence, and (ii) a backward one, 

 # Samples # Supports # Denies

Train 2089 931 1158
Test 438 207 231

Table 3. Statistics about our stance-annotated dataset.

Figure 2. Overview of our FANG framework.
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, which starts from the end of the engage-
ment sequence.

Let wi be the attention weight paid by our Bi-LSTM encoder 
to the forward (hi

f ) and to the backward (hi
b) hidden states. 

This attention should be derived from the similarity of the 
hidden state and the news features, that is, how relevant 
the engaging users are to the discussed content, and the par-
ticular time and stance of the engagement. Therefore, we 
formulate the attention weight wi as follows:

� (1)

where l is the meta dimension, e is the encoder dimension, and 
Me ∈ d×e and Mm ∈ l×1 are the optimizable projection matri-
ces for engagement and the meta features, which are shared 
across all engagements. We use wi to compute the forward 
and the backward weighted feature vectors as  
and , respectively.

Finally, we concatenate the forward and backward represen-
tation vectors to obtain the overall temporal representation 

 for article a. By explicitly setting 2e = d, we can then 
combine the temporal and the structural representations as

.
Unsupervised proximity loss. We derive the Proximity 

Loss from the hypothesis that closely connected social 
entities often behave similarly. This is motivated by the 
echo chamber phenomenon, where social entities tend 
to interact with other entities of common interest to rein-
force and to promote their narratives. This echo chamber 
phenomenon encompasses intercited news media sources 
publishing news of similar content or factuality, as well 
as social friends expressing similar stance with respect to 
news article(s) of similar content. Therefore, FANG should 
assign such nearby entities to a set of proximal vectors in 
the embedding space. From our observation that social 
entities are highly polarized, we also hypothesize that 
loosely connected social entities often behave differently. 
Thus, we want FANG to enforce that the representations of 
these disparate entities are distinctive.

The social interactions that define the above character-
istics the most are user–user friendship, source–source 
citation, and news–source publication. As these inter-
actions are either (a) between sources and news or (b) 
between news, we divide the social context graph into two 
subgraphs, namely news–source subgraph and user sub-
graph. Within each subgraph G′, we formulate the follow-
ing Proximity Loss function:

� (2)

where zr ∈ d is the representation of entity r, Pr is the set 
of nearby nodes or positive set of r, Nr is the set of disparate 
nodes or negative set of r, and q is a weighting factor. Pr is 
obtained using our fixed-length random walk, and Nr is 
derived using negative sampling.4

Self-supervised stance loss. We also propose an analo-
gous hypothesis for the user–news interaction, in terms of 
stance. If a user expresses a stance with respect to a news 

article, their respective representations should be close. 
For each stance c, we first learn a user projection function 
ac(u) = Aczu and a news article projection function bc(a) = 
Bcza that map a node representation of d to a representa-
tion in the stance space c of dc. Given a user u and a news 
article a, we compute their similarity score in the stance 
space c as a(u) b(a). If u expresses stance c with respect to 
a, we maximize this score, and we minimize it otherwise. 
This is the stance classification objective, optimized using 
the Stance Loss:

� (3)

where f (u, a, c) = softmax(ac (u) bc (a)) and

Supervised fake news loss. We directly optimize the main 
learning objective of fake news detection via the supervised 
Fake News Loss. In order to predict whether an article a is 
false, we obtain its contextual representation as the concate-
nation of its representation and the structural representation 
of its source, that is, va = (za, zs).

This contextual representation is then input into a fully 
connected layer whose outputs are computed as oa = Wva + 
b, where W ∈ 2d×1 and b ∈  are the weights and the biases 
of the layer. The output value oa ∈  is finally passed through 
a sigmoid activation function σ(⋅) and trained using the 
cross-entropy–based Fake News Loss Lnews, which we define 
as follows:

� (4)

where T is the batch size, ya = 0 if a is fake, and 1 otherwise.
We define the total loss by linearly combining these three 

component losses: Ltotal = Lprox. + Lstance + Lnews.

