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Abstract

Recent advancements in LLM pretraining have featured ever-expanding context1

windows to process longer sequences. However, our controlled study reveals that2

models pretrained with shorter context windows consistently outperform their3

long-context counterparts under a fixed token budget. This finding motivates4

us to explore an optimal context window scheduling strategy to better balance5

long-context capability with pretraining efficiency. To this end, we propose Sky-6

Ladder, a simple yet effective approach that implements a short-to-long context7

window transition. SkyLadder preserves strong standard benchmark performance,8

while matching or exceeding baseline results on long-context tasks. Through ex-9

tensive experiments, we pretrain 1B-parameter models (up to 32K context) and10

3B-parameter models (8K context) on 100B tokens, demonstrating that SkyLadder11

yields consistent gains of up to 3.7% on common benchmarks, while achieving up12

to 22% faster training speeds compared to baselines.13

1 Introduction14

The evolution of language models has been marked by a consistent expansion in context window sizes15

(Figure 1 left). While early models like GPT [39] and BERT [8] were limited to context windows of16

512 tokens, subsequent models have pushed significantly beyond these bounds. GPT-2 [40] doubled17

this capacity to 1024 tokens, and with Large Language Models (LLMs) exceeding 1B parameters,18

this trend has continued: Llama [50] has a 2048-token window, followed by Llama-2 [51] (409619

tokens), and Llama-3 [13] (8192 tokens). The need for models to handle longer sequences during20

inference has fueled the rush to expand the context window. As models pretrained with longer context21

windows reduce document truncation and preserve coherence [9], there is a widespread belief that22

such models should perform comparably to, or even surpass, their shorter-context counterparts.23

We question the common belief that larger context windows do actually improve performance. Close24

inspection of previous work reveals that there has yet to be a fair experimental setup for comparing25

models across different context windows while adhering to a fixed token budget. Using tightly26

controlled experiments, we test how changing only the context window size during pretraining27

impacts their performance. As shown in Figure 1 (right), our results indicate that models pretrained28

using shorter contexts always outperform long-context models, when assessed by their average29

performance across popular benchmarks. In addition, we verify that the performance gap is not30

eliminated by using advanced document packing strategies [13, 9, 44].31

To ensure the model can ultimately process long sequences, the model still needs to be exposed to32

long sequences. However, given the finding that shorter context windows enhance performance on33

downstream tasks, we face a trade-off between long-context capability and pretraining effectiveness.34

We propose SkyLadder, a simple yet effective context window scheduling strategy designed to35

balance both objectives. SkyLadder does this by progressively expanding the size of the context36
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Figure 1: Left: Pretraining context window of LLMs grows over the recent years. Right: Average
performance (in %) across nine downstream tasks for 1B-parameter models with different pretrained
context window sizes (color-coded). Increasing the context window degrades the overall performance.

window during pretraining, beginning pretraining with a minimal short context window (e.g., 837

tokens) and progressively expanding it to the long target context window (e.g., 32,768 tokens).38

Empirical results on 1B-parameter models (up to 32K context window) and 3B-parameter models39

(up to 8K context window) on 100B tokens demonstrate that SkyLadder outperforms naive long-40

context pretraining baselines, in both short- and long-context evaluation tasks. For example, models41

trained with SkyLadder demonstrate significantly higher accuracy on standard benchmarks (e.g.,42

HellaSwag), and reading comprehension tasks (e.g., HotpotQA), while still maintaining competitive43

performance on long-context evaluations like RULER. We further investigate the mechanisms behind44

the superior performance by observing the training dynamics, and discover that SkyLadder exhibits45

more concentrated and effective attention patterns.46

Overall, we suggest that the length of the context window is an important dimension in pretraining47

and should be scheduled over the course of training. We recommend a progressive approach that48

begins with a small context of 8 tokens and gradually increases according to a linear function of49

training steps. Given a target context window (e.g., 32K), we suggest that allocating approximately50

60% of the total training tokens to this expansion phase leads to stronger downstream performance51

compared to baselines. This scheduling strategy optimally enhances both training efficiency and52

model capability, offering a practical recipe for improving pretraining in language models.53
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Figure 2: Schematic comparison of training-time
context window scheduling.

Context Window Scheduling. Early work ex-55

plored gradually increasing the context win-56

dow in smaller models like BERT and GPT-57

2, to improve training stability and efficiency58

[35, 28, 21]. Notably, Li et al. [28] proposed59

length warmup for more stable training but did60

not show clear performance gains, while Jin et al.61

[21] focused on training acceleration in 400M62

models. We extend these findings by demon-63

strating, for the first time, that context window scheduling significantly boosts both efficiency and64

performance at much larger scales (up to 3B parameters). A parallel approach from Pouransari et al.65

[38] segments training documents by length, but Fu et al. [10] caution that such segmentation can66

introduce domain biases, as longer texts often cluster in specific domains such as books. Recent devel-67

opments in continual pretraining with long context windows [37, 54, 12], can also be viewed through68

the lens of context window scheduling with different strategies (illustrated in Figure 2). Our work69

represents the first demonstration of both effectiveness and efficiency of context window scheduling,70

providing empirical evidence of its benefits in both standard and long-context benchmarks.71

Long-Context Language Models. Long-context language models have received a lot of attention72

due to their ability to capture extended dependencies across large textual windows. Most existing73

approaches follow a continual pretraining paradigm [10, 56], which extends a pretrained backbone74

model to longer contexts through specialized fine-tuning or additional training. Several works propose75

to intervene in the positional embeddings to accommodate longer sequences [1, 31, 37, 4, 22], while76

2



Doc 1

Doc 2

Doc 3

Doc 2 E Doc 3 E

Doc 2Doc 1

...

...

Documents of varying length Chunks of fixed length L

Packing

Truncation &
Concatenation

Training

Applying
Attention Mask

Model with
Context Window L

[EOS] Token

Pretraining Corpus Packed Sequences

E

Causal Mask Intra-Doc Mask

Figure 3: An illustration of the workflow for pretraining data preparation highlights several critical
decisions. Key considerations include the method of data packing, the type of attention mask to
employ (causal or intra-doc mask), and determining the appropriate context window length L.

others perform extended pretraining on longer-sequence corpora [12, 54, 32, 62]. Our approach77

differs from previous methods as we train native long-context models from scratch, rather than78

modifying a pretrained model in post-training. Compared with a naive long-context pretraining79

baseline with a constant schedule, our approach delivers substantial gains on multiple long-context80

tasks, underscoring the benefits of training from scratch. These findings show that our method can be81

a promising direction for future research on building language models with longer context windows.82

3 How Context Window Affects Pretraining83

How does context window affect pretraining? To investigate this in a fair and comparable manner,84

we pretrain language models from scratch with context windows ranging from 512 to 16,384 tokens85

under a fixed total number of tokens, evaluating via perplexity and downstream task benchmarks. We86

examine how the context window size impacts model performance, analyzing how data packing and87

masking strategies interact with window size.88

3.1 Packing, Masking and Context Window89

Most modern LLMs are based on a decoder-only transformer architecture [53] with a fixed context90

window size denoted by L. In contrast, the pretraining corpus, D = {d1, d2, d3, . . . , dn}, consists91

of documents with varying lengths different from L. Therefore, a key step before pretraining is92

to pack the documents into sequences of length L. Formally, a packed sequence Ci is constructed93

as Ci = Trunc(di,1)⊕ di,2 ⊕ · · · ⊕ di,n−1 ⊕ Trunc(di,n) , where ⊕ represents concatenation, and94

Trunc(·) denotes truncation of documents to ensure len(Ci) = L. Following previous works [44, 63],95

document boundaries within Ci are explicitly marked using end-of-sequence ([EOS]) tokens.96

After the sequences are packed, the inputs are passed into transformer layers for next-token prediction97

training. A crucial component of these layers is the attention mechanism, which can be formulated98

as Ai,j = q⊤i kj , and then Attn(X) = Softmax(A + M). In decoder-only models, a mask M is99

applied to introduce constraints. A common approach is to use a causal mask, which ensures that100

each position can only attend to previous tokens by masking out (setting to −∞) attention scores101

corresponding to future positions: Mij = −∞ for j > i and Mij = 0 otherwise. A recently proposed102

masking scheme, known as intra-doc mask [63, 13], imposes a constraint that only allows tokens to103

attend to each other if they belong to the same document. Let each document d have start index sd104

and end index ed, the masking can be denoted as M intra
ij = 0 when ∃ d such that sd ≤ i, j ≤ ed and105

j ≤ i, and M intra
ij = −∞ otherwise. The model is trained with the standard cross-entropy loss on the106

packed sequences of length L. The workflow for pretraining data processing is illustrated in Figure 3.107

3.2 Preliminary Study on Context Window Size108

As per Section 1, we initiate our study by investigating the impact of context window size on model109

performance through a controlled experiment. Specifically, we pretrain language models with varying110

context window sizes, while preserving all other experimental settings. This enables a pure analysis of111

the context window’s influence on model performance. Through this analysis, we aim to understand112

whether longer context windows inherently lead to better or worse model performance.113

Key Variables. The context window size determines the number of tokens included in the context for114

each packed sequence. However, as discussed earlier, several additional factors influence the content115
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(a) Validation perplexity of 
models with varying sizes across 
different context window sizes.

