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Manager: Aggregating Insights from Unimodal Experts

in Two-Tower VLMs and MLLMs
Xiao Xu, Libo Qin, Wanxiang Che and Min-Yen Kan, Senior Member, IEEE

Abstract—Two-Tower Vision–Language Models (VLMs) have
demonstrated strong performance across various downstream
VL tasks. While BridgeTower further enhances performance by
building bridges between encoders, it (i) suffers from ineffective
layer-by-layer utilization of unimodal representations, (ii)
restricts the flexible exploitation of different levels of unimodal
semantic knowledge, and (iii) is limited to the evaluation on
traditional low-resolution datasets only with the Two-Tower VLM
architecture. In this work, we propose Manager, a lightweight,
efficient and effective plugin that adaptively aggregates insights
from different levels of pre-trained unimodal experts to facilitate
more comprehensive VL alignment and fusion. First, under the
Two-Tower VLM architecture, we introduce ManagerTower, a
novel VLM that introduces the manager in each cross-modal
layer. Whether with or without VL pre-training, ManagerTower
outperforms previous strong baselines and achieves superior
performance on 4 downstream VL tasks. Moreover, we extend
our exploration to the latest Multimodal Large Language Model
(MLLM) architecture. We demonstrate that LLaVA-OV-Manager
significantly boosts the zero-shot performance of LLaVA-OV
across different categories of capabilities, images, and resolutions
on 20 downstream datasets, whether the multi-grid algorithm is
enabled or not. In-depth analysis reveals that both our manager
and the multi-grid algorithm can be viewed as a plugin that im-
proves the visual representation by capturing more diverse visual
details from two orthogonal perspectives (depth and width). Their
synergy can mitigate the semantic ambiguity caused by the multi-
grid algorithm and further improve performance. Code and mod-
els are available at https://github.com/LooperXX/ManagerTower.

Index Terms—Vision–Language Model, Multimodal Large
Language Model, Representation Learning.

I. INTRODUCTION

RECENTLY, the field of Vision–Language (VL) represen-
tation learning has gained significant attention, driven by

advancements in Vision–Language Pre-training (VLP) tech-
niques. VLP aims to learn transferable multimodal knowledge
from extensive image–text pairs into Vision–Language Models
(VLMs), which can improve VL representation and thus
further improve performance on various downstream tasks,
such as visual question answering [2], visual entailment [3],
visual reasoning [4], and image–text retrieval [5].
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Fig. 1. A brief overview of BridgeTower and ManagerTower. Hollow
arrows represent the transmission of multi-layer unimodal representations in
ManagerTower, in contrast to the layer-by-layer transmission in BridgeTower.

Two-Tower VLM is a general architecture that processes
visual and textual modalities with corresponding unimodal
encoders and then fuses them in a cross-modal encoder.
METER [6] and BridgeTower [7] are two representative Two-
Tower VLMs. METER uses CLIP-ViT [8] and RoBERTa [9]
as pre-trained unimodal encoders, but overlooks different
levels of unimodal semantic knowledge contained in multi-
layer unimodal representations. It only feeds the last-layer rep-
resentation from each unimodal encoder into the cross-modal
encoder, which may limit the model capability. To tackle this
issue, as shown in Fig. 1, BridgeTower builds connections
between multiple top unimodal layers and each cross-modal
layer in a layer-by-layer manner, to exploit unimodal semantic
knowledge at different levels.

In this work, we build upon the research of BridgeTower
and advance it in four aspects: (a) Ineffective layer-by-layer
utilization of multi-layer unimodal representations. Each
cross-modal layer is limited to using a pre-defined unimodal
layer representation, which restricts the utilization of different
levels of unimodal semantic knowledge and the model
capability. (b) Strictly bound the number of cross-modal
layers to the number of unimodal layer representations
the model can use. An increase in either side leads to a
corresponding increase in the other side, leading to more
parameters and computation cost, and poor scalability.
(c) Only exploring the utilization of multi-layer unimodal
representations in the Two-Tower VLM architecture. Lack
of exploration in other VLM architectures, e.g., Multimodal
Large Language Model (MLLM), limits the generality of
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the conclusions. (d) Limited post-fine-tuning evaluation on
datasets with low-resolution natural images. Constrained by
the capability of traditional VLMs, the model cannot perform
more challenging zero-shot evaluations on broader datasets,
such as high-resolution document understanding.

For the first two aspects, under the Two-Tower VLM archi-
tecture, we propose a novel VLM, ManagerTower, that intro-
duces managers in each cross-modal layer to aggregate multi-
layer unimodal representations, as shown in Fig. 1. Each man-
ager takes multi-layer unimodal representations as insights
from pre-trained unimodal experts at different levels (layers),
and then aggregates them to facilitate more comprehensive
vision–language alignment and fusion. Inspired by the linear
combination of layers method [10], we explore the feasibility
of various designs of managers by evaluating and analyzing
the performance on VQAv2 and Flickr30K datasets. The best
manager, Adaptive Aggregation Unimodal Manager (AAUM),
can adaptively aggregate multi-layer unimodal representations
for different tokens in different samples in each cross-modal
layer. Then, we pre-train ManagerTower with commonly used
4M VLP data and evaluate it on 4 downstream datasets.
With the same pre-training, fine-tuning and evaluation settings
as previous strong Two-Tower VLMs such as METER and
BridgeTower, ManagerTower achieves superior performances
on all datasets, and outperforms not only many base-size
models pre-trained on 4M data but also some models pre-
trained on more data and/or with larger size. Moreover, in
principle, managers are scalable and flexible enough to be used
as a plugin, easily integrated into any cross-modal encoder,
and works well with any unimodal encoder.

For the last two aspects, we further extend the exploration
of managers to the latest MLLM architecture, and introduce
the manager to LLaVA-OV [11] to get LLaVA-OV-Manager,
as shown in Fig. 2. Benefiting from the strong LLM and the
multi-grid algorithm [12] capable of improving the supported
image resolution in MLLMs, we can zero-shot evaluate the
effectiveness of managers on broader downstream datasets,
especially on high-resolution images. We demonstrate that,
whether with or without the multi-grid algorithm, managers
can significantly improve the performance of MLLMs on 20
downstream datasets across different categories of capabilities,
images, and resolutions. Further analysis reveals that both
the manager and the multi-grid algorithm can be viewed as
a plugin that improves the input visual representation. The
manager introduces different levels of semantic knowledge
into MLLMs, which can increase the diversity of attention
weights and attention heads, thus helping guide the attention
of MLLMs that use the multi-grid algorithm. Their synergy
can capture more diverse visual details from two orthogonal
perspectives (depth and width), mitigate the semantic ambi-
guity caused by the multi-grid algorithm and further improve
performance.

II. PRELIMINARY

We briefly introduce the basic components of Two-Tower
VLMs used by METER, BridgeTower, and ManagerTower.