4. EXPERIMENTS
We conducted our experiments on a Twitter dataset col-
lected by related work on rumor classification8, 13 and fake 
news detection.20 For each article, we collected its source, a 
list of engaged users, and their tweets if they were not already 
available in the previous dataset. This dataset also includes 
Twitter profile description and the list of Twitter profiles of 
the users that a given target user follows. We further crawled 
additional data about media sources, such as the content of 
their Homepage and their About us page, together with their 
frequently cited sources on their Homepage.

The truth value of the articles—namely, whether they are 
fake or real news—is based on two fact-checking websites: 
Snopes and PolitiFact. We release the source code of FANG 

Table 4. Statistics about our dataset.

Fake 448 Publications/source 2.38 Cites/source 8.38
Real 606 Engagements/news 71.9 Friends/user 58.25
Sources 442 Neu. support/news 19.07 Deny/news 5.27
Users 54461 Neg. support/news 10.83 Report/news 36.73
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and the stance detection dataset.b Table 4 shows some statis-
tics about our dataset.

4.1. Fake news detection results
We benchmark the performance of FANG on fake news 
detection against several competitive models: (i) a content-
only model, (ii) a Euclidean contextual model, and (iii) 
another graph learning model.

In order to compare our FANG model with the con-
tent-only model, we used a Support Vector Machine 
(SVM) model on TF.IDF feature vectors constructed from 
the news content (see Section 3.2). We also compared 
to a Euclidean model, CSI,18 a fundamental yet effec-
tive recurrent encoder that aggregates the user features, 
the news content, and the user–news engagements. We 
reimplement the CSI model with source features by con-
catenating the overall score for the users and the article 
representation with our formulated source description 
to obtain the result vector for CSI’s integrated module 
mentioned in the original paper. Lastly, we compared 
against the GCN graph learning framework.7 First, we 
represented each of k social interactions in a separated 
adjacency matrix. We then concatenated GCN’s output on 
k adjacency matrices as the final representation of each 
node, before passing the representation through a linear 
layer for classification.

We also studied the importance of modeling temporal-
ity by experimenting on two variants of CSI and FANG: (i) 
temporally insensitive CSI(-t) and FANG(-t) without time(e) 
in the engagement e’s representation xe, and (ii) time-sen-
sitive CSI and FANG with time(e). Table 5 shows the macro-
scopic results. As an evaluation measure, we use the area 
under the Receiver Operating Characteristic curve (AUC 
ROC; hereafter, just AUC).

All context-aware models, that is, CSI(-t), CSI, GCN, 
FANG(-t), and FANG improve over the context-unaware 
baseline by 0.1153 absolute with CSI(-t) and by 0.1993 
absolute with FANG in terms of AUC score. This shows 
that considering the social context is helpful for fake 
news detection. We further observe that both time-sen-
sitive CSI and FANG improve over their time-insensitive 
variants, CSI(-t) and FANG(-t) by 0.0233 and 0.0339, 
respectively. These results demonstrate the importance 
of modeling the temporality of news spreading. Finally, 
the two graph-based models, FANG(-t) and GCN, per-
form consistently better than the Euclidean CSI(-t) 

b	 http://github.com/nguyenvanhoang7398/FANG

by 0.0501 and 0.0386, respectively: this demonstrates 
the effectiveness of our social graph representation. 
Overall, we can conclude that our FANG model outper-
forms the other context-aware, temporally-aware, and 
graph-based models.

5. DISCUSSION
We now answer the following research questions (RQs) 
to better understand FANG’s performance under different 
scenarios:

•	 RQ1: Does FANG work well with limited training data?
•	 RQ2: Does FANG differentiate between fake and real 

news based on their characteristic patterns in temporal 
engagement?

•	 RQ3: How effective is FANG’s representation learning?