(b) Validation perplexity  of different 
packing and masking strategies across 

varying context window sizes.

(c) Validation perplexity of models 
without positional encoding across 

varying context window sizes

(d) Distribution of context 
window sizes for IntraDoc 
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Figure 4: Ablation studies of different factors on different context window sizes. Note that the
validation PPL is obtained on the validation documents with a sliding window size of 512 tokens. The
packing strategy in (a) is Random, and the model sizes in (b) and (c) are 1B and 120M, respectively.
Note that the context window in (d) means the number of available preceding tokens when making
next-token prediction (calculation details in Section A.6).

within the context window: (1) Packing methods determine which documents constitute the context116

window, and different packing strategies can significantly alter the composition of token sequences; (2)117

Masking methods decide whether cross-document attention is enabled within the same context window.118

The choice of masking affects how the information from different documents interacts during training.119

Packing and Masking. To study the impact of packing, we employ two strategies: random packing120

and semantic packing. For random packing, documents are randomly concatenated without a specific121

ordering. For semantic packing, inspired by Shi et al. [44], we retrieve and concatenate semantically122

relevant documents from the corpus, aiming to keep them within the same context window. After123

experimenting with both a dense retriever [20] and a lexical retriever BM25, we found that BM25124

gives stronger performance and chose it as our focus. For masking, the baseline approach is causal125

masking, where each token can attend to all preceding tokens within the same context window,126

regardless of document boundaries. Conversely, recent studies [63, 9] show that disabling cross-127

document attention, thereby enabling intra-document attention, improves performance. For clarity in128

subsequent discussions, we denote random packing with causal masking as Random, BM25 packing129

with causal masking as BM25, and random packing with intra-document masking as IntraDoc.130

Training. We pretrain models from scratch using the TinyLlama codebase [60], and study models131

with 120M, 360M and 1B parameters. Given the substantial computational cost associated with132

retrieval in semantic packing, we randomly select around 30B tokens from the CommonCrawl (CC)133

subset of the SlimPajama dataset [46] as the pretraining corpus. All models undergo training for134

up to 100B tokens (∼3.3 epochs). To ensure consistency across experiments, we strictly control all135

other settings, retaining the same batch size and learning rate schedule for all context windows. All136

models also incorporate Rotary Positional Encoding (RoPE) [47] to encode positional information.137

Appendix A.3 and A.4 give further model architecture details and training settings.138

Evaluation. For all model sizes, we use perplexity (PPL) on validation documents from the original139

dataset as a key metric, in line with established practices [10, 24, 17]. Note that when comparing140

models across different context windows (e.g., a 2K-context model and an 8K-context model), we141

must ensure the evaluation sequence fits within the shorter model’s context window to maintain a142

fair comparison. We also evaluate 1B models on downstream standard benchmarks: HellaSwag [59],143

ARC-Easy and ARC-Challenge [6], Winogrande [42], CommonsenseQA [48], OpenBookQA [34],144

PIQA [2], Social-QA [43], and MMLU [16]. We employ the OLMES suite [15] for the evaluation,145

as it has been shown to provide reliable and stable results with curated 5-shot demonstrations [12].146

3.3 Experimental Results147

Figure 1 presents the main experimental result, obtained using the Random setting with 1B-parameter148

models. The results indicate that context window size significantly influences the performance of149

LLMs, with shorter contexts generally leading to better performance. To further investigate the150

factors contributing to the observation, we perform a comprehensive analysis to examine potential151

variables that may affect the conclusion. Figure 4 shows our results, and we derive four key findings:152
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Findings: (1) The advantage of training on shorter contexts is consistent across model sizes;
(2) This advantage is independent of the packing and masking methods employed; (3) It is
also unrelated to the use of positional encoding; (4) The best packing and masking strategy is
IntraDoc, which outperforms others probably because it introduces a larger number of short
contexts during pretraining.

153

Findings (1) and (2). As shown in Figure 4, regardless of the model size in (a) or the packing and154

masking methods in (b), a shorter context window for pretraining generally results in higher average155

performance on benchmarks. The finding on benchmarks is consistent with the trend of validation156

PPL, where shorter context windows always yield lower PPL.157

Finding (3). When using shorter context windows, one might hypothesize that the model learns158

positional encoding patterns for nearer positions more frequently, leading to better performance on159

standard benchmarks. To test the hypothesis, we systematically ablate RoPE by completely excluding160

it during pretraining, following prior work [25]. In Figure 4(c), models trained with short-context161

windows still outperform their long-context counterparts, even in the absence of positional encoding.162

This suggests that the advantages of shorter contexts are independent of positional encoding.163

Finding (4). From Figure 4(b), we observe that IntraDoc achieves the best validation PPL across all164

context window sizes compared to Random and BM25, alongside consistently higher performance on165

standard benchmarks (c.f. Appendix A.7.1). This raises the question: why does IntraDoc excel? We166

attribute the advantage to the context window size distribution of IntraDoc, which implicitly increases167

the prevalence of shorter contexts. As illustrated in Figure 4(d), despite the sequence length of 8K,168

fewer than 1% of context windows actually reach this limit. While prior work links the success of169

IntraDoc to reduced contextual noise [63], we identify a complementary factor — reduced average170

context window size — as a key factor in its strong performance. That is, we hypothesize that the171

effectiveness of IntraDoc may also be closely tied to short context windows.172

4 SkyLadder: Context Window Scheduling173

We now present SkyLadder for progressively expanding the context window during pretraining.174

4.1 Method175 Sequence Length: L
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Figure 5: An illustration of SkyLadder with Ran-
dom and IntraDoc. The example shows a packed
sequence (length L) consisting of two documents.
For SkyLadder, the context window w starts from
a small value and dynamically adjusts during train-
ing, eventually converging to the masking patterns
of Random or IntraDoc.

Inspired by learning rate scheduling, we ex-176

plore whether dynamically scheduling the con-177

text window from short to long during pretrain-178

ing could lead to performance improvements.179

This method can be implemented by applying180

multiple local “mini” causal masks to a long,181

packed sequence. We illustrate this masking182

strategy in Figure 5.183

Formally, we define a local window length184

w. The associated mask Mw is defined as fol-185

lows: Mij = 0 when ⌊ i
w ⌋w ≤ j ≤ i, and186

Mij = −∞ otherwise, where ⌊ i
w ⌋w calculates187

the largest multiple of w that is less than or equal188

to i, effectively defining a block-wise attention189

mask for the query token at position i. We linearly adjust the window size upwards by a constant190

factor per training step t: w(t) = min(we, ws + ⌊αt⌋), where we and ws represent the ending and191

starting context window sizes, respectively. Here, α denotes the rate of expansion, and t corresponds192

to the training step. As the training progresses, when the dynamic context window size w(t) even-193

tually reaches the desired (long) context window size L = we, it remains fixed at that value. At194

this point, the attention mask is equivalent to a full causal mask. Notably, this method modifies195

the effective context window through masking, independent of how the sequences are packed. As196

such, this mask Mw can be integrated with M Intra, which maintains the attention boundaries between197

documents; it can be seamlessly combined with most packing and masking strategies.198
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Table 1: Performance (accuracy in %) of different 1B models pretrained on 100B CC tokens on
standard benchmarks. ∗ denotes statistical improvements over the baseline (described in §A.7.3).

Method Avg. ARC-E ARC-C CSQA HS OBQA PIQA SIQA WG MMLU

Random 46.3 58.0 32.7 49.6 43.0 40.2 64.8 46.4 51.9 29.9
+ SkyLadder 50.0 (+3.7) 65.4∗ 35.6∗ 56.8∗ 47.0∗ 42.8 64.8 48.9∗ 56.0∗ 32.4∗

IntraDoc 47.4 61.8 33.4 52.7 45.6 38.0 64.3 45.7 54.8 30.5
+ SkyLadder 49.3 (+1.9) 64.8∗ 33.8 55.4∗ 47.9∗ 39.4 66.1∗ 48.0∗ 56.4 31.8∗

Table 2: Performance (accuracy in %) of 1B models pretrained on 100B CC tokens with different meth-
ods on reading comprehension and long-context benchmarks. Detailed setup is in Appendix A.7.3.