LLMVisual Encoder

Image

Grid Grid

Grid Grid

Manager

W
id

er

D
eep

e
r

Fig. 2. Brief illustrations of LLaVA-OV-Manager. The base image and grids
are encoded independently. Hollow arrows indicate the transmission of multi-
layer visual representations aggregated by managers to the LLM at intervals.

A. Visual Encoder
CLIP-ViT, the visual encoder of CLIP [8], has been widely

used in VLMs [6], [13]. Each input image is first transformed
into a flattened sequence of patches, with a [class] token
added at the beginning. Following a linear projection, position
embeddings are added to the sequence to obtain the visual
input V0. The ℓ th visual layer representation is computed as:
Vℓ = EncoderVℓ (Vℓ−1), ℓ = 1 . . . LV, where ℓ is the layer
index and LV is the number of layers in the visual encoder.

B. Textual Encoder
RoBERTa [9] is widely used in VLMs [6], [14] due to

its robust performance. The input text is tokenized with the
byte-level Byte-Pair Encoding (BPE) [15], [16]. [<s>] and
[</s>] tokens are added to the start and end of the sequence,
respectively. Word embeddings and positional embeddings are
then applied to the tokenized sequence to generate the visual
input T0. Similarly, the ℓ th textual layer representation is
computed as: Tℓ=EncoderTℓ (Tℓ−1), ℓ=1 . . . LT, where LT

denotes the number of layers in the textual encoder.

C. Cross-Modal Encoder
We use the transformer encoder [17] with a co-attention

mechanism [18] as the cross-modal encoder. In each cross-
modal layer, both modalities are equipped with a multi-
head self-attention (MSA) block, a multi-head cross-attention
(MCA) block, and a feed-forward (FFN) block. The MCA
block allows the visual part of the cross-modal encoder to at-
tend to the textual part and vice versa. EncoderCℓ , ℓ=1 . . . LC

denotes the ℓ th cross-modal layer, where LC is the number of
cross-modal layers. For brevity, it is computed as:

C̃V
ℓ = CV

ℓ−1, (1)

C̃T
ℓ = CT

ℓ−1, (2)

CV
ℓ ,C

T
ℓ = EncoderCℓ (C̃

V
ℓ , C̃

T
ℓ ), (3)

where CV
ℓ ,C

T
ℓ are the visual and textual part of output

representation of the ℓ th layer, C̃V
ℓ , C̃

T
ℓ are inputs of each part.

CV
0 ,C

T
0 are initialized with the last-layer representations from

unimodal encoders: CV
0 = VLV

WV,C
T
0 = TLT

WT, where
WV,WT are linear cross-modal projections. In this work, we
use the same default setting as METER and BridgeTower for
a fair comparison: pre-trained unimodal encoders with LV =
LT=12, randomly-initialized cross-modal encoder with LC=
6, and only top N=6 unimodal layer representations are used.
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Fig. 3. An illustration of ManagerTower shows that each cross-modal layer includes a textual manager and a visual manager. Top N=6 unimodal layer represen-
tations T,V∈RN×L×D along with the representations from the previous cross-modal layer CT

ℓ−1,C
V
ℓ−1, ℓ=1 . . . 6 are input into the textual manager MT

ℓ

and the visual manager MV
ℓ , respectively. N refers to the number of pre-trained unimodal experts the model uses, and L denotes the length of the input sequence.

III. MANAGER DESIGN

Fig. 3 illustrates the overall framework of ManagerTower.
It introduces managers in each cross-modal layer to aggregate
insights from different levels of pre-trained unimodal experts.
Under the Two-Tower VLM architecture, we will elaborate on
the detailed design schema for the three types of managers, and
conclude with the cross-modal encoder with our managers.1

A. Static Aggregation Manager (SAM)

The effectiveness of layer fusion in learning comprehensive
representations has been well demonstrated [10], [19], [20].
Inspired by this, we aim to apply this technique to VLMs. As
a preliminary exploration, we adopt the linear combination of
layers method [10], which is a simple yet effective way that
aggregates the representations of previous layers using learned
weights in each encoder layer. We directly adapt it to aggregate
both unimodal and cross-modal representations of all previous
layers and call it the Static Aggregation Manager (SAM). The
calculation for the ℓ th visual manager is given by:

MV
ℓ (V7, . . . ,V12,C

V
1 , . . . ,C

V
ℓ−1) =

6∑
i=1

WV,ℓ
i ⊙ LN(Vi+6)+

ℓ−1∑
i=1

WV,ℓ
i+6 ⊙ LN(CV

i ),
(4)

where MV
ℓ represents the manager for the visual part of the

ℓ th cross-modal layer, and WV,ℓ ∈ R(6+ℓ−1)×D is a learn-
able parameter matrix. ⊙ denotes the element-wise product
operation, and LN(·) refers to Layer Normalization [21]. We
then omit the superscript V,ℓ of W for brevity. W can be
seen as the learned aggregation weight and normalized by the
softmax function with a learnable temperature. We initialize
W with 1

6+ℓ−1 on average to assign equal weights to the
representations from all previous layers.

However, directly applying SAM to VLMs does not result
in an expected performance improvement over BridgeTower,
and instead leads to a notable decrease in performance. We

1Details about pre-training and fine-tuning are described in Appendix B-G.
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Fig. 4. Cosine similarity between the aggregated unimodal/cross-modal
representations of each pair of consecutive textual/visual managers. The
aggregated representations derived from Equation (4) can be divided into
unimodal and cross-modal parts. For each part, we analyse the representations
similarity between every two consecutive managers, modality-wise.

hypothesize that this performance drop is due to the average
initialization of W. It may not be suitable for both cross-
modal and pre-trained unimodal layer representations as they
have different numerical scales. To test this hypothesis, we
propose dividing the parameter matrix W into unimodal and
cross-modal parts, and initializing them with 1

6 and 1
ℓ−1 , re-

spectively, and also learn the softmax temperature separately.
The experimental result shows a significant improvement over
the direct application of SAM, though the improvement is still
somewhat limited compared to BridgeTower. These observa-
tions provide a compelling argument for re-examining how
to aggregate multi-layer pre-trained unimodal representations.

B. Static Aggregation Unimodal Manager (SAUM)

Since the aggregated representations derived from Equa-
tion (4) consist of an unimodal part and a cross-modal
part, we calculate the cosine similarity between aggregated
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Fig. 5. An illustration of how the aggregated unimodal representations AV ∈RL×D are calculated in the visual AAUM. CA refers to the cross-attention
mechanism. N=6. For simplicity, we omit LN and softmax function.

unimodal/cross-modal representations of each pair of consec-
utive textual/visual managers. This can help further analyse
insights aggregated in different SAMs, i.e., inputs to different
cross-modal layers. As shown in Fig. 4, for SAMs, the
unimodal similarity remains close to 1, while the cross-
modal similarity increases with depth and tends toward 1.
This suggests that, the unimodal representations aggregated
by different SAMs are nearly identical, and the aggregated
cross-modal representations get more similar with depth.

