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A growing body of literature on educational recommenders focuses on accuracy but neglects how it can marginalize user experience.
Accuracy optimization fits the interaction data, whereas user experience optimization recognizes students’ limited knowledge and
recommends better alternatives. We propose a multi-objective course recommender that balances the optimization of both objectives:
1) accuracy, and 2) student experience. For the first objective, we take inspiration from K-Nearest Neighbors (KNN) model’s success
in course recommendation, even outperforming contemporary neural network based models. KNN’s focus on the pairwise relation
between close neighbors aligns with the nature of course consumption. Hence, we propose K-LightGCN which uses KNN models to
supervise embedding learning in state-of-the-art LightGCN and achieves a 12.8% accuracy improvement relative to LightGCN. For the
second objective, we introduce metric PP-Mismatch@K to quantify user experience. We propose PM K-LightGCN which post-filters
K-LightGCN’s outputs to optimize PP-Mismatch@K and achieve a 17% improvement in student experience with minimal drop in
accuracy.
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1 INTRODUCTION

Course selection in tertiary education are high-stakes decisions that influences both the student’s subsequent academic
plan and the future career path [8]. The development of artificial intelligence (AI) inspires exploration of AI-enabled
course recommender to assist students’ decision making. Existing studies largely focuses on accuracy optimization
[9, 17], where the sole pursuit is fitting the underlying student selections; i.e., course enrollment records. In contrast,
student-centric course recommenders should also optimize user experience, which is not guaranteed by high accuracy.
Pardos and Jiang proposed a course recommender designed for serendipity that recommends previously unknown but
relevant courses [25]. Their experiments show that when presented with such new courses, students opt to change to
take these courses instead. Hence, accuracy is not the best metric for user experience, as when given more information,
students improve their experience by adjusting selections. Thus, accuracy optimization trained using student selections
— the ground truth — is insufficient to optimize such high-stakes student experiences.

Students share similar course selection criteria like course content and future career value [6]. But how they assess
one course in these aspects differs. Formulating student experience optimization as an objective requires measuring the
factors leading to student satisfaction. In a small-scale user study conducted at our institution, students demonstrated
disparate interests towards elective courses: when shown detailed course information, some students consistently
preferred popular courses whereas others favored niche ones. Hence, student satisfaction is related to whether course
popularity matches their interests. Thus, we propose a proxy for student experience, preference-popularity match,
that describes the ideal situation where students are recommended with courses of their desired popularity.

Both accuracy optimization and preference-popularity match are important objectives of course recommendation.
However, one often comes at the cost of another. The former closely fits the data whereas the latter believes students are
better off with alternative course plans. To optimize for both and achieve balance, we present a multi-objective course
recommender with accuracy optimization as its primary objective and preference-popularity match as a secondary one.

We first conduct a preliminary study that explores the performance of traditional recommenders and modern
neural network based models on course recommendation. We then observe the unusual superiority of ItemKNN in
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accuracy optimization, which is explained by the tight alignment between its focus on pairwise relations among close
neighbors and the unique characteristics of course consumption. Inspired by this, we propose a revised version of
the state-of-the-art recommendation algorithm, LightGCN. In our revision, pairwise similarity computed by KNN
models are used to supervise embedding learning in LightGCN. Then, predictions by KNN models and LightGCN are
combined as the final recommendation. The resultant K-LightGCN model optimizes for our first objective — accuracy.
We then introduce a metric for student experience, PP-Mismatch@K, which quantifies the level of preference-popularity
mismatch in recommendations. To achieve our second objective — preference-popularity match — we propose PM
K-LightGCN, which takes in recommendations of K-LightGCN and selects 10 courses that best fit the defined objective.
Through evaluation, our multi-objective course recommender demonstrates a good balance between both objectives.

2 RELATEDWORK

Educational Recommendation Systems. The education domain is relatively underexplored in recommendation
research. Only 44 works were associated with this field in a 2018 mapping study [28]. The unique characteristics
of course-taking behavior also add complications to the course recommendation task. First, in institutes of higher
learning (hereafter, IHLs), students only take 4 to 6 courses per semester, worsening sparsity issues already challenging
recommender implementation [13]. Also, students’ course selection is influenced by both intrinsic and extrinsic
motivations which can differ across individuals [16, 22]. Additionally, IHL courses are designed to be complementary
and often have complex relations such as prerequisites and preclusions [10]. An ideal recommender should learn
students’ varied interests and consider the underlying constraints in course choice [13].

Approaches to course recommendation include content-based, collaborative filtering and knowledge-based techniques
[13]. Content-based approaches learn courses’ characteristics from their description and recommend those similar
to students’ previous enrollments [5, 24, 29]. Collaborative filtering is the most common approach that uses only the
enrollment history, represented as an interaction matrix, from which student and course vector representations are
learned [7, 12, 21, 23]. Knowledge-based methods use domain knowledge like students’ faculty and grades and course
prerequisite relationships. Jiang et al. proposed a Goal-Based Course Recommender that uses past semester grades [18].