Method Reading Comprehension Benchmarks Long Benchmarks

Avg. HotpotQA SQuAD NQ TriviaQA RACE-h Avg. MDQA RULER

Random 25.5 6.5 37.0 15.8 37.7 30.7 15.3 17.7 12.8
+ SkyLadder 30.2 (+4.7) 12.4 40.2 20.4 43.0 35.0 14.3 18.3 10.3
IntraDoc 28.7 11.4 39.0 18.2 42.3 32.3 13.0 15.3 10.6
+ SkyLadder 29.1 (+0.4) 11.0 38.5 20.4 41.5 34.3 13.2 15.6 10.7

4.2 Experimental Setup199

We follow the same setup in Section 3.2 to pretrain language models with 8K context on 100B200

tokens. We set ws = 32 and α = 1/8 by default, which means that a model roughly needs 64K201

steps (around 64B tokens) to reach the final desired context window of L = 8192. All baseline202

and SkyLadder models are implemented with Flash Attention 2 [7] (pseudocode in A.5). We fix203

all other hyperparameters, such as the learning rate schedule, batch size, etc., for fair comparison.204

Due to resource constraints, we do not perform extensive hyperparameter search to obtain the best205

combinations for w(t), α, and ws. In our ablation study, we show that these hyperparameters have a206

negligible impact on performance, as long as they are within a reasonable range.207

For evaluation, we use the same suite mentioned in Section 3.2 with standard benchmarks. To evaluate208

the performance of long-context question answering within an 8K length, we utilize the 30-document209

setting from the Multi-Document QA (MDQA) benchmark [30]. This is a widely-adopted benchmark210

that is shown to be reliable for models of 1B scale [38, 63], with an average length of approximately211

6K tokens. We also select synthetic tasks within RULER [18], as defined by Yen et al. [58]. We212

choose the setup of the task that fills up the model’s target context window L.213

4.3 Experimental Results214

Tables 1 and 2 present the main results, highlighting significant improvements achieved by SkyLadder215

across standard benchmarks, reading comprehension tasks and long-context benchmarks. For instance,216

compared to the Random baseline, integrating SkyLadder yields notable performance gains on217

standard tasks such as MMLU (+2.5%), ARC-E (+7.4%), and HellaSwag (+4%). This suggests that218

models with SkyLadder excel at learning common knowledge during pretraining. Additionally, our219

method further improves the performance of the strong baseline IntraDoc across many benchmarks.220

Meanwhile, for realistic long-context benchmarks like MDQA, SkyLadder matches or exceeds221

baseline performance. For RULER, the performance difference is likely because of fluctuation222

caused by its synthetic nature and small size [54]. More long-context evaluation can be found223

in Section A.7.3, confirming that SkyLadder is comparable with or better than baselines on long-224

context evaluation. In addition to Random and IntraDoc, we also verify that SkyLadder improves the225

performance of the BM25 model on both short and long tasks (Section A.7.4).226

To address potential concerns that the benefits observed in short contexts may stem from the high level227

of noise in CC, we conduct additional experiments using the FineWeb-Pro dataset [64], a carefully228

curated high-quality dataset containing 100B tokens. As shown in Table 4, improved data quality229

indeed leads to substantial performance gains. However, our key findings remain consistent: IntraDoc230

continues to outperform Random, and SkyLadder consistently delivers significant improvements over231

both baselines. This demonstrates that our method generalizes to corpora of varying quality.232

We further examine whether SkyLadder is generalizable beyond natural language tasks. Follow-233

ing Ding et al. [9], we pretrain 1B code models on 100B Python code with the Starcoder tokenizer [29].234
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Table 3: Performance (in %) of 1B models pretrained on 100B Python code data. We follow the
protocol of Huang et al. [19] to evaluate on HumanEval [3] and BigCodeBench [65]. t is the sampling
temperature. SkyLadder shows consistent improvement especially for 32K-context models.

HumanEval BigCodeBench

Greedy Sampling (t = 0.8) Greedy Sampling (t = 0.8)

L Method Pass@1 Pass@10 Pass@100 Pass@1 Pass@10 Pass@20

32K Random 17.7 32.4 51.8 9.0 16.1 19.7
+ SkyLadder 21.3 37.7 59.8 9.4 20.6 24.3

8K Random 22.0 37.2 61.0 9.9 19.3 23.6
+ SkyLadder 23.2 38.2 63.4 11.3 20.0 24.1

Table 4: Performance (average accuracy over
tasks, in %) of 1B models pretrained on
FineWeb-Pro with an 8K context window.

Method Standard Long

Random 52.5 11.1
+ SkyLadder 55.2 (+2.7) 12.3 (+1.2)

IntraDoc 54.3 12.7
+ SkyLadder 54.8 (+0.5) 13.9 (+1.2)

Table 5: Performance (average accuracy in %) for
models of different sizes.

Size Method Standard Long

120M Random 40.1 5.8
+ SkyLadder 41.2 (+1.1) 5.1 (-0.7)

360M Random 47.2 8.9
+ SkyLadder 49.6 (+2.4) 8.9

3B Random 57.0 15.8
+ SkyLadder 60.5 (+3.5) 19.3 (+3.5)

We observe a lower training loss (∼ 0.9) for code pretraining compared to natural language (∼ 2.1),235

suggesting that the structure in code makes the training easier. However, as shown in Table 3, there236

is still significant improvement when applying SkyLadder under both greedy decoding and sampling237

setups, especially when the target context length is 32K. This demonstrates the potential of SkyLadder238

to coding and possibly other reasoning tasks beyond natural language modelling.239

4.4 Scalability Experiments240

We examine whether SkyLadder’s improvements persist as we scale up the model parameters and241

extend the context window size. We use the largest model and context size that our compute permits.242

Model Size. We conduct experiments across three model sizes: 120M, 360M, and 3B parameters on243

the Fineweb-Pro dataset. Table 5 demonstrates that models utilizing SkyLadder consistently achieve244

better standard benchmark performance on all model sizes. For long context tasks, our method245

does not benefit 120M models, possibly due to their limited capacity in processing long sequences.246

However, the performance gain on 3B models is prominent. We observe a positive scaling trend:247

as the model size grows, the performance improvement also increases, indicating the potential of248

applying our method to even larger models beyond our current scale. We leave it as a future work to249

explore larger models as it requires significantly more compute.250

Table 6: Performance (%) of 1B models
trained on 100B FineWeb-Pro tokens
with a 32K context window.

Method Standard Long

Random 50.7 9.7
+ SkyLadder 54.3 (+3.6) 13.5 (+3.8)
IntraDoc 54.0 13.0
+ SkyLadder 54.9 (+0.9) 14.4 (+1.4)

Context Window Size. To examine whether SkyLadder251

can effectively scale to longer context windows, we train252

1B models with a 32K context window on 100B FineWeb-253

Pro tokens. We adjust α to 1/2 to ensure that the final254

context window expands to 32K before the end of pretrain-255

ing. As shown in Table 6, our model demonstrates strong256

performance on both standard and long benchmarks. In257

addition, the performance difference of SkyLadder (0.9%)258

between the 8K and 32K models is largely reduced com-259

pared with the baseline approach (1.8%), which alleviates260

the performance degradation described in our earlier study. Notably, compared to the baseline261

Random approach, SkyLadder trains the model on progressively shorter contexts during earlier stages.262

This reveals a counterintuitive insight: naively training a model with a long context window is not263

always optimal, even if the model is evaluated on long contexts. In contrast, strategic scheduling of264

the context window during pretraining can yield better results.265
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Figure 6: Validation PPL on 512 and 8K contexts of models with different expansion rate α (left) and
initial window length ws (right).

Table 7: Comparison of 1B models trained with
a 32K context window with different scheduling
methods. Numbers are average accuracy (%).

Method Long Standard

Constant Long (32K) 9.7 50.7

Linear (32→32K, default) 13.5 54.3
Stepwise Linear (32→32K) 13.3 55.3
Sinusoidal (32→32K) 14.2 54.2
Exponential (32→32K) 11.5 54.7
Cont. Pretrain (4K→32K) 2.7 52.9

Table 8: Comparison of relative training time and
compute efficiency for 1B Models with different
context window sizes L. FLOPs calculation fol-
lows Zhang et al. [60]. A larger context window
leads to more efficiency gains.