We hypothesize that, since different SAMs provide similar
aggregated unimodal representations for each cross-modal
layer, the representations from more preceding cross-modal
layers may bring redundant information to confuse the man-
agers. This leads to aggregated cross-modal representations
converging to indistinguishable vectors as the depth increases.

To address this, we propose focusing on aggregating insights
from pre-trained unimodal experts and retaining only the
representation from the previous cross-modal layer. We refer
to it as the Static Aggregation Unimodal Manager (SAUM).
The calculation of the ℓ th visual manager computes as:

MV
ℓ (V7, . . . ,V12,C

V
ℓ−1) =

6∑
i=1

Wi ⊙ LN (Vi+6)+WC ⊙ LN(CV
ℓ−1),

(5)

where W ∈R6×D and WC ∈R1×D are learnable parameter
matrices, initialized with 1

6 and 1 on average, respectively. The
softmax with a learnable temperature only normalizes W.

The substantial improvement observed compared to
BridgeTower provides empirical support for our hypothesis.
Furthermore, as shown in Fig. 4, the cross-modal similarity of
SAUM decreases with the depth, suggesting that more com-
prehensive and distinguishable cross-modal representations are
aggregated as the depth increases.

C. Adaptive Aggregation Unimodal Manager (AAUM)

Despite the significant performance gains achieved by
SAUM, it still faces two key limitations: (i) W, the learned
aggregation weight for unimodal representations is nearly
identical across managers in different cross-modal layers, as
demonstrated in Fig. 4, which contradicts the intuition that the
requirement for unimodal semantic knowledge should vary
among cross-modal layers; (ii) during inference, for each
manager, the same aggregation weight W learned during
training is applied to all tokens in different samples, which
does not align with the intuition that the need for unimodal
semantic knowledge should vary among tokens and samples.

To address the above limitations, we propose the Adaptive
Aggregation Unimodal Manager (AAUM). During training
and inference, AAUM can adaptively utilize different levels of
unimodal semantic knowledge from pre-trained unimodal ex-
perts for different tokens across different samples. Take the vi-
sual AAUM for example, the ℓ th visual manager computes as:

MV
ℓ (V7, . . . ,V12,C

V
ℓ−1) =

6∑
i=1

WA,i ⊙ LN (Vi+6)+WC⊙LN(CV
ℓ−1),

(6)

WA = softmax(LN(CV
ℓ−1)×WM + ϵ), (7)

where WM ∈ RD×6 denotes a linear projection layer. The
generated aggregation weights WA∈R6×L×D can adaptively
aggregate unimodal representations from different levels of
pre-trained unimodal experts for each token. The softmax
function features a learnable temperature and ϵ ∼ N (0, 1

62 )
denotes a Gaussian noise for exploration of aggregation [22].

Furthermore, to help managers better exploit unimodal
semantic knowledge, we propose replacing the visual query
CV

ℓ−1 in Equation (7) with the cross-modal fused query
CA(CV

ℓ−1,C
T
ℓ−1) to further improve performance, where CA

is a cross-attention mechanism.

D. Cross-Modal Encoder with Managers

Since the 1st cross-modal layer lacks the representation of
the previous cross-modal layer as the query, we introduce
SAUM in the 1st cross-modal layer and AAUMs in the
subsequent layers. Therefore, Equation (1) & (2) for the 1st

cross-modal layer with SAUMs is computed as:

C̃V
1 = MV

1 (V7, . . . ,V12), (8)

C̃T
1 = MT

1 (T7, . . . ,T12), (9)

For the 2nd and subsequent cross-modal layers with AAUMs:

C̃V
ℓ = MV

ℓ (V7, . . . ,V12,C
V
ℓ−1,C

T
ℓ−1), (10)

C̃T
ℓ = MT

ℓ (T7, . . . ,T12,C
T
ℓ−1,C

V
ℓ−1), (11)

where we omit the modality type and layer index embeddings
added to unimodal layer representations V,T in the above
equations for simplicity.

Fig. 5 shows the adaptive aggregation of insights from pre-
trained visual experts in AAUMs, which corresponds to the
unimodal (right) part of Equation (6). As for SAUMs, the
learned weights W ∈ R6×D are directly broadcast to WA,
and then they aggregate insights similarly to AAUMs.
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TABLE I
PERFORMANCE OF DIFFERENT TYPES OF MANAGERS AND QUERIES ON

VQAV2 AND FLICKR30K. RMEAN INDICATES THE MEAN RECALL
METRICS FOR IMAGE–TEXT RETRIEVAL. BT DENOTES BRIDGETOWER.

Type Visual Query Weight Test-Dev (%) RMEAN (%)
BT - N× 1 75.91 93.33

SAM - N× 1 76.19 93.57
- N×D 76.18 93.73

SAUM - N× 1 76.38 93.75
- N×D 76.55 93.82

AAUM CV
ℓ−1 N× L 76.52 93.84

CV
ℓ−1,C

T
ℓ−1 N× L 76.65 93.97

Concat- V,CV
ℓ−1 N× L×D 76.38 93.78

Attention V,CV
ℓ−1,C

T
ℓ−1 N× L×D 76.43 93.83

Cross- CV
ℓ−1 N× L 76.41 92.15

Attention CV
ℓ−1,C

T
ℓ−1 N× L 76.45 92.61

IV. EXPLORATION ON TWO-TOWER VLM

A. Implementation Details

ManagerTower comprises a pre-trained textual encoder,
RoBERTaBASE with 124M parameters, a pre-trained visual
encoder, CLIP-ViT B-224/16 with 86M parameters, and a ran-
domly initialized 6-layer cross-modal encoder with managers,
totaling 113M+12M parameters. The detailed setting of the
cross-modal encoder is the same as BridgeTower. The maxi-
mum length of the text sequence is set to 50, and the image
patch size is 16×16. For a fair comparison with BridgeTower,
we use an image resolution of 384 × 384 for Flickr30K and
576 × 576 for VQAv2. AdamW [23] optimizer with a base
learning rate of 2e−5 and warmup ratio of 0.1 is used.

B. Investigation and Analysis

In this section, we investigate various designs of man-
agers and evaluate the performance by directly fine-tuning on
VQAv2 and Flickr30K without VLP. Experimental settings are
the same as BridgeTower for a fair comparison. Note that uni-
modal encoders are initialized with their pre-trained weights.

1) Type of Manager: We first explore the performance
of different types of managers and queries. Take the visual
manager for example, based on the top N=6 visual layer rep-
resentations V∈RN×L×D from CLIP-ViT, different managers
provide the aggregation weights that can be broadcast to WA

for aggregating insights from pre-trained visual experts.
From the perspective of aggregation weights WA, SAM and

SAUM are static sentence-level managers that share the same
aggregation weights for all tokens across different samples.
In contrast, AAUM is an adaptive token-level manager that
adaptively generates different aggregation weights for differ-
ent tokens across different samples. Besides, we also imple-
ment Equation (7) with common cross- and concat-attention
mechanisms for comparison, detailed in Appendix B-E.