Use of Popularity in Recommendation Systems. In this paper, we introduce the novel concept of preference-
popularity match, which aligns popularity of recommended courses with student preference. One scenario that violates
this ideal is recommending popular courses to students preferring niche ones. This popularity bias arises when popular
items are recommended with higher accuracy and frequency, but less popular items are recommended with lower
accuracy [3]. Abdollahpouri et al. show that the 3% items involved in the top 20% of interactions, i.e., the popular
items, make up 60–100% of recommended items sourced from different recommendation algorithms [3]. Recommending
popular items caters to the needs of the majority, leading to high accuracy. However this leads to popularity bias where
fewer users consume less popular items, as many potentially interesting items are not exposed to users [1], which
artificially exacerbates lopsided demands in a vicious cycle. Besides, users enjoy popular items to different extents, and
those preferring niche ones would suffer from inaccurate recommendations [3]. Existing popularity bias mitigation
includes unbiased learning [4, 31] which adjusts the data distribution by re-weighting interaction samples or uses
bias-free uniform data to learn unbiased embedding and ranking adjustment [1, 2, 32] which includes a regularization
term to ensure exposure of less popular items or re-ranks recommendation lists based on certain conditions, similar
to our approach. However, popularity bias mitigation neglects the undesirable scenario where niche courses are
recommended to students enjoying popular ones, which motivates our proposal of a more comprehensive concept —
preference-popularity match.
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Course ID wing_modede529dfcbb2907e9760eea0875cdd12
Student ID wing_mod412b5c6d4a88a03e91dfc16dd4d494ff
Faculty School of Computing
Interaction Semester 1910
Enrollment Semester 1710

Table 1. Enrollment Record Sample3 EXPERIMENT SETTINGS

We use course enrollment records provided by a leading tertiary educational institution to explore both objectives
with accuracy optimization in Section 4 and preference-popularity match in Section 5. Due to privacy concerns, IHLs
normally do not disclose their students’ enrollment records, making it difficult to test our algorithm on multiple datasets.

3.1 Dataset and Data Split

Our dataset is an anonymized, institutional review board (IRB) approved listing of per-semester course-taking histories
of graduated undergraduates from the year 2010 to 2020. There are 41,304 unique students and 5,179 unique courses,
which together generate 1.4 million enrollments. Due to privacy considerations, each student and course is assigned a
unique masked ID to anonymize every student and course. For each enrollment record, we also have information on
the student’s faculty, the semester when this enrollment occurred (interaction semester) and the semester when the
student matriculated (enrollment semester). A sample of this dataset is shown in Table 1.

The dataset is split into train, validation and test sets mimicking real-life scenario. Course recommendations are
usually based on students’ past enrollment with reference to the records of graduated students. Hence, we randomly
select 35% of students to form Group A (the graduated seniors), and the remaining form Group B (students seeking
recommendations). All of Group A’s records are allocated for training, whereas Group B’s are split into train, validation
and test sets, based on the interaction semester. The resultant train–validation–test ratio is approximately 7:1:2.

3.2 Evaluation

The recommendation algorithms are implemented using the RecBole library [30], which provides a unified framework
to develop recommendation algorithms. We evaluate recommender performance on two objectives: accuracy by metrics
HR@K and NDCG@K as well as preference-popularity match using our self-proposed metric Preference-Popularity
Mismatch@K, explained in the upcoming sections. We set 𝐾 = 10 to evaluate the top 10 recommendations.

4 OBJECTIVE 1: ACCURACY OPTIMIZATION

We first optimize the recommender for accuracy. We conduct a preliminary study to identify the unique nature of
course consumption which motivates our K-LightGCN proposal. We first lay out notations we use: individual students
𝑠𝑖 and courses 𝑐 𝑗 are referred to by subscripts. The set of all students and courses are of size 𝑥 and 𝑦, respectively. The
symmetric item–item (user–user) similarity matrix generated by ItemKNN (UserKNN) is represented by𝑤𝑖𝑡𝑒𝑚 (𝑤𝑢𝑠𝑒𝑟 ).

4.1 Preliminary Study

We shortlist the following non-domain specific models as baselines. Existing course recommendation algorithms are
not selected as they do not share standardized input. Many require course description or grade information that are
absent from this dataset. The following algorithms take in only course enrollment records.

ItemKNN is an item-based, KNN model [11] which computes recommendation scores based on pairwise item–item
similarity. Courses the most similar to those taken by the student are recommended. UserKNN is a user-based model
that recommends courses taken by students similar to the target student.
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Multi-Layer Perceptron Model (MLP) employs a basic neural network structure and represents students and
courses as latent vectors for non-linear relation capture [15].

Neural Matrix Factorization (NeuMF) is a specific implementation of Neural Collaborative Filtering (NCF [15])
which fuses Matrix Factorization (MF) and MLP methods so that they reinforce each other.