Method Time (%) FLOPs (1020)

Random (8K) 100.0% 11.6
+ SkyLadder 86.9% (-13.1%) 9.9 (-14.7%)

Random (32K) 100.0% 25.5
+ SkyLadder 77.8% (-22.2%) 18.8 (-26.3%)

4.5 Ablation Study266

We now examine the impact of hyperparameters in SkyLadder scheduling. To manage computational267

costs, we adopt a default setup of pretraining 120M models with 8K context on 100B CC tokens.268

Expansion Rate. We investigate the impact of the expansion rate α in Figure 6 (left). We choose269

different α ranging from slowest (1/12) to fastest (1). Our findings reveal that, for short contexts,270

performance generally improves as the expansion rate slows down. However, selecting an excessively271

slow rate (e.g., 1/12) can negatively affect long-context performance due to insufficient training on272

longer contexts. Therefore, we recommend setting α to 1/8 for a good balance.273

Initial Context Window. As the final context window length we is fixed to L, the sole remaining274

hyperparameter is ws. Intuitively, setting ws to an excessively large value (e.g. close to L) leaves275

little room for scheduling, resulting in sub-optimal performance. In Figure 6 (right), we demonstrate276

that when ws is set to a relatively small value (e.g., 8), great performance can be achieved for both277

short and long contexts. This suggests that there is still potential for further improvement in our278

default setup. Therefore, we recommend starting with a small context window, such as 8 tokens.279

Scheduling Type. The default scheduling method in SkyLadder is linear scheduling. We evaluate280

different context window scheduling types (more details in Table 18 and Figure 11 in Appendix A.7.4):281

(1) Stepwise Linear rounds window size w(t) to multiples of 1K, resulting in a step function; (2)282

Sinusoidal increases quickly at the early stage then slows down; (3) Exponential starts slow but283

accelerates sharply; (4) Continual pretraining setup trains with 4K context windows for ∼97B284

tokens, then switches to 32K context for the final 3B tokens. Table 7 shows that linear and sinusoidal285

schedules outperform the exponential variant on long tasks, likely because the exponential schedule,286

with extended short-context pretraining at the beginning, fails to adequately train on long contexts.287

Last, the most commonly used continual pretraining setup performs poorly overall, suggesting abrupt288

context changes harm both short and long performance. These findings suggest that context window289

scheduling is superior to both constant long-context pretraining and continual pretraining.290

Overall, we conclude that the schedule should start from a small ws and the expansion should291

be gradual. We leave it to future work to study more advanced schedules and discover optimal292

configurations. For instance, it is possible that the schedule needs to be adjusted for various model293

sizes. More ablations for combination with BM25, hybrid attention, cyclic schedules and scheduling294

under a compute budget can be found in Appendix A.7.4.295
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4.6 Analysis and Discussion296

Training Efficiency. We observe a significant boost in training efficiency when employing Sky-297

Ladder in Table 8. On 8K models, SkyLadder accelerates training time by 13% due to the reduced298

context window in calculating attention. With a 32K context window, the efficiency gain becomes299

even more pronounced: our method saves 22% of training time while achieving better performance.300

The FLOPs saving is larger than the actual time because of reduced attention calculation.301

20 40 60 80 100
Training Tokens (B)

0

10

20

30

A
tte

nt
io

n 
Si

nk

3.2

3.3

3.4

3.5

3.6

A
tte

nt
io

n 
En

tro
py

Baseline
SkyLadder

Attention Sink
Attention Entropy

Figure 7: Dynamics of attention sink
and entropy during pretraining 1B mod-
els (8K context). SkyLadder delays the
emergence of attention sink while lower-
ing the overall entropy, indicating a more
effective attention pattern.

Attention Pattern. We next investigate why SkyLadder,302

despite being trained on short contexts overall, consis-303

tently outperforms the baseline. As language models rely304

on attention mechanisms to encode context information,305

we study how attention patterns change. Specifically, dur-306

ing pretraining, we monitor the dynamics of (i) attention307

entropy (solid lines in Figure 7), where a lower entropy is308

associated with better downstream performance [61]; (ii)309

attention sink [55], where the initial token in the context310

receives disproportionately high attention. We utilize the311

metric in Gu et al. [14] to quantitatively measure the ampli-312

tude of attention sink. As shown in Figure 7 (dashed lines),313

compared with the baseline Random, SkyLadder demon-314

strates reduced attention entropy, suggesting a more con-315

centrated attention pattern. However, a slower emergence316

and lower amplitude of attention sink are simultaneously317

observed. This suggests that SkyLadder’s attention is con-318

centrated on the key information in the context instead of319

the initial token, which accounts for the performance gain.320

Table 9: Comparison between SkyLadder and
Dataset Decomposition (DD) on 1B models
trained with 100B FineWeb-Pro tokens. Num-
bers are in average performance in %.

Model Standard Long

IntraDoc 54.3 12.7
+ SkyLadder 54.8 (+0.5) 13.9 (+1.2)
+ DD (1 cycle) 53.9 (-0.4) 12.3 (-0.4)
+ DD (8 cycles) 54.5 (+0.2) 13.5 (+0.8)

Comparison with Related Work We compare321

our method with another approach for improving322

pretraining in Table 9. As discussed in Section 2,323

Pouransari et al. [38] proposed Dataset Decomposi-324

tion (DD) by segmenting a document into sequences325

of varying lengths and using a curriculum during326

pretraining. However, this approach inevitably in-327

troduces domain bias, as the document lengths in328

different domains are different [10]. This explains329

why DD with only one short-to-long cycle fails to330

outperform the IntraDoc baseline. To mitigate this,331

the authors suggested iterating through multiple cy-332

cles of long and short data, which does improve performance substantially. In contrast, our method333

achieves better performance by avoiding such biases by not altering the data order based on length.334

In Appendix A.7.4, we experimented with various cyclic schedules but did not observe any im-335

provements. In fact, we noticed loss spikes between cycles (Figure 13), indicating potential issues336

with domain shifts. This further supports that our method is safer since it does not disrupt the337

natural ordering and distribution of the data. More discussion with other related works [28, 21] is in338

Section A.8, where we demonstrate that our work provides novel insights that scheduling the context339

window over the entire training time improves both efficiency and performance.340

5 Conclusion341

We conduct a comprehensive controlled study of the impact of context window on pretraining,342

revealing that a shorter context window is more beneficial to the model’s performance on standard343

benchmarks. This debunks the trend of pretraining with longer context windows. We therefore344

propose SkyLadder to schedule the context window from short to long during pretraining, which gives345

substantial improvement in downstream performance and computational efficiency. We conclude346

that context window scheduling is an important dimension for pretraining, and deserves more347

consideration. In the future, we plan to explore more dynamic and performant scheduling strategies348

that adapt according to model size or pretraining data distribution.349
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Table 10: Model configurations for pretrained language models.

Model Tinyllama 1B Tinyllama 120M Tinyllama 360M Llama3.2 3B

Vocab Size 32000 32000 32000 32000
Layers 22 12 18 28
Heads 32 12 16 24
Embedding Dim 2048 768 1024 3072
Intermediate Size 5632 2048 4096 8192
Normalization RMSNorm RMSNorm RMSNorm RMSNorm
Normalization ϵ 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Query Groups 4 1 16 8
Bias No No No No

RoPE θ
10000 if L = 8K

1000000 if L = 32K
10000 10000 100000

A Appendix637

A.1 Limitations638

While we perform extensive experiments to study the impact of context window on pretraining and639

demonstrate the effectiveness of SkyLadder, we acknowledge that there are still limitations to be640

addressed. First, we conduct experiments up to a 3B-model scale and 32K context length, while the641

latest large language models are typically much larger and capable of processing longer contexts.642

However, pretraining a large model with a long context window requires prohibitive computational643

resources beyond our budget. Within our computational capabilities, we have tried to demonstrate the644

generalizability of SkyLadder across corpora, context window size, model size, and downstream tasks.645

Thus, we leave it as future work to apply SkyLadder to larger models. Second, we do not include646

a theoretical analysis to explain the effectiveness of SkyLadder as we mainly focus on empirical647

insights. We suggest that future work may investigate the relationship between the context window648

and the training compute to obtain the optimal context window schedule.649

A.2 Broader Impacts650

The work aims to investigate the impact of choices on context windows in language model pretraining651

and proposes a way to speed up pretraining by scheduling context windows. On the positive side,652

this improves the efficiency of language model pretraining, making it more accessible and reducing653

the carbon footprint. Moreover, it enhances the performance of pretrained language models, which654

may result in better downstream performance in applications. There might be potential misuse of655

pretrained language models, which is beyond the scope of this work.656

A.3 Model Architecture657

In Table 10, we list the architecture choices of the models trained, including the 120M, 360M,658

and 1B models based on the TinyLlama architecture [60]. The 3B model is based on Llama3.2659

architecture [13].660

A.4 Training Configurations661

We include details of the training configurations in Table 11. All models, irrespective of size or context662

window length, are trained on this same set of hyperparameters. For most of the hyperparameter663

values, we follow the TinyLlama [60] project, therefore, our results are highly reproducible.664

A.5 Implementation665

We provide the pseudocode for implementing SkyLadder with Flash Attention 2 [7]. The only666

change is to apply local causal masking with size w, and combine them with the original document667

boundaries under the IntraDoc scenario. It can easily be integrated into any model before calculating668

attention. The rest of the training pipeline remains unchanged.669
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Table 11: Hyperparameters setup for pretraining the language models. All pretrained models follow
the same structure.