The results are summarized in Table I. By focusing
on aggregating insights from pre-trained unimodal experts,
SAUM demonstrates superior performance over SAM on both
datasets. Furthermore, with the help of the cross-modal fused
query, AAUM significantly outperforms the other managers.
This highlights that adaptive token-level aggregation with a
cross-modal fused query outperforms static, sentence-level

TABLE II
PERFORMANCE OF BRIDGETOWER (BT) AND MANAGERTOWER (OURS)

WITH DIFFERENT NUMBERS OF CROSS-MODAL LAYERS.

LC
VQAv2 Test-Dev (%) Flickr30K RMEAN(%)
BT Ours BT Ours

2 74.86 75.47 (↑ 0.61) 92.45 93.31 (↑ 0.86)
3 75.33 76.04 (↑ 0.71) 92.50 93.41 (↑ 0.91)
4 75.74 76.26 (↑ 0.52) 92.76 93.59 (↑ 0.83)
6 75.91 76.65 (↑ 0.74) 93.33 93.97 (↑ 0.64)
8 75.89 76.47 (↑ 0.58) 93.03 93.65 (↑ 0.62)
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Fig. 6. VQAv2 Test-Dev Performance using different numbers of unimodal
representations in ManagerTower (LC = 3,N = 2 . . . 8), where LC is the
number of cross-modal layers, and N is the number of top unimodal layer
representations used in each bridge or manager.

aggregation. Notably, the cross-modal fused query incorpo-
rates both visual and textual parts of the previous cross-
modal layer representation, which can better help managers
correctly aggregate unimodal semantic knowledge required by
the current cross-modal layer.2

2) Number of Cross-Modal Layers: We conduct a com-
parison between ManagerTower and BridgeTower with dif-
ferent numbers of cross-modal layers in Table II, to further
assess the effectiveness of ManagerTower. Regardless of the
number of cross-modal layers, ManagerTower consistently
and significantly outperforms BridgeTower on both datasets.
More interestingly, the performance of ManagerTower with
LC =3 is even better than that of BridgeTower with LC =6
(76.04%>75.91%, 93.41%>93.33%).

In contrast to BridgeTower, N, the number of top unimodal
layer representations used by ManagerTower, is not bound to
the number of cross-modal layers LC and can be flexibly ad-
justed. The default setting is N=6. Therefore, ManagerTower
actually utilizes the same number of unimodal layer represen-
tations as BridgeTower, but achieves superior performance
with only half the number of cross-modal layers. This further
highlights the flexibility and effectiveness of ManagerTower
in adaptive aggregation of unimodal semantic knowledge, in
contrast to layer-by-layer exploitation in BridgeTower.

3) Number of Unimodal Experts: We further explore the
impact of varying N in ManagerTower with LC = 3. As
shown in Fig. 6, there exist two interesting observations: (i)
ManagerTower (LC = 3,N = 3) outperforms BridgeTower
(LC = 3,N = 3), suggesting that when the same number

2Further elaboration of the relationship between different types of managers
can be found in Appendix B-A&B-B.
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TABLE III
COMPARISONS WITH PREVIOUS MODELS ON 4 DOWNSTREAM DATASETS AFTER VLP. THE BEST SCORE IS BOLDED. ∗ INDICATES THAT THE MODEL ALSO

USES VG-QA DATA TO FINE-TUNE ON VQAV2.

Model # Pre-train VQAv2 (%) SNLI-VE (%) NLVR2 (%) Flickr30K (%)
Images Test-Dev Test-Std Dev Test Dev Test-P IR@1 TR@1

Base-size models pre-trained on 4M public data
ViLTBASE [24] 4M 71.26 - - - 75.70 76.13 64.4 83.5
UNITERBASE [25] ∗ 4M 72.70 72.91 78.59 78.28 77.18 77.85 72.52 85.90
UNIMOBASE [26] 4M 73.79 74.02 80.00 79.10 - - 74.66 89.70
ALBEFBASE [27] ∗ 4M 74.54 74.70 80.14 80.30 80.24 80.50 82.8 94.3
METER-SwinBASE [6] 4M 76.43 76.42 80.61 80.45 82.23 82.47 79.02 92.40
VLMOBASE [28] 4M 76.64 76.89 - - 82.77 83.34 79.3 92.3
METER-CLIPBASE [6] 4M 77.68 77.64 80.86 81.19 82.33 83.05 82.22 94.30
BridgeTowerBASE [7] 4M 78.66 78.73 81.11 81.19 81.85 83.09 85.83 94.73
ManagerTowerBASE (Ours) 4M 79.39 79.15 81.26 81.44 82.81 83.34 86.56 95.64
Models pre-trained on more data and/or with larger size

UNITERLARGE [25] ∗ 4M 73.82 74.02 79.39 79.38 79.12 79.98 75.56 87.30
UNIMOLARGE [26] 4M 75.06 75.27 81.11 80.63 - - 78.04 89.40
ALBEFBASE [27] ∗ 14M 75.84 76.04 80.80 80.91 82.55 83.14 85.6 95.9
SimVLMBASE [29] 1.8B 77.87 78.14 84.20 84.15 81.72 81.77 - -
BLIPBASE [30] ∗ 129M 78.24 78.17 - - 82.48 83.08 87.3 97.3
SimVLMLARGE [29] 1.8B 79.32 79.56 85.68 85.62 84.13 84.84 - -
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Fig. 7. A visualization of aggregation weights of textual and visual AAUMs in each cross-modal layer after VLP. The X-axis shows the index of the unimodal
expert, and the legend shows the index of the cross-modal layer.

of unimodal layer representations are introduced, Manager-
Tower allows more effective aggregation of unimodal semantic
knowledge, thus facilitating vision–language alignment and
fusion in each cross-modal layer; (ii) the performance of
ManagerTower initially improves gradually, but decreases after
N> 6. We assume that lower-layer unimodal representations
may not help ManagerTower learn vision–language alignment
and fusion, and may also increase the computational cost. This
is also consistent with BridgeTower’s observations.

C. Comparison with Previous Arts

1) Pre-train Settings: We pre-train ManagerTower with two
standard VLP objectives, masked language modeling (MLM)
and image–text matching (ITM), on the widely-used 4M
public data: Conceptual Captions [31], SBU Captions [32],
MSCOCO Captions [33], and Visual Genome (VG) [34]. The
pre-train settings are the same as BridgeTower and METER
for a fair comparison. ManagerTower is pre-trained for 100k
steps with a batch size of 4096 and a learning rate of 1e−5.
The image resolution for VLP is 288× 288 and only center-
crop [8] is used without any data augmentation.

