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0 Large pre-trained language models carry social biases towards different demographics, which can
further amplify existing stereotypes in our society and cause even more harm.
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I Black-Box Methods
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These Black-box methods often begin
with designing prompt templates or
probing schemas to elicit biased outputs
from PLMs. Then they would measure
the model’s fairness by calculating the
proportion of biased outputs.

The effectiveness of this approach relies
heavily on the quality of the designed
prompt templates or probing schemas.

Relies Heavily on the Template Quality
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High-Cost
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Previous works on this problem mainly focused on using
such as probing to detect and quantify social
biases in PLMs by observing model outputs.

As a result, previous debiasing methods mainly finetune or
even pre-train PLMs on newly constructed anti-stereotypical
datasets, which are
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Social Bias Neurons

[ How to precisely identify the social bias
'neurons in PLMs?

2 Questions . .. .
< ‘How to effectively mitigate social

‘biases in PLMs?




Our Interpretability Technique
Designed for Social Bias Study
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The classic interpretability method

INTEGRATED GRADIENTS (1G)

Social Bias Study



Singular Knowledge
INTEGRATED GRADIENTS (1G) Attribution

Challenge!

Uneven Knowledge

Social Bias Study —— Distribution for more than
one demographic
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O When we suppress the activation of the neurons pinpointed by our IG?, the logits gap
decreases 23%; when we amplify the activation, the logits gap increases 29%.

U In contrast, suppressing or amplifying randomly selected neurons have minimal impact on

the logits gap. 11



0 Union_IG achieves better debiasing
performance (e.g., 53.82 stereotype score
for RoBERTa-Base), but severely impairs the
language model’s capability (91.70 - 30.61
of LMS).

L In contrast, our method BNS maximizes the
retention of useful knowledge and only
accurately locates neurons that cause
distribution gaps for different social groups,
achieving a significantly better ICAT score of
84.79.

Model SS — 50.00(A) LMS1 ICAT?
BERT-Base-cased 56.93 87.29 75.19
+ DPCE 62.41 78.48 58.97
+ AutoDebias 53.03 50.74 47.62
+ Union_IG 51.01 31.47 30.83
+ BNS (Ours) 52.78 86.64 81.82
RoBERTa-Base 62.46 91.70 68.85
+ DPCE 64.09 92.95 66.67
+ AutoDebias 59.63 68.52 55.38
+ Union_IG 53.82 30.61 28.27
+ BNS (Ours) 57.43 91.39 77.81
FairBERTa 58.62 91.90 76.06
+ Union_IG 52.27 37.36 35.66
+ BNS (Ours) 53.44 91.05 84.79




Bias Neurons Migration
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L Comparing the results of RoBERTa and FairBERTa, the change in the number of social bias
neurons is minimal, but there have been noteworthy alterations in the distribution of these
social bias neurons. =



Interpretable Technique: IG” Distribution Shift of Social Bias Neurons after Debiasing

To better understand social biases inside
PLMs, we propose an interpretable
technique, Integrated Gap Gradients (I1G?),
to precisely identify social bias neurons in
pre-trained language models.

Facilitated by our interpretable method, we analyze the
distribution shift of social bias neurons after debiasing
and obtain useful insights that bring inspiration to future
fairness research.

Training-Free Debiasing Approach: BNS

Derived from our interpretable technique, BIAS
NEURON SUPPRESSION (BNS) is further
proposed to mitigate social bias by suppressing
the activation of social bias neurons.
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