Parameter Value
Optimizer AdamW

AdamW-β1 0.9
AdamW-β2 0.95

Learning Rate Schedule Cosine
Peak Learning Rate 4e-4

Minimum Learning Rate 4e-5
Warmup Steps 2000

Gradient Norm Clipping 1
Total Steps 100,000

Global Batch Size 1,048,576 (220) tokens
Weight Decay 0.1

SkyLadder with Flash Attention 2

# q, k, v: RoPE-encoded query, key, value tensors
# doc_boundaries: EOS token positions per document
# is_intradoc: intra-document attention flag
# training_step: current global step
# L: maximum context window length

# get current window size
w = min(L, get_current_mask_length(training_step))

# breakpoints every w tokens (and at document boundaries if using IntraDoc
masking)

mask_boundaries = np.arange(w, L, w)
if is_intradoc:

mask_boundaries = np.union1d(mask_boundaries, doc_boundaries)

# compute max segment length & cumulative lengths for flash attention
max_seqlen = get_max_seqlen(mask_boundaries, L)
cu_seqlens = get_cu_seqlens(mask_boundaries, L)

attn = flash_attn_varlen_func(
q, k, v,
cu_seqlens,
max_seqlen,
causal=True

)

670

A.6 Definition of Per-token Context Window671

In Figure 4(d), we show the context window distribution difference between IntraDoc and Random.672

To clarify, the context window size refers to the number of preceding tokens available in the context673

window when making the next token prediction. This is different from (a) and (b), where the context674

length L is the model’s pretrained context window.675

Formally, consider a token at index i and an attention mask matrix M , where an entry Mi,j = 0676

indicates that token i can attend to token j, and −∞ otherwise. The context window size Ci for the677

i-th token is defined as Ci =
∑i

j=1 1 {Mi,j = 0}, where 1 {·} is the indicator function that returns 1678

when Mi,j = 0 and 0 otherwise. In essence, Ci is the number of tokens available as context for the679

i-th token, and the distribution of Ci over all pretraining tokens is in Figure 4(d).680
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For Random, the causal mask is triangular: the i-th token has a context window size equal to i (i.e.,681

C1 = 1, C2 = 2, etc.). Thus, the distribution of Ci is uniform. In contrast, IntraDoc effectively682

shortens the context length by limiting the cross-document attention.683

A.7 Additional Results684

A.7.1 Context Window Study685
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Figure 8: Validation perplexity (evaluated on a sliding window of 512) on models with different
context lengths.
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In Figure 8. We plot the validation perplexity of models with different context windows under the686

Random, IntraDoc, and BM25 settings. We observe a consistent trend that a shorter-context model687

has lower evaluation perplexity on a shorter sequence under all settings.688

In Figure 9, we plot the evaluation perplexity and downstream performance of models with different689

packing or masking strategies. We conclude that overall, IntraDoc achieves the best performance,690

with a consistently lower PPL and a higher downstream accuracy. We think that this is partially due691

to the shorter context window that the IntraDoc model is trained on.692

A.7.2 Ablations for Context Window Study693

Base of RoPE. It has been shown that the value of RoPE may have a significant impact on the694

model’s long context performance, and a longer context requires a larger base [33]. Therefore, we695

increase the RoPE base to 100,000, which is sufficiently large according to Men et al. [33]. In696

Figure 10, we observe an improvement for long-context models on long-context evaluation. However,697

the large gap between a shorter and a longer model still remains, therefore rejecting the hypothesis698

that the RoPE base is the key contributing factor to the superior performance of short-context models.699

700
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Table 12: Performance of 3B models on long tasks of retrieval-augmented generation (evaluated by
exact-match scores) and reading comprehension benchmarks (accuracy in %).

Retrieval Augmented Generation Reading Comprehension

Model Avg. NQ TriviaQA HotpotQA PopQA Avg. TOEFL QuALITY

Random 30.3 24.3 45.2 29.3 22.5 37.1 43.5 30.6
+ SkyLadder 35.5 27.8 52.7 32.3 29.3 39.4 48.0 30.9

Table 13: Many-shot ICL performance (accuracy) on text classification benchmarks. Numbers in
parentheses denote the number of labels for each task.

Model Avg. DBpedia (14) AGNews (4) Amazon (2) Yelp (2) SST2 (2)

Random 73.9 17.4 68.6 94.3 94.7 94.5
+ SkyLadder 76.5 25.5 75.8 94.1 95.0 92.2

A.7.3 SkyLadder Evaluation701

Statistical Test We test the statistical significance of the performance difference between our702

models and baselines in Table 1. We use a McNemar test as the two models are evaluated on the same703

set of questions. The original OLMES suite samples 1000 examples from each benchmark’s full704

evaluation suite. In contrast, when conducting the McNemar test, we evaluate models on the full set705

to obtain more statistically meaningful results. We note that OpenBookQA only has 500 questions,706

making it harder to obtain statistical significance.707

Reading Comprehension For reading comprehension, we evaluate the following benchmarks:708

Hotpot QA (2-shot) [57], SQuAD (4-shot) [41], NaturalQuestions (NQ) (2-shot) [26], TriviaQA709

(2-shot) [23], and RACE-high (0-shot) [27]. We follow the setup by Zhao et al. [63], where NQ and710

TriviaQA use retrieved documents as contexts. For RACE, we use lm-evaluation-harness [11]711

to compare the PPL between options.712

Long-context Evaluation We provide additional long-context evaluation on our largest 3B model713

with an 8K context. This is to mitigate the performance instability of using synthetic benchmarks714

on small models. We first follow [38] to evaluate model accuracy on reading comprehension715

benchmarks TOEFL [5, 52] and QuALITY [36]. Next, we evaluate the model’s performance on716

Retrieval Augmented Generation (RAG), where the model is provided with many relevant but717

potentially noisy contexts and needs to locate the correct information. As shown in Table 12,718

SkyLadder consistently performs better than the baseline across all evaluated RAG and reading719

comprehension datasets, highlighting its ability to locate correct answers within a lengthy con-720

text. In addition, we test the in-context learning ability of the models on text classification bench-721

marks [63, 44]. Results in Table 13 suggest that SkyLadder shows a significant gain for tasks722

with many labels, such as DBpedia, while achieving comparable high performance on binary tasks.723

Table 14: 1B model (trained on CC) performance
(exact match %) on closed-book QA tasks.

Closed-book QA

Model NQ TriviaQA Average

Random 6.1 11.9 9.0
+ SkyLadder 9.0 17.5 13.2
IntraDoc 7.8 14.7 11.3
+ SkyLadder 8.2 17.4 12.8

724

Closed-book QA We additionally evaluate the725

closed-book QA performance of our models726

without access to any document. We use the727

evaluation protocol Zhao et al. [63] to measure728

the exact match. In Table 14, we notice a signif-729

icant improvement in our methods compared to730

the baselines for answering closed-book ques-731

tions. This is consistent with the results that our732

models show improvements on standard bench-733

marks that contain commonsense knowledge.734

A.7.4 SkyLadder Ablations735

Combination with BM25 Packing As SkyLadder only changes the context length via masking736

without altering the underlying data, it is orthogonal to any advanced data packing method such as Shi737

19



Table 15: Performance (%) of 1B models with
different schedule types. All models are trained
on the same 100B CommonCrawl tokens with a
final context length of 8K. BM25 packing, when
combined with SkyLadder, significantly boosts per-
formance on long tasks.

Standard Avg. Long Avg.

Random 46.3 15.3
BM25 47.5 (+1.2) 16.4 (+1.1)
+ SkyLadder 49.8 (+3.5) 17.0 (+1.7)

Table 16: Performance (%) of 1B models with
different schedule types. All models are trained
on the same 100B FineWeb-Pro tokens with a
final context length of 8K. Short-to-long schedul-
ing is consistently better than long-to-short
scheduling.

Standard Avg. Long Avg.

No Scheduling 52.5 11.1
Short-to-Long 55.2 (+2.7) 12.3 (+1.2)
Long-to-Short 52.6 (+0.1) 10.7 (-0.4)

Table 17: Evaluation perplexity for models with different evaluation context lengths Le. All models
are trained with 100B tokens on CommonCrawl.

Model Le = 512 Le = 4K Le = 8K

Random – 120M 15.9 13.4 13.0
+ SkyLadder 15.5 12.9 12.4
Random – 360M 12.1 10.2 9.8
+ SkyLadder 11.6 9.7 9.4

et al. [44], Ding et al. [9]. In Table 15, we combine the SkyLadder with the BM25 packing method.738

We show that the model achieves even better performance on both short and long context evaluation739

than BM25 without scheduling, which is also better than the Random baseline. This reveals that our740

method can be combined with more advanced packing techniques to further boost performance.741

Combination with Hybrid Attention We note that a recent interesting trend in pretraining models742

with long context is to use a hybrid attention structure. For instance, Gemma3 [49] uses a mixture of743

global and local attention layers to balance efficiency and performance of the long-context model.744

We are curious about the generalizability of SkyLadder to such architecture, and follow Gemma3’s745

strategy with a global-to-local ratio of 6:1. The results are presented in Table 17. We observe746

that SkyLadder consistently outperforms the baseline across all evaluation lengths, verifying its747

applicability. Importantly, SkyLadder works along the time dimension and is combinable with748

different attention variants, as long as there is a context window to be scheduled.749

Long-to-Short Schedule A possibility that SkyLadder works better than baseline on standard750

benchmarks, which are typically short, might be that the training data mix has more short-context751

data after applying the mask. To study the effect of pure data distribution, we conduct an ablation of752

reversing the original short-to-long schedule and name it as the long-to-short schedule. This schedule753

spends the same number of tokens (64B) in the changing phase, before the constant training phase in754

L = 8K for another 36B tokens. In Table 16, we show that the long-to-short schedule is not helpful755

to the model’s performance in both short and long evaluation tasks. This highlights that the context756

window needs to be scheduled, rather than simply having a data mixture of long and short contexts.757

Alternative Schedule Types We explore various types of short-to-long scheduling following758

different functions as mentioned in Section 4.5. Table 18 shows the details of the schedule as a759

function of t, and Figure 11 shows an illustration of the different schedule types. In Table 7, we show760

that a smoother increase following the sinusoidal schedule works the best for long-context evaluation,761

while also achieving strong performance on standard benchmarks.762

Expansion Rate We illustrate the effect of the rate of expansion α in Figure 12. As the evaluation763

is done on 8K contexts, models with a lower rate (and shorter context window) will have a higher764

loss as the evaluation length is out-of-distribution. However, eventually, all models’ loss converges to765

a low level after the schedule reaches 8K. The detailed numbers of validation loss after pretraining766

can be found in Table 19. Following previous work [10, 17, 24], we consider a loss difference larger767

than 0.01 as significant. We conclude that setting a reasonable rate of 1/8 balances both short and768

long-context loss, which is the default setup for our main experiments.769
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Table 18: Functions for different context window
schedule types. We set ws = 32 and we =
32768 in our experiments. The r for rounding is
set to 1024.