Light Graph Convolution Network (LightGCN) simplifies Graph Convolution Network (GCN) model to best
serve the recommendation task by including only its essential component: neighborhood aggregation [14]. In LightGCN,
the embeddings for each student and course is learned by aggregating that of its neighbors. The prediction for the
interaction between Student 𝑠𝑖 and Course 𝑐 𝑗 , is the dot product of the embeddings for the student and course, ˆ𝑦𝑠𝑖 ,𝑐 𝑗 .
LightGCN uses Bayesian Personalized Ranking (BPR) loss [26], a pairwise loss that encourages the prediction of an
observed interaction to be higher than unobserved ones and penalizes otherwise. The BPR loss is defined in Equation 1
where 𝑛𝑠𝑖 represents courses Student 𝑠𝑖 has taken previously and




E(0)


 2 is the 𝐿2 regularization term to prevent
overfitting.
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 2 (1)

4.1.1 Results. Baseline performance is shown in Table 2a. Both KNN models outperform the rest despite their much
simpler structure, highly uncommon in other recommendation domains [15, 19, 20]. It is possible the nature of course
consumption aligns with the underlying inductive bias of KNN models — identifying neighbors of students and courses.
Among the deep models, only LightGCN incorporates neighborhood information, outperforming others. This suggests
that localized relations captured in neighborhoods are more important than global relations in course recommendation.

Model HR@10 NDCG@10
a) ItemKNN 0.7762 0.3337

UserKNN 0.7294 0.2521
MLP 0.6013 0.1946
NeuMF 0.6458 0.2156
LightGCN 0.7008 0.2542

b) CN-LightGCN 0.7287 (+3.98%)) 0.2896 (+13.9%)
c) K-LightGCN 0.7905 (+1.84%) 0.3346 (+0.27%)

Table 2. Accuracy Optimization Results: a) Baseline Performance (§ 4.1.2), b)
Revised LightGCN Performance (performance relative to LightGCN) (§ 4.1.3)
and c) K-LightGCN Performance (performance relative to ItemKNN) (§ 4.2).

# layers HR@10 NDCG@10
1 0.6588 0.2260
2 0.6950 0.2502
3 0.6938 0.2491
4 0.6897 0.2434
6 0.6798 0.2365

Table 3. LightGCN with Different Layer
Numbers. Best performance is bolded.

4.1.2 Superiority of ItemKNN. Accurately explaining such observed superiority of ItemKNN in course recommendation
assists in understanding the course recommendation task and designing models accordingly. ItemKNN computes the
pairwise item–item similarity for all available courses using cosine similarity. For each course, only the top 𝑘 highest
similarity values are kept, which correspond to its 𝑘 nearest neighbors. We thus compare the structure of the best
performing baseline ItemKNN and the best performing deep model LightGCN. By checking whether the identified
structural differences contribute to ItemKNN’s success, we gain a deeper understanding on the ItemKNN’s strength as
applied to course recommendation.

Importance of Pairwise Relation. Neighborhood information is incorporated in LightGCN through neighbor con-
volution. Each layer propagates information of neighbors from varied distances away: the first layer passes information
only to those adjacent; i.e., for each course, only information of students who have taken the course is passed. With
two layers, additional information transmitted includes that of students sharing interaction history overlap with the
target student. Hence, at layer two, LightGCN learns pairwise relations, equivalent to ItemKNN’s pairwise similarity.
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ItemKNN’s high accuracy suggests the possibility that pairwise relation captures the essential patterns for accurate
recommendation. Hence, we hypothesize that in course recommendation, adding more layers over-smooths the learned
representations. To validate this, we experiment with LightGCN of different layers. Table 3’s results confirm that 2-layer
LightGCN focusing on pairwise relation is most effective in learning the underlying relations and generating accurate
recommendations, which differs from the e-commerce and social network setting studied previously [14]. This relates
to the unique nature of course consumption. Students who took the same courses are likely from the same academic
program; hence, they share common curriculum requirements and similar interaction patterns [16]. For a target student,
what others from same program have taken previously largely indicates the courses (s)he will take next. By learning
pairwise information, we are capturing these hidden relations among students and courses.

Focus on Close Neighbors.We also observe that ItemKNN only considers the top 𝑘 neighbors whereas in LightGCN,
information from all neighbors contributes to embedding learning and the final recommendation. It is possible that
considering more than necessary neighbors brings in noise and lowers accuracy. To test this, we restrain LightGCN at
the second layer to only perform neighbor propagation using the closest 𝑘 neighbors where 𝑘 is the number of neighbors
used in KNN models. This revised LightGCN is called Constrain-Neighbor LightGCN (CN-LightGCN). Table 2b’s results
demonstrate the improvement in CN-LightGCN’s performance relative to LightGCN, validating our claim. For a target
student, (s)he may have taken the same course with many others. Among them, only a few are from the same academic
program, whose course-taking histories are of key importance in suggesting what the target student would take next.
Hence, focusing on these strong neighbors and discarding noise from weak ones is essential to course recommendation.

4.2 K-LightGCN: Accuracy Optimization For Course Recommendation

The close alignment between ItemKNN’s focus on pairwise relations between close neighbors and the nature of course
consumption partially explains the superiority of ItemKNN. Despite its overall higher accuracy, LightGCN provides
accurate recommendations for some cases that ItemKNN fails. Hence, we propose K-LightGCNwhich combines ItemKNN
and LightGCN