5.1. Limited training data (RQ1)
To address RQ1, we conducted the experiments described 
in Section 4.1 using different sizes of the training dataset. 
We observed consistent improvements over the baselines 
under both limited and sufficient data conditions. Figure 3 
(left) further visualizes the experimental results. We can see 
that FANG consistently outperforms the two baselines for all 
training sizes: 10%, 30%, 50%, 70%, and 90% of the data. In 
terms of AUC score at decreasing training size, among the 
graph-based models, GCN’s performance drops by 16.22% 
from 0.7064 at 90% to 0.5918 at 10%, whereas FANG’s perfor-
mance drops by 11.11% from 0.7518 at 90% to 0.6683 at 10%. 
We further observe that CSI’s performance drops the least by 
only 7.93% from 0.6911 at 90% of the training data, to 0.6363 
at 10% of the data. Another result from an ablated baseline, 
FANG(-s), where we removed the stance loss, highlights 
the importance of this self-supervised objective. At 90% of 
the training data, the relative underperforming margin of 
FANG(-s) compared to FANG is only 1.42% in terms of AUC 
score. However, this relative margin increases as the avail-
ability of training data decreases, to at most 6.39% at 30% of 
the training data. Overall, the experimental results empha-
size our model’s effectiveness even under scenarios with 
limited training data compared to the ablated version. This 
confirms a positive answer for RQ1.

5.2. Engagement temporality study (RQ2)
To address RQ2 and to verify whether our model makes 
its decisions based on the distinctive temporal patterns 
between fake and real news, we examined FANG’s atten-
tion mechanism. We accumulated the attention weights 

Model Contextual Temporal Graphical AUC

Feature SVM 0.5525
CSI(-t) (without time(e)) 3 0.6678
CSI 3 3 0.6911
GCN 3 3 0.7064
FANG(-t) (without time(e)) 3 3 0.7179
FANG 3 3 3 0.7518

Table 5. Comparison between FANG and baseline models on fake news 
detection, evaluated with AUC score.
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Figure 3. FANG’s performance against baselines (AUC score) for 
varying training data sizes (left), and attention distribution across 
time windows for fake versus real news (right).
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labeled GCN representation (see Figure 4, bottom left) 
shows little collocation within either the fake or the real 
news groups. Quantitatively, FANG’s OPTICS clusters 
(as shown in Figure 4, top right) achieve a homogeneity 
score of 0.051 based on news factuality labels, compared 
to a homogeneity score of 0.0006 for the GCN OPTICS 
clusters. This intrinsic evaluation demonstrates FANG’s 
strong representation closeness within both the fake 
and the real news groups, indicating that FANG yields 
improved representations over another fully supervised 
graph neural framework.

For the extrinsic evaluation on downstream source fac-
tuality classification, our context-aware model achieves an 
AUC score of 0.8049 (versus 0.5842 for the baseline). We 
further examined the FANG representations for sources to 
explain this 0.2207 absolute improvement. Figure 5 shows 
the source representations obtained from the textual fea-
tures, GCN, and FANG with their factuality labels, that is, 
high, mixed, low, and the citation relationship. In the left 
subfigure, we can observe that the textual features are insuf-
ficient to differentiate the factuality of media, as a fake news 
site such as cnsnews could mimic factual media in terms of 
web design and news content.

However, the citation between a low-factuality website 
and high-factuality sites would not be as high, and it is 
effectively used by the two graph learning frameworks: 
GCN and (especially) FANG. Yet, GCN fails to differenti-
ate low-factuality sites with higher citations, such as jew-
snews.co.il and cnsnews, from high-factuality sites. On the 
other hand, sources such as news.yahoo despite being 
textually different, as shown in Figure 5 (left), should still 
cluster with other credible media for their high interci-
tation frequency. FANG, with much more emphasis on 
contextual representation learning, makes these sources 
more distinguishable. Its representation space gives us a 
glance into the landscape of news media, where there is a 
large central cluster of high-factuality intercited sources 
such as nytimes, washingtonpost, and news.yahoo. At the 
periphery lie less connected media outlets, inclusive of 

produced by FANG within each time window and then 
compared them across time windows. Figure 3 (right) 
shows the attention distribution over time for fake and 
for real news.

We can see that, for fake news, FANG pays 68.08% of its 
attention to the user engagement that occurred in the first 
12 h after a news article has been published. Its attention 
then sharply decreases to 18.83% for the next 24 h, then to 
4.14% from 36 h to 2 weeks after publication, and finally 
to approximately 9.04% from the second week onward. 
However, for real news, FANG places only 48.01% of its atten-
tion on the first 12 h, which then decreases to 17.59% and to 
12.85% in the time windows of 12–36 h, and 36 h to 2 weeks, 
respectively. We also observe that FANG maintains 21.53% 
attention even after 2 weeks.