Schedule Function

Constant we

Linear ws + (we − ws)
αx

we−ws

Stepwise max(ws, r ×
⌊

L(x)
r

⌋
)

Sinusoidal ws + (we − ws) sin
(

απx
2(we−ws)

)
Exponential ws ×

(
we
ws

) αx
we−ws
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Figure 11: Illustration plot of various scheduling
types.
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Figure 12: An illustration of the effect of differ-
ent α. Dashed lines represent the current context
window w for each step, and solid lines are the
loss evaluated at 8K length.
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Figure 13: An illustration of the cyclic schedules
with gradual increases or jumps. Dashed lines
represent the context length for each step, and
solid lines are the loss evaluated at an 8K length.
c represents the number of cycles.

Cyclic Schedule Inspired by the cyclic schedule learning rate [45], we also wonder if cycles are770

helpful in the schedule. In Figure 13, we show two cyclic schedules. In the “Jump” schedule, w(t)771

will decrease to ws immediately after reaching L. On the other hand, the “Gradual” schedule means772

an “M” shape alternating between we and ws. Notably, in the discontinuous Jump schedule, we773

notice a significant increase in long-context perplexity when we train on only short contexts for an774

extended period. However, as long as w increases back to L, the performance will return.775

Table 19: Validation loss with different expansion rates. A box is colored red if it is significantly
worse (difference > 0.01) than the best of the column. Le is the evaluation context length. All models
are of size 120M and trained on 100B tokens.

Rate
(1/α) Tokens to Reach 8K (B) Le = 512 Le = 4K Le = 8K

1 8 2.751 2.563 2.522
2 16 2.741 2.551 2.514
4 32 2.740 2.551 2.515
8 64 2.732 2.553 2.519
9 72 2.731 2.553 2.519

10 80 2.732 2.555 2.522
11 88 2.730 2.554 2.521
12 96 2.729 2.557 2.526

Baseline (Constant) 2.780 2.590 2.549
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Table 20: Validation loss with cyclic schedules. Le represents the evaluation context length. All
models are of size 120M and trained on 100B tokens.

Type Number of Cycles Tokens per Cycle (B) Le = 512 Le = 8K

Random 2.780 2.549
+ SkyLadder 2.732 2.519

Gradual 4.5 16 2.743 2.530
Jump 9 8 2.744 2.532
Gradual 2.5 32 2.732 2.521
Jump 5 16 2.733 2.521
Gradual 1.5 64 2.728 2.524
Jump 3 32 2.727 2.522

Table 21: Final validation loss after training 120M models on 100B tokens with different ws when
α = 1/4 and α = 1/8. Le represents the context length of evaluation. A cell is colored red if its loss
has a difference larger than 0.01 from the column’s best. ws = 8192 equals no scheduling.

ws Le = 512 Le = 4K Le = 8K

α = 1/4
4 2.731 2.546 2.510
8 2.730 2.545 2.508
16 2.733 2.551 2.513
32 2.740 2.551 2.515
64 2.742 2.557 2.520
128 2.748 2.564 2.528
256 2.750 2.566 2.527

α = 1/8
4 2.727 2.549 2.515
8 2.725 2.545 2.510
16 2.729 2.550 2.516
32 2.732 2.553 2.519
64 2.735 2.553 2.519
128 2.743 2.564 2.530
256 2.748 2.567 2.531

8192 2.780 2.590 2.549

In Table 20, we show that these schedules have no major impact on the final performance. This776

highlights that the method does not introduce additional bias in data selection: different from existing777

methods such as Pouransari et al. [38] that proposes to train on short data first, followed by long778

data, we do not assume such a curriculum on data. We argue that the context window size should be779

independent of the data lengths to avoid bias in training only on certain domains of data.780

Initial Window Length We show the effect of having different ws, the initial window length when781

the training starts. In Table 21, we show that the optimal starting length is 8 tokens. The trend is the782

same across both α = 1/4 and α = 1/8. This suggests that the starting length should be sufficiently783

small, irrespective of the expansion rate. It also reveals that prior studies, such as Jin et al. [21]784

and Pouransari et al. [38] that start with an initial length of 256 could be suboptimal.785

Compute Budget We show that when the total number of tokens is limited, our method can still786

improve language model performance. In Table 22, we choose 12.5B, 25B, and 50B total tokens787

as the computing budget, and vary the expansion rate so that w reaches L at the same point during788

training. We observe that under different token budgets, the performance trend is the best: gradually789

expanding the context window gives better performance than a rapid increase.790

Sliding Window Expansion A possible alternative to SkyLadder (using local causal masks by791

default) is to use a sliding window attention with a window size of w(t) that changes with the training792
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Table 22: Final validation loss under different training token budgets and expansion rate α with 120M
models. Le represents the context length used for evaluation. “% of Token Budget” means how many
tokens are spent in the expansion phase with w(t) increasing. Under all token budgets, we observe a
consistent improvement when we spend around 64% in expansion, and 36% in the stable phase.

α Tokens to L (B) % of Token Budget Le = 512 Le = 4096 Le = 8192

Token Budget = 12.5B
1 8 64% 2.912 2.732 2.698
2 4 32% 2.933 2.746 2.709
4 2 16% 2.958 2.767 2.729
8 1 8% 2.976 2.782 2.743

Baseline 3.008 2.823 2.790

Token Budget = 25B
1/2 16 64% 2.829 2.650 2.617
1 8 32% 2.841 2.656 2.619
2 4 16% 2.851 2.665 2.626
4 2 8% 2.873 2.683 2.645

Baseline 2.918 2.734 2.700

Token Budget = 50B
1/4 32 64% 2.771 2.590 2.556
1/2 16 32% 2.781 2.596 2.560
1 8 16% 2.789 2.603 2.564
2 4 8% 2.795 2.607 2.567

Baseline 2.839 2.652 2.616

Table 23: Performance (%) of 1B models with different masking schemes. All models are trained
on the same 100B FineWeb-Pro tokens with a final context length of 8K. Both implementations of
SkyLadder outperform the baseline, and the sliding window approach excels at long tasks with a
slight performance drop on standard benchmarks.

Model Standard Avg. Long Avg.

Random 52.5 11.1
+ SkyLadder w/ local causal 55.2 (+2.7) 12.3 (+1.2)
+ SkyLadder w/ sliding window 54.4 (+1.9) 12.8 (+1.7)

time. Formally, the mask becomes:793

Mi,j =

{
0 if i− w ≤ j ≤ i

−∞ otherwise.

so that each token in the context has a fixed preceding context of size w. When w(t) reaches L, the794

mask becomes equivalent to a causal mask. We compare the performance of the two in Table 23795

and observe that the sliding window approach shows slightly better performance in long tasks and796

worse performance in standard benchmarks. This is likely because overall there are more tokens with797

longer preceding contexts for the sliding window approach. In both cases, SkyLadder outperforms798

the Random baseline. We think that future work could further investigate the differences between799

SkyLadder implementations with causal and sliding window attention, such as the formation of800

attention sink [14]. There could also be possible combinations of the two: for instance, using a local801

mask first to disable distraction, and enabling sliding windows as the training progresses.802

A.8 Additional Comparison with Related Work803

We acknowledge that there are several prior works discovering a similar pattern of short-to-long804

pretraining. For instance, Li et al. [28] discover that using a sequence-length warmup for the initial805

steps in pretraining improves model stability. However, they mostly focus on stability in training loss806

and do not show a clear performance gain across multiple evaluations and larger scales. Moreover,807

we demonstrate that the benefits of scheduling a model’s context window go beyond only the warmup808

stage. In Table 19’s first row, simply warming up the model with 8B tokens results in suboptimal809

performance compared to a slower expansion rate. This validates that the context window should be810
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considered as a factor to schedule over the entire training course, which also differentiates us from811