2) Main Results: Table III shows the performance of
ManagerTower compared with other previous works on 4
downstream datasets. With only 4M VLP data, ManagerTower

achieves superior performances on these datasets. Based on
the same pre-training and fine-tuning settings and unimodal
backbones as previous strong Two-Tower VLMs, i.e., ME-
TER and BridgeTower, ManagerTower achieves significant
improvements on all datasets, especially 79.15% accuracy
on VQAv2 Test-Std, 86.56% IR@1 and 95.64% TR@1 on
Flickr30K. This further demonstrates that with all other factors
fixed, compared to BridgeTower that introduces bridges to
METER, managers in ManagerTower allow effective aggrega-
tion of multi-layer unimodal representations via well-designed
managers. Managers can adaptively aggregate more required
unimodal semantic knowledge to facilitate comprehensive
vision–language alignment and fusion in each cross-modal
layer. Notably, ManagerTower not only outperforms many
base-size models pre-trained on 4M data, but also surpasses
some models pre-trained on more data and/or with larger size.3

D. Visualization of Aggregation Weights

We delve into managers by visualizing the average ag-
gregation weights WA they generate across all samples in
VQAv2 validation set in each cross-modal layer in Fig. 7. For
each row, the first column displays the learned aggregation

3Comparison of computational budget can be found in Appendix B-D.
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weights of SAUMs, while the remaining five columns show
the aggregation weights generated by AAUMs and share the
Y-axis to provide easy horizontal comparison.

Interestingly, the aggregation weight distributions from
managers are completely different from the one-hot distri-
butions manually specified in BridgeTower, and there are two
distinct trends: (i) For SAUMs in the 1st cross-modal layer,
vertically, textual manager exhibits increasing and then de-
creasing weights, most favoring T10, unlike T12 and T7 used
in METER and BridgeTower, respectively; visual manager
exhibits increasing weights, most favoring V12, similar to
METER and BridgeTower. (ii) For AAUMs in the 2nd to
6th cross-modal layers, horizontally, whether textual or visual
managers, they exhibit diverse aggregation weight distribu-
tions in different layers.

Overall, by comparing the aggregation weight distributions
horizontally and vertically, we observe that ManagerTower
learns diverse distributions in different cross-modal layers.
This provides strong evidence that the introduced managers
can adaptively aggregate unimodal semantic knowledge for
more comprehensive vision–language representation learning.

V. EXPLORATION ON MLLM

A. Motivation

As stated in Sec. I, in principle, the manager is a lightweight
and flexible plugin that can be easily integrated into various
VLMs. Naturally, we can take the manager as a plugin and fur-
ther explore its effectiveness in the latest MLLM architecture,
which typically consists of a visual encoder and an LLM.

Moreover, traditional Two-Tower VLMs and MLLMs both
use ViTs as their visual encoder, which have to resize the
input image to a fixed resolution. This greatly limits their
effectiveness in handling high-resolution images due to the
loss of visual details. Recent multi-grid MLLMs [11], [35],
[36] overcome this limitation by training with the multi-grid
algorithm.4 During training and inference, they divide the
padded input image into multiple image grids, and encode
both the resized base image and multiple image grids with the
visual encoder independently. Then, they combine the encoded
features to obtain a longer input visual representation with
more visual details.

Compared the manager with the multi-grid algorithm, they
both can be seen as a plugin that improves the input visual
representation and thus improves the VL representation. They
are two orthogonal directions to supplement visual details,
either by (i) deeper: introducing aggregation of insights
from pre-trained visual experts at different levels/depths; or
(ii) wider: directly improving image resolution by encoding
multiple image grids, i.e., a wider receptive field. Hence, we
are motivated to explore the effectiveness of managers not only
in MLLMs, but also in multi-grid MLLMs, to investigate the
synergy between the manager and the multi-grid algorithm.

Besides, with the help of the MLLM architecture and
the multi-grid algorithm, we can further extend downstream
datasets, not only limited to traditional general datasets with

4An illustration of the multi-grid algorithm can be found in Appendix C-A.

low-resolution natural images, e.g., VQAv2 and Flickr30K
used in Sec. IV, but also text-rich datasets with high-resolution
abstract images (documents, charts, etc.), e.g., DocVQA [37]
and OCRBench [38], and real-world multimodal datasets.
Without fine-tuning on specific datasets, we can provide more
comprehensive and challenging zero-shot evaluations of the
effectiveness of managers.

Overall, we aim to explore the effectiveness of managers
in more diverse downstream datasets, to answer the questions:
(RQ1) Can the manager be used as a plugin to help MLLMs
and multi-grid MLLMs? (RQ2) When and why can managers
improve performance, especially for multi-grid MLLMs?

B. Experimental Settings

1) Baseline: We take LLaVA-OneVision-0.5B-SI [11] as
our baseline (LLaVA-OV for short), which is a widely used
open-source multi-grid MLLM. It consists of a pre-trained
27-layer visual encoder SigLIP [39] with 0.4B parameters, a
pre-trained 24-layer LLM Qwen2-0.5B-Instruct [40] with 0.5B
parameters and a 2-layer MLP with 1.8M parameters. It re-
leases most of the training data, which helps us reproduce not
only the multi-grid version (Baseline+Grid), but also the plain
version (Baseline). We follow the same training settings as the
original LLaVA-OV and use about 8M data samples for multi-
stage training of the autoreregressive objective for answer
tokens. The maximum length of the input token sequence is
set to 16384, and the image patch size is 14×14. The last layer
of the visual encoder is removed, and the visual representation
of the penultimate layer is projected into the LLM word
embedding space as the visual part of the input tokens of the
LLM. More details can be found in Appendix C-E.

2) Adapt Manager to MLLM: Since the LLM in MLLM
acts as both a textual module and a cross-modal module,
as shown in Fig. 2, we directly introduce visual managers
in LLaVA-OV, to aggregate multi-layer visual representa-
tions and inject them into the LLM at equal intervals, thus
obtaining LLaVA-OV-Manager. Similar to LLaVA-OV, we
train two versions of LLaVA-OV-Manager and name them as
Baseline+Manager and Baseline+Grid+Manager, respectively.
Managers aggregate insights from the top half of the visual
encoder to improve the visual representations of both the
base image and image grids independently. We inject 6 visual
managers into the LLM with the interval of 4 as the default
setting.5 Since AAUM achieves similar performance compared
to SAUM in LLaVA-OV-Manager, we directly use SAUM for
better efficiency in the following experiments.6 For brevity,
the ℓ th LLM layer with SAUM computes as:

C̃V
ℓ = MV

ℓ (V14, . . . ,V26)⊙ ϵ+CV
ℓ−1, (12)

CV
ℓ ,C

T
ℓ = EncoderCℓ (C̃

V
ℓ ,C

T
ℓ−1), (13)

MV
ℓ (V14, . . . ,V26,C

V
ℓ−1) =

13∑
i=1

Wi ⊙Vi+13. (14)

Equation (14) is an optimized version of SAUM for MLLM.
The original version does not work well in our preliminary

5Ablation study for the default setting can be found in Section V-D2.
6Discussions about managers in the MLLM can be found in Appendix A-A.
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Fig. 8. Zero-shot performance of four baselines on 20 datasets. The overall
average score and the average score of each capability category are shown.

experiments, as the LLM in MLLM has been well pre-
trained, rather than the random-initialized cross-modal module
in ManagerTower. Hence, we remove the WC, LN, and
softmax in Equation (5), and initialize W to zero, to reduce
the interference with the pre-trained LLM in the early training
stage [41], [42], which helps SAUM work well in MLLM.
ϵ ∼ U(0.98, 1.02) is a multiplicative jitter noise uniformly
sampled for exploration across experts during training [22].