Our model’s characteristics are consistent with the general 
observation that the appalling nature of fake news generates 
the most engagements within a short period of time after its 
publication. Therefore, it is reasonable that the model places 
much emphasis on these crucial engagements. On the 
other hand, genuine news attracts fewer engagements, but 
it is circulated for a longer period of time, which explains 
FANG’s persistent attention even after 2 weeks since the 
publication. Overall, the temporality study here highlights 
the transparency of our model’s decision, largely thanks to 
the incorporated attention mechanism.

5.3. Representation learning (RQ3)
In the intrinsic evaluation, we verify how generalizable 
the minimally supervised news representations are for 
the fake news detection task. We first optimize both 
GCN and FANG on 30% of the training data to obtain 
news representations. We then cluster these represen-
tations using an unsupervised clustering algorithm, 
OPTICS.1 The higher the homogeneity score, the more 
likely the news articles of the same factuality label (i.e., 
fake or real) should be close to each other, which yields 
higher quality representation.

In the extrinsic evaluation, we verify how generalizable 
the supervised source representations are for a new task: 
source factuality prediction. We first train FANG on 90% of 
the training data to obtain all source s representations as 
zs = GraphSage(s), and the total representation as vs = (zs, xs, 
∑a∈publish(s) xa), where xs, publish(s), and xa denote the source s 
content representation, the list of all articles published by 
s, and their content representations.

We propose two baseline representations that do not 
consider the content of the source s, v ′s = (zs, xs). Finally, we 
train two separate SVM models for vs and v ′s on the source 
factuality dataset, consisting of 129 sources of high factual-
ity and 103 sources of low factuality, obtained from Media 
Bias/Fact Checkc and PolitiFact.d

For intrinsic evaluation, the Principal Component 
Analysis (PCA) plot of labeled FANG representation (see 
Figure 4, top left) shows moderate collocation for the 
groups of fake and real news, whereas the PCA plot of 

c	 http://www.mediabiasfactcheck.com
d	 http://politifact.com

Figure 4. 2D PCA plot of FANG’s representations with factuality 
labels (top left) and OPTICS clustering labels (top right), and GCN’s 
news representations with factuality labels (bottom left) and OPTICS 
clustering labels (bottom right).
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both high- and low-factuality ones.
We also see cases where all models failed to differentiate 

mixed-factuality media, such as buzzfeednews and nypost, 
which have high citation counts with high-factuality media. 
Overall, the results from intrinsic and extrinsic evaluation, 
as well as the observations, confirm RQ3 on the improve-
ment of FANG’s representation learning.

5.4. Scalable inductiveness
FANG overcomes the transductive limitation of previous 
approaches, although inferring the credibility of unseen 
nodes. MVDAM9 has to randomly initialize an embed-
ding and to optimize it iteratively using node2vec3 for any 
unseen node, whereas FANG directly infers the embedding 
with its learned feature aggregator.

Other graphical approaches using matrix factorization22 
or graph convolutional layers2, 14 learn parameters whose 
dimensionality is fixed to the network size N and can be as 
expensive as O(N3)2 in terms of inference time. FANG infers 
the embeddings of unseen nodes without the adjacency 
matrix, and its inference time only depends on the neigh-
borhood size of the unseen nodes.

5.5. Limitations
We note that the entity and the interaction features are 
constructed before passing to FANG, and thus errors from 
upstream tasks, such as textual encoding or stance detection, 
propagate to FANG. Future work can address this in an end-to-
end framework, where textual encoding and stance detection 
can be jointly optimized.

Another limitation is that the dataset for contextual fake 
news detection can quickly become obsolete as hyperlinks 
and social media traces at the time of publication might no 
longer be retrievable.

6. CONCLUSION AND FUTURE WORK
We have demonstrated the importance of modeling the 
social context for the task of fake news detection. We further 
proposed FANG, a graph learning framework that enhances 
representation quality by capturing the rich social interac-
tions between users, articles, and media, thereby improving 
both fake news detection and source factuality prediction. 

Figure 5. Plots for source representations using textual features (left), GCN (middle), and FANG (right) with factuality labels.
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