Li et al. [28] that only consider the warmup stage.812

Another related work is Jin et al. [21] where the authors use progressive sequence lengths to accelerate813

training. However, their method leads to worse performance under the same token budget, while814

our SkyLadder shows both time saving and performance improvement with the same number of815

tokens. We suspect that this might be because of the suboptimal schedule they used. Moreover, their816

study is limited to observing the training loss of small models (up to 410M parameters), while we817

comprehensively show performance gain across multiple corpora, model sizes, context sizes, and a818

wide variety of tasks. Overall, we systematically conduct controlled experiments on the impact of819

context window scheduling in pretraining, providing insights to explain these previous studies.820

A.9 Compute Information821

We conducted all of our experiments for models with ≤ 1B size on an internal cluster of NVIDIA822

A100 nodes with 40G memory. Experiments with 3B models were conducted on H100 nodes. There823

are additional preliminary experiments that we did not include in the paper, which account for a824

fraction of the total compute. The detailed computation for each experiment is as follows: For the825

preliminary study on context window, pretraining a 1B model with 100B tokens (with 8K context)826

takes around 200 hours on a node of 8 A100s. Models of different sizes scale accordingly. For827

instance, plotting Figure 4(a) and (b) requires a total of 159 days of pretraining on a single node.828

For SkyLadder experiments, the baseline pretraining using various corpora takes the same time, and829

SkyLadder speeds up the training by 13% to 22% depending on the context length.830

A.10 Licenses of Assets831

We mainly use the following public datasets or codebases in this paper: SlimPajama [46] following832

the CommonCrawl Foundation Terms of Use1, FineWeb-Pro [64] with an ODC-By 1.0 license, and833

TinyLlama [60] with an Apache 2.0 License.834

1https://commoncrawl.org/terms-of-use
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NeurIPS Paper Checklist835

1. Claims836

Question: Do the main claims made in the abstract and introduction accurately reflect the837

paper’s contributions and scope?838

Answer: [Yes]839

Justification: Our abstract summarizes the findings of our preliminary study and the essence840

of the SkyLadder method: we systematically study the impact of context length on pretrain-841

ing and empirically verify the effectiveness of our approach.842

Guidelines:843

• The answer NA means that the abstract and introduction do not include the claims844

made in the paper.845

• The abstract and/or introduction should clearly state the claims made, including the846

contributions made in the paper and important assumptions and limitations. A No or847

NA answer to this question will not be perceived well by the reviewers.848

• The claims made should match theoretical and experimental results, and reflect how849

much the results can be expected to generalize to other settings.850

• It is fine to include aspirational goals as motivation as long as it is clear that these goals851

are not attained by the paper.852

2. Limitations853

Question: Does the paper discuss the limitations of the work performed by the authors?854

Answer: [Yes]855

Justification: We discuss limitations of our study in Section A.1.856

Guidelines:857

• The answer NA means that the paper has no limitation while the answer No means that858

the paper has limitations, but those are not discussed in the paper.859

• The authors are encouraged to create a separate "Limitations" section in their paper.860

• The paper should point out any strong assumptions and how robust the results are to861

violations of these assumptions (e.g., independence assumptions, noiseless settings,862

model well-specification, asymptotic approximations only holding locally). The authors863

should reflect on how these assumptions might be violated in practice and what the864

implications would be.865

• The authors should reflect on the scope of the claims made, e.g., if the approach was866

only tested on a few datasets or with a few runs. In general, empirical results often867

depend on implicit assumptions, which should be articulated.868

• The authors should reflect on the factors that influence the performance of the approach.869

For example, a facial recognition algorithm may perform poorly when image resolution870

is low or images are taken in low lighting. Or a speech-to-text system might not be871

used reliably to provide closed captions for online lectures because it fails to handle872

technical jargon.873

• The authors should discuss the computational efficiency of the proposed algorithms874

and how they scale with dataset size.875

• If applicable, the authors should discuss possible limitations of their approach to876

address problems of privacy and fairness.877

• While the authors might fear that complete honesty about limitations might be used by878

reviewers as grounds for rejection, a worse outcome might be that reviewers discover879

limitations that aren’t acknowledged in the paper. The authors should use their best880

judgment and recognize that individual actions in favor of transparency play an impor-881

tant role in developing norms that preserve the integrity of the community. Reviewers882

will be specifically instructed to not penalize honesty concerning limitations.883

3. Theory assumptions and proofs884

Question: For each theoretical result, does the paper provide the full set of assumptions and885

a complete (and correct) proof?886
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Answer: [NA]887

Justification: This paper is not a theory paper and we do not include theoretical results.888

Guidelines:889

• The answer NA means that the paper does not include theoretical results.890

• All the theorems, formulas, and proofs in the paper should be numbered and cross-891

referenced.892

• All assumptions should be clearly stated or referenced in the statement of any theorems.893

• The proofs can either appear in the main paper or the supplemental material, but if894

they appear in the supplemental material, the authors are encouraged to provide a short895

proof sketch to provide intuition.896

• Inversely, any informal proof provided in the core of the paper should be complemented897

by formal proofs provided in appendix or supplemental material.898

• Theorems and Lemmas that the proof relies upon should be properly referenced.899

4. Experimental result reproducibility900

Question: Does the paper fully disclose all the information needed to reproduce the main ex-901

perimental results of the paper to the extent that it affects the main claims and/or conclusions902

of the paper (regardless of whether the code and data are provided or not)?903

Answer: [Yes]904

Justification: We provide detailed hyperparameter setting (Section 3.2, A.4), implementation905

pseudocode (A.5) and model configuration (A.3). We implement most of the experiments in906

TinyLlama, a popular public project for pretraining, which makes it highly reproducible.907

Guidelines:908

• The answer NA means that the paper does not include experiments.909

• If the paper includes experiments, a No answer to this question will not be perceived910

well by the reviewers: Making the paper reproducible is important, regardless of911

whether the code and data are provided or not.912

• If the contribution is a dataset and/or model, the authors should describe the steps taken913

to make their results reproducible or verifiable.914

• Depending on the contribution, reproducibility can be accomplished in various ways.915

For example, if the contribution is a novel architecture, describing the architecture fully916

might suffice, or if the contribution is a specific model and empirical evaluation, it may917

be necessary to either make it possible for others to replicate the model with the same918

dataset, or provide access to the model. In general. releasing code and data is often919

one good way to accomplish this, but reproducibility can also be provided via detailed920

instructions for how to replicate the results, access to a hosted model (e.g., in the case921

of a large language model), releasing of a model checkpoint, or other means that are922

appropriate to the research performed.923

• While NeurIPS does not require releasing code, the conference does require all submis-924

sions to provide some reasonable avenue for reproducibility, which may depend on the925

nature of the contribution. For example926

(a) If the contribution is primarily a new algorithm, the paper should make it clear how927

to reproduce that algorithm.928

(b) If the contribution is primarily a new model architecture, the paper should describe929

the architecture clearly and fully.930

(c) If the contribution is a new model (e.g., a large language model), then there should931

either be a way to access this model for reproducing the results or a way to reproduce932

the model (e.g., with an open-source dataset or instructions for how to construct933

the dataset).934

(d) We recognize that reproducibility may be tricky in some cases, in which case935

authors are welcome to describe the particular way they provide for reproducibility.936

In the case of closed-source models, it may be that access to the model is limited in937

some way (e.g., to registered users), but it should be possible for other researchers938

to have some path to reproducing or verifying the results.939

5. Open access to data and code940
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Question: Does the paper provide open access to the data and code, with sufficient instruc-941

tions to faithfully reproduce the main experimental results, as described in supplemental942

material?943

Answer: [Yes]944

Justification: Our pretraining code is based on TinyLlama, an open-source pretraining945

framework. The data is based on open-source pretraining corpora like SlimPajama and946

Fineweb-Pro. We include the code in the supplementary materials, and will open source the947

code upon acceptance.948

Guidelines:949

• The answer NA means that paper does not include experiments requiring code.950

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/951

public/guides/CodeSubmissionPolicy) for more details.952

• While we encourage the release of code and data, we understand that this might not be953

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not954

including code, unless this is central to the contribution (e.g., for a new open-source955

benchmark).956

• The instructions should contain the exact command and environment needed to run to957

reproduce the results. See the NeurIPS code and data submission guidelines (https:958

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.959

• The authors should provide instructions on data access and preparation, including how960

to access the raw data, preprocessed data, intermediate data, and generated data, etc.961