3) Evaluation: We follow the same evaluation settings as
the original LLaVA-OV, to evaluate the zero-shot performance
of our four baselines on 20 datasets via their official evaluation
tool, lmms-eval.7 From the perspective of capability cate-
gories, we can divide them into the following four categories:

• General: VQAv2 [2], OKVQA [43], GQA [44], MMVet [45],
SEED-Bench [46], RealWorldQA [47].

• Text-rich: TextVQA [48], ChartQA [49], DocVQA [37], In-
foVQA [50], OCRBench [38].

• Knowledge: AI2D [51], ScienceQA [52], MMMU [53], Math-
Vista [54].

• Real-world: ImageDC [55], MM-LiveBench (07, 09) [56],
LLaVA-Wild [57], LLaVA-Wilder [35].

For simplicity, we use the average score of the corresponding
metric score (normalize to [0, 100]) as the overall performance
of baselines. We also calculate the average score of each capa-
bility category for in-depth analysis. Furthermore, since these
datasets contain not only low-resolution natural images, but
also high-resolution abstract images, we can also analyse and
divide these datasets from the perspective of image categories
“Natural, Abstract, Hybrid” and resolutions “Low, High”.8

C. Results and Computational Budget

Fig. 8 shows the zero-shot performance of four baselines
on 20 datasets after training with about 8M data samples
following the original LLaVA-OV.9 The difference between
baselines is with or without the multi-grid algorithm and man-
agers. Similar to existing multi-grid MLLMs, we can observe
that the multi-grid algorithm greatly helps Baseline and Base-
line+Manager, especially on text-rich datasets, abstract im-
ages, and high-resolution images. When introducing managers,
whether the multi-grid algorithm is enabled or not, the per-
formance of Baseline+Manager and Baseline+Grid+Manager
is significantly improved over the corresponding Baseline

7https://github.com/EvolvingLMMs-Lab/lmms-eval
8More evaluation details can be found in Appendix C-F.
9Detailed results of each dataset can be found in Appendix C-G.
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Fig. 9. Ablation study of visual representation selection on 9 datasets.

TABLE IV
COMPUTATIONAL BUDGET AND AVERAGE OVERALL PERFORMANCE OF

FOUR BASELINES ON 20 DATASETS. THE NUMBERS IN PARENTHESES
DENOTE THE RELATIVE CHANGE COMPARED TO BASELINE.

Model # Params # FLOPs Training Time Inference Time Performance
(M) (G) (ms/sample) (ms/sample) Overall (%)

Baseline 893.62 827.29 11.84 13.97 50.61
+ Manager 893.70 844.68 (×1.02) 12.22 (×1.03) 14.54 (×1.04) 51.67 (↑1.06)
+ Grid 893.62 1469.34 (×1.78) 51.95 (×4.39) 23.47 (×1.68) 53.87 (↑3.26)
+ Grid + Manager 893.70 1504.12 (×1.82) 54.17 (×4.58) 24.45 (×1.75) 55.21 (↑4.60)

and Baseline+Grid on different categories of capabilities,
images, and resolutions. Especially on datasets with capability
category of “General, Knowledge”, Baseline+Manager even
achieves better performance than Baseline+Grid with signifi-
cantly lower computational cost.

Table IV shows the computational budget and average
overall performance of four MLLM baselines. We measure
the average training time based on two 8×NVIDIA A100
GPU servers, and the average inference time on VQAv2
validation set with a single A100 GPU. Compare to Base-
line, the multi-grid algorithm significantly increases FLOPs
(×1.78), training time (×4.39), inference time (×1.68) and
performance (↑ 3.26%). Whether with or without the multi-
grid algorithm, managers only brings negligible parameter
overhead (0.08M), FLOPs (×1.02), and computational cost
(×1.04), but significantly improves performance (↑1.06% and
↑1.44%) on 20 datasets.10

In summary, for our RQ1, Fig. 8 and Tab. IV demonstrate
that the manager is a lightweight, efficient and effective
plugin that helps MLLMs and multi-grid MLLMs achieve
better performance in different capability categories, image
categories and resolutions, with acceptable computational
cost. More interestingly, the collaboration between managers
and the multi-grid algorithm not only supplements visual
details from the depth and width directions, respectively, to
improve performance, but also further boosts performance by
their synergy (1.44%>1.06%).

D. Ablation Study on Adaptation of Managers in MLLMs

In this section, we further explore the adaptation of man-
agers in MLLMs. We use 1

4 of the training data (2M samples)
and evaluate on 9 datasets for efficiency and robustness.

1) Visual Representation Selection: As shown in Fig. 9,
overall, no matter what visual representations are selected,
managers consistently improve the performance of Baseline.

101504.12/1469.34 ≈ 1.02, 54.17/51.95 ≈ 1.04, 24.45/23.47 ≈ 1.04
and 55.21− 51.67 = 1.44.
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Fig. 11. Ablation study of how manager works with multi-grid on 9 datasets.

Similar to the observations in both BridgeTower and Man-
agerTower, visual representations from the top half of the
visual encoder bring the best performance, and using visual
representations from all layers leads to the lowest performance
improvement. We attribute this to the fact that the average
attention distance of the visual encoder increases with the
layer depth, especially in the top half of the visual encoder,
where most attention heads attend widely across tokens [58]
and capture global visual features.11

2) Manager Injection Times: We uniformly inject managers
into the LLM from the first layer at a fixed layer interval.
Specifically, for the LLM with LC=24, we can inject 6 man-
agers with the interval of 4. As shown in Fig. 10, the injection
times of managers will affect the performance, and the overall
trend is that performance improves with increasing injection
frequency, but with some fluctuations. Baseline+Manager can
achieve better performance than Baseline most of the time.
Compared to the injection times of 6, although injecting
managers into each LLM layer slightly increases the average
performance from 50.96% to 51.08%, it also increases the
computational cost by about 7% in both training and inference.
Hence, we choose the injection times of 6 to achieve a good
balance between performance and computational cost.

3) Manager Meets Multi-Grid: Both the manager and the
multi-grid algorithm are plugins that can be easily combined
and integrated into MLLMs. Their direct combination means
that managers aggregate insights from pre-trained visual ex-
perts at different levels to improve the visual representations
of the base image and multiple image grids, respectively. As
shown in Fig. 11, managers greatly improve the performance
of Baseline+Grid, especially on text-rich datasets, abstract
images, and high-resolution images, which are exactly what
the multi-grid algorithm excels at. This indicates that the

11Detailed explanations and visualizations are provided in Appendix C-B.
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Fig. 12. Zero-shot performance of four baselines on DocVQA validation set.

Question: What is the ”Volume (MM)” for ”Retail BSGSF”?

Category: Table / List   

Prediction:

Question: What is the heading enclosed within the box ?

Category: Layout 

Prediction:

Baseline     28,800

+ Manager     172.8

+ Grid      172.8

+ Grid + Manager    172.8

Baseline  Food and Nutrition Board

+ Manager  This side of card is for aborse

+ Grid   Food and Nutrition Board

+ Grid + Manager This side of card is for address

1

2

Fig. 13. Case studies of four baselines on DocVQA validation set. Red and
green fonts represent incorrect and correct predictions, respectively. White
lines indicate the boundaries of the image grids.

manager and the multi-grid algorithm are orthogonal (depth
and width) and complementary in complementing visual de-
tails, and their synergy can further improve performance. More
interestingly, when managers only manage the base image or
image grids, the performance is not obviously improved. We
speculate that the change in part of the visual representation
by managers may be considered as noise due to the numerical
difference between the changed and unchanged parts.

E. Detailed Analysis and Case Study

To intuitively analyse the effectiveness of managers and
answer our RQ2, we conduct a detailed analysis on different
dimensions of specific datasets, including DocVQA, SEED-
Bench, and OCRBench, and provide case studies.12

1) DocVQA: Based on the three dataset classification crite-
rion we used in Section V-B3, DocVQA is a text-rich dataset
with high-resolution abstract images. As shown in Fig. 12,
the multi-grid algorithm helps Baseline on different types of
abstract images in DocVQA. Furthermore, managers can fur-
ther improve the performance of Baseline and Baseline+Grid
on different dimensions. Take the case 1 in Fig. 13 as
an example, both managers and the multi-grid algorithm
can help Baseline capture visual details for accurate table
understanding. Interestingly, in the case 2 , both Baseline and
Baseline+Grid fail to find the heading enclosed within the box,
and take the first line of text below the box as the heading.
The multi-grid algorithm also cuts off the boxed heading, may
make it more difficult to find the heading. Baseline+Manager
can correctly find it based on the visual details provided by

12Appendix C-C provides more cases on ScienceQA and OK-VQA.
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Fig. 14. Zero-shot performance of four baselines on SEED-Bench.

Question: Where is the bowl of fruit located in the painting?

Options: A. Center B. Right C. Left  D. Background

Category: Instance Location

Prediction:  Baseline + Manager + Grid  + Grid + Manager
  B   D A   D

1

Question: How many pictures are in the image?

Options: A. 0  B. 3  C. 2  D. 1

Category: Instance Counting

Prediction: Baseline + Manager + Grid  + Grid + Manager
  B   D A   D

2

Fig. 15. Case studies of four baselines on SEED-Bench.

different levels of semantic knowledge, but fails to recognize
all characters. With the collaboration between the manager
and the multi-grid algorithm, Baseline+Grid+Manager can
correctly find it and recognize all characters.

2) SEED-Bench: This is a general dataset with high-
resolution natural images. Surprisingly, as shown in Fig. 14,
the multi-grid algorithm does not improve the performance
much and even leads to performance degradation on
some dimensions, i.e., “Instance Identity, Instance Location,
Spatial Relation, Text Color Recognition”. They inspect
the category, spatial and color information about instances
in the image. Take Fig. 15 as an example, the multi-grid
algorithm cuts off objects and connected regions, leading
to higher understanding difficulty and bringing semantic
ambiguity [59]. This hinder MLLMs from perceiving the
spatial relationship between objects as well as the category
and number of objects. Moreover, managers consistently
brings performance improvements to Baseline and also help
overcome the semantic ambiguity caused by the multi-grid
algorithm by incorporating aggregation of insights from
pre-trained visual experts at different levels, especially on
“Instance Counting, Text Color Recognition”.

3) OCRBench: This is a text-rich dataset with low-
resolution hybrid images. As shown in Fig. 16, for “Artistic
Text Recognition, Handwriting Recognition” dimensions,
both the manager and the multi-grid algorithm can only
bring slight performance improvements or even performance
degradation to Baseline. However, the collaboration between
them can bring significant performance improvements on
Baseline+Grid+Manager. This further demonstrates that
their synergy can complement visual details from the depth
and width directions and mitigate the semantic ambiguity
caused by the multi-grid algorithm. Unexpectedly, for “Non-
Semantic Text Recognition” dimension, which focuses on
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Fig. 16. Zero-shot performance of four baselines on OCRBench. “ME” in
“Handwritten ME Recognition” is short for “Mathematical Expression”.
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3

Fig. 17. Case studies of four baselines on OCRBench.

character combinations that are meaningless or lack semantics,
the manager brings performance degradation to both baselines.
Take the cases in Fig. 17 as an example, although managers
can help capture visual details, e.g., a single quote at the end
of the word, Baseline+Grid+Manager incorrectly identifies
the non-semantic text “wenar” and “ttrebe” as semantic
text “wenar” and “trebe”, respectively, where “wenar” is a
surname of a person and “trebe” is a German noun for a
runaway. Different levels of semantic knowledge brought
by managers instead cause more interference, leading to
performance degradation when work with the multi-grid
algorithm in “Non-Semantic Text Recognition”.

In summary, for our RQ2, the manager can not only im-
prove the performance of MLLMs, but also help alleviate the
semantic ambiguity caused by the multi-grid algorithm. Hence,
their synergy can further improve performance, especially on
the perception of category, spatial, color and number informa-
tion of instances, and artistic, handwriting text recognition.

F. Visualization Analysis

To analyse the underling reasons for the collaboration im-
provement between the manager and the multi-grid algorithm
in MLLMs and further answer our RQ2, we conduct analy-
ses from the perspective of consecutive layer representation
similarity and attention weight distribution of each layer.

1) Consecutive Layer Representation Analysis: In Equa-
tion (13), the output representation of each LLM layer consists
of a visual part and a textual part. For each part, we calculate
the cosine similarity between output representations of con-
secutive layers in Baseline+Grid and Baseline+Grid+Manager.
As shown in Fig. 18, managers reduce the similarity be-
tween representations of consecutive layers, especially for
the bottom layers of MLLMs. Compare to Baseline+Grid,
changes in the similarity become more frequent and drastic
in the layers between manager injections. This indicates that
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Fig. 18. Cosine similarity between output representations of consecutive
layers. The dotted vertical lines indicate the layers where managers are
injected, i.e., # Layer Index= [1, 5, 9, 13, 17, 21].
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Fig. 19. Average entropy of attention weight distributions in each layer.

the aggregation of different levels of semantic knowledge
introduced by managers can supplement more insights and
visual details, and facilitate more diverse vision–language
representation learning in subsequent layers. It is worth noting
that although we do not have textual managers, the textual
part of the output representation is causally influenced by the
visual part in its front, resulting in a similar phenomenon.

2) Attention Weight Distribution Analysis: The attention
mechanism [60] is a key component in deep neural networks,
where attention weight distributions reflect how much attention
each token pays to the other tokens. Following [61], we
delve into attention weight distributions from the following
two angles to provide an intuitive and interpretable analysis.
Besides, for the attention weight distribution of each layer, we
focus on the self-attention of the visual part, and the attention
from the textual part at the back to the visual part at the front.13

a) Attention Entropy: The average entropy of attention
weight distributions reflects the diversity of attention weights
in each layer. Higher/lower attention entropy means that the
attention weights are concentrated on more/few tokens. As
shown in Fig. 19, compared to Baseline+Grid, managers
increase the attention entropy in each layer. Such broad atten-
tion can help Baseline+Grid+Manager handle more complex
and varied input, leading to greater diversity and flexibility, and
thereby preventing focusing too narrowly on certain aspects
of the input. Besides, interestingly, the entropy of textual-to-
visual attention becomes more stable and significantly larger
than the entropy of visual self-attention when managers man-
age the visual part of the input.

b) KL Divergence: The average Kullback–Leibler (KL)
divergence [62] between attention weight distributions of dif-
ferent attention heads reflects the diversity of attention heads
in each layer. Higher/lower KL divergence means that different
attention heads pay attention to different/similar tokens. As

13Attention weight distribution analysis of Baseline and Baseline+Manager
can be found in Appendix C-D.
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Fig. 20. Average KL divergence between attention weight distributions of
attention heads in each layer.

shown in Fig. 20, compared to Baseline+Grid, managers
increase the KL divergence between attention heads in most
layers. Intuitively, low diversity across different attention heads
may limit the model’s ability to capture diverse features.
Managers can help Baseline+Grid+Manager focus on different
aspects of the sequence to capture more diverse features, and
prevent excessive focus on similar or redundant information.

In summary, for our RQ2, the manager introduces the
aggregation of insights from visual experts at different levels
into multi-grid MLLMs, which can increase the diversity of
attention weights and attention heads. This can help guide the
attention of multi-grid MLLMs, thus capturing more diverse
visual details from both the manager (depth) and the multi-
grid algorithm (width) directions, and also alleviating the
semantic ambiguity caused by the multi-grid algorithm.

VI. RELATED WORK

A. Vision–Language Models

Although VLMs differ in model architecture, most of them
use unimodal encoders to extract visual and textual represen-
tations, and then fuse them in a cross-modal module, which
can be unified into the Two-Tower architecture [6], [8], [18],
[24]–[30], [63]–[70].14 As a representative model, METER [6]
adopts pre-trained unimodal encoders and feeds their last-
layer representations into the cross-modal encoder with the
co-attention mechanism. BridgeTower [7] proposes building
layer-by-layer connections between the top unimodal layers
and each cross-modal layer to leverage multi-layer unimodal
representations. However, they still cannot utilize adaptive
and effective aggregation of multi-layer pre-trained unimodal
representations in each cross-modal layer.

B. Utilization of Multi-Layer Unimodal Representations

Different layers of pre-trained unimodal encoders encoding
different levels of semantic knowledge are well demonstrated
in vision [58], [71], [72] and language [73]–[75]. As shown
in prior work [58], [71], lower layers of ViTs tend to attend
both locally and globally, while higher layers primarily focus
on global features. Similarly, previous work [75] found that
the intermediate layers of BERT [76] encode a hierarchy of
linguistic knowledge, with surface features at the bottom, syn-
tactic features in the middle, and semantic features at the top.

Furthermore, the effectiveness of multi-layer representation
aggregation in learning comprehensive representations has

14Detailed discussion of the related work for multimodal fusion from the
perspective of architecture can be found in Appendix A-C.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2025.3578266

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National University of Singapore. Downloaded on July 18,2025 at 12:19:07 UTC from IEEE Xplore.  Restrictions apply. 



12

been well demonstrated in vision [77]–[83] and language [10],
[19], [20], [84]. Hence, some Two-Tower VLMs and MLLMs
have explored the utilization of pre-trained multi-layer uni-
modal representations for better vision–language representa-
tion learning [6], [7], [85]–[87]. They simply feed the weighted
sum or fusion of multi-layer unimodal representations into the
first cross-modal layer, or exploit multiple top unimodal layer
representations layer by layer in each cross-modal layer, which
is not only ineffective but also lack scalability. In this work,
we take each layer of the pre-trained unimodal encoder as an
unimodal expert, and the output representation of each layer
as the insight of the unimodal expert into the current input.
We propose managers to adaptively aggregate insights from
unimodal experts at different levels for each cross-modal layer.

C. Multimodal Large Language Models

With the rapid development of Large Language Models
(LLMs) [40], [88]–[90], MLLMs, a new class of VLMs that
introduces a LLM as both a textual module and a cross-
modal module, have emerged and shown superior zero-shot
performance on various downstream tasks [11], [35], [91].
Although most existing MLLMs only feed the last-layer
visual representation from the visual encoder into the LLM
for simplicity and efficiency, some of them have explored
different ways to improve the visual representation to further
improve performance, especially high-resolution scenarios,
such as: (i) adopt high-resolution visual encoders [92]–[95],
which require additional high-resolution training data; (ii)
adopt the multi-grid algorithm to directly split the image into
multiple image grids [12], [36], [96], which is a resource-
efficient way but may bring semantic ambiguity [59], [97].
Since both the manager and the multi-grid algorithm can be
viewed as a plugin that improves the visual representation
from two orthogonal perspectives (depth and width), we
further explore the effectiveness of managers in MLLMs
and multi-grid MLLMs and the underlying reasons for their
collaboration to improve performance based on extensive
experiments and detailed analyses.

VII. CONCLUSION

In this work, we propose Manager, a lightweight, efficient
and effective plugin that helps better utilize multi-layer pre-
trained unimodal representations for vision–language repre-
sentation learning, and demonstrate its effectiveness in both
Two-Tower VLM and MLLM architectures. The manager
can adaptively aggregate more required unimodal semantic
knowledge to facilitate comprehensive vision–language align-
ment and fusion in each cross-modal layer. We first propose
ManagerTower, a novel Two-Tower VLM that aggregates in-
sights from pre-trained unimodal experts at different levels via
introduced managers in each cross-modal layer. The feasibility
of various designs of managers is well explored, and the
effectiveness of ManagerTower on 4 downstream tasks is well
demonstrated. Next, we further validate the effectiveness of
managers in the latest MLLM architecture. Managers can
significantly improve the zero-shot performance of MLLMs
and multi-grid MLLMs on 20 downstream datasets across

different categories of capabilities, images, and resolutions.
Both the manager and the multi-grid algorithm can be seen
as a plugin that improves the visual representation from two
orthogonal perspectives (depth and width). Their synergy
can capture and supplement more diverse visual details, to
mitigate the semantic ambiguity caused by the multi-grid
algorithm and further improve performance.
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