• The authors should provide scripts to reproduce all experimental results for the new962

proposed method and baselines. If only a subset of experiments are reproducible, they963

should state which ones are omitted from the script and why.964

• At submission time, to preserve anonymity, the authors should release anonymized965

versions (if applicable).966

• Providing as much information as possible in supplemental material (appended to the967

paper) is recommended, but including URLs to data and code is permitted.968

6. Experimental setting/details969

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-970

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the971

results?972

Answer: [Yes]973

Justification: We describe the training and testing setup in detail in Section 3.2 for our974

preliminary study, and in Section A.7.3 for SkyLadder experiments.975

Guidelines:976

• The answer NA means that the paper does not include experiments.977

• The experimental setting should be presented in the core of the paper to a level of detail978

that is necessary to appreciate the results and make sense of them.979

• The full details can be provided either with the code, in appendix, or as supplemental980

material.981

7. Experiment statistical significance982

Question: Does the paper report error bars suitably and correctly defined or other appropriate983

information about the statistical significance of the experiments?984

Answer: [Yes]985

Justification: We conduct McNemar test for our main results in Table 1. The details for986

testing are in A.7.3. Due to the excessive cost of pretraining, we do not perform repeated987

runs of the same setup. However, our claims are supported by multiple variations of the988

pretraining and comprehensive ablation studies in the main text and appendix.989

Guidelines:990

• The answer NA means that the paper does not include experiments.991
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-992

dence intervals, or statistical significance tests, at least for the experiments that support993

the main claims of the paper.994

• The factors of variability that the error bars are capturing should be clearly stated (for995

example, train/test split, initialization, random drawing of some parameter, or overall996

run with given experimental conditions).997

• The method for calculating the error bars should be explained (closed form formula,998

call to a library function, bootstrap, etc.)999

• The assumptions made should be given (e.g., Normally distributed errors).1000

• It should be clear whether the error bar is the standard deviation or the standard error1001

of the mean.1002

• It is OK to report 1-sigma error bars, but one should state it. The authors should1003

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1004

of Normality of errors is not verified.1005

• For asymmetric distributions, the authors should be careful not to show in tables or1006

figures symmetric error bars that would yield results that are out of range (e.g. negative1007

error rates).1008

• If error bars are reported in tables or plots, The authors should explain in the text how1009

they were calculated and reference the corresponding figures or tables in the text.1010

8. Experiments compute resources1011

Question: For each experiment, does the paper provide sufficient information on the com-1012

puter resources (type of compute workers, memory, time of execution) needed to reproduce1013

the experiments?1014

Answer: [Yes]1015

Justification: We share the compute information in Section A.9.1016

Guidelines:1017

• The answer NA means that the paper does not include experiments.1018

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1019

or cloud provider, including relevant memory and storage.1020

• The paper should provide the amount of compute required for each of the individual1021

experimental runs as well as estimate the total compute.1022

• The paper should disclose whether the full research project required more compute1023

than the experiments reported in the paper (e.g., preliminary or failed experiments that1024

didn’t make it into the paper).1025

9. Code of ethics1026

Question: Does the research conducted in the paper conform, in every respect, with the1027

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1028

Answer: [Yes]1029

Justification: We fully anonymize the paper and the code. All experiments fully conform1030

with the Code of Ethics.1031

Guidelines:1032

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1033

• If the authors answer No, they should explain the special circumstances that require a1034

deviation from the Code of Ethics.1035

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1036

eration due to laws or regulations in their jurisdiction).1037

10. Broader impacts1038

Question: Does the paper discuss both potential positive societal impacts and negative1039

societal impacts of the work performed?1040

Answer: [Yes]1041

Justification: We discuss the broader impact of our work in Section A.2.1042
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Guidelines:1043

• The answer NA means that there is no societal impact of the work performed.1044

• If the authors answer NA or No, they should explain why their work has no societal1045

impact or why the paper does not address societal impact.1046

• Examples of negative societal impacts include potential malicious or unintended uses1047

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1048

(e.g., deployment of technologies that could make decisions that unfairly impact specific1049

groups), privacy considerations, and security considerations.1050

• The conference expects that many papers will be foundational research and not tied1051

to particular applications, let alone deployments. However, if there is a direct path to1052

any negative applications, the authors should point it out. For example, it is legitimate1053

to point out that an improvement in the quality of generative models could be used to1054

generate deepfakes for disinformation. On the other hand, it is not needed to point out1055

that a generic algorithm for optimizing neural networks could enable people to train1056

models that generate Deepfakes faster.1057

• The authors should consider possible harms that could arise when the technology is1058

being used as intended and functioning correctly, harms that could arise when the1059

technology is being used as intended but gives incorrect results, and harms following1060

from (intentional or unintentional) misuse of the technology.1061

• If there are negative societal impacts, the authors could also discuss possible mitigation1062

strategies (e.g., gated release of models, providing defenses in addition to attacks,1063

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1064

feedback over time, improving the efficiency and accessibility of ML).1065

11. Safeguards1066

Question: Does the paper describe safeguards that have been put in place for responsible1067

release of data or models that have a high risk for misuse (e.g., pretrained language models,1068

image generators, or scraped datasets)?1069

Answer: [NA]1070

Justification: This work is not meant to release a pretrained language model or publish a1071

dataset.1072

Guidelines:1073

• The answer NA means that the paper poses no such risks.1074

• Released models that have a high risk for misuse or dual-use should be released with1075

necessary safeguards to allow for controlled use of the model, for example by requiring1076

that users adhere to usage guidelines or restrictions to access the model or implementing1077

safety filters.1078

• Datasets that have been scraped from the Internet could pose safety risks. The authors1079

should describe how they avoided releasing unsafe images.1080

• We recognize that providing effective safeguards is challenging, and many papers do1081

not require this, but we encourage authors to take this into account and make a best1082

faith effort.1083

12. Licenses for existing assets1084

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1085

the paper, properly credited and are the license and terms of use explicitly mentioned and1086

properly respected?1087

Answer: [Yes]1088

Justification: We explicitly mention and cite the source of the datasets (SlimPajama,1089

FineWeb-Pro) and the implementation codebase in our paper (TinyLlama). License in-1090

formation is described in Section A.10. All of them are open-source projects available for1091

public use.1092

Guidelines:1093

• The answer NA means that the paper does not use existing assets.1094

• The authors should cite the original paper that produced the code package or dataset.1095
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• The authors should state which version of the asset is used and, if possible, include a1096

URL.1097

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1098

• For scraped data from a particular source (e.g., website), the copyright and terms of1099

service of that source should be provided.1100

• If assets are released, the license, copyright information, and terms of use in the1101

package should be provided. For popular datasets, paperswithcode.com/datasets1102

has curated licenses for some datasets. Their licensing guide can help determine the1103

license of a dataset.1104

• For existing datasets that are re-packaged, both the original license and the license of1105

the derived asset (if it has changed) should be provided.1106

• If this information is not available online, the authors are encouraged to reach out to1107

the asset’s creators.1108

13. New assets1109

Question: Are new assets introduced in the paper well documented and is the documentation1110

provided alongside the assets?1111

Answer: [Yes]1112

Justification: We provide instructions to reproduce our experiments with the code in the1113

supplementary materials.1114

Guidelines:1115

• The answer NA means that the paper does not release new assets.1116

• Researchers should communicate the details of the dataset/code/model as part of their1117

submissions via structured templates. This includes details about training, license,1118

limitations, etc.1119

• The paper should discuss whether and how consent was obtained from people whose1120

asset is used.1121

• At submission time, remember to anonymize your assets (if applicable). You can either1122

create an anonymized URL or include an anonymized zip file.1123

14. Crowdsourcing and research with human subjects1124

Question: For crowdsourcing experiments and research with human subjects, does the paper1125

include the full text of instructions given to participants and screenshots, if applicable, as1126

well as details about compensation (if any)?1127

Answer: [NA]1128

Justification: This project does not involve human subjects or crowdsourcing.1129

Guidelines:1130

• The answer NA means that the paper does not involve crowdsourcing nor research with1131

human subjects.1132

• Including this information in the supplemental material is fine, but if the main contribu-1133

tion of the paper involves human subjects, then as much detail as possible should be1134

included in the main paper.1135

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1136

or other labor should be paid at least the minimum wage in the country of the data1137

collector.1138

15. Institutional review board (IRB) approvals or equivalent for research with human1139

subjects1140

Question: Does the paper describe potential risks incurred by study participants, whether1141

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1142

approvals (or an equivalent approval/review based on the requirements of your country or1143

institution) were obtained?1144

Answer: [NA]1145

Justification: This project does not involve human subjects or crowdsourcing.1146

Guidelines:1147
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• The answer NA means that the paper does not involve crowdsourcing nor research with1148

human subjects.1149

• Depending on the country in which research is conducted, IRB approval (or equivalent)1150

may be required for any human subjects research. If you obtained IRB approval, you1151

should clearly state this in the paper.1152

• We recognize that the procedures for this may vary significantly between institutions1153

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1154

guidelines for their institution.1155

• For initial submissions, do not include any information that would break anonymity (if1156

applicable), such as the institution conducting the review.1157

16. Declaration of LLM usage1158

Question: Does the paper describe the usage of LLMs if it is an important, original, or1159

non-standard component of the core methods in this research? Note that if the LLM is used1160

only for writing, editing, or formatting purposes and does not impact the core methodology,1161

scientific rigorousness, or originality of the research, declaration is not required.1162

Answer: [NA]1163

Justification: We did not use LLMs for developing our method.1164

Guidelines:1165

• The answer NA means that the core method development in this research does not1166

involve LLMs as any important, original, or non-standard components.1167

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1168

for what should or should not be described.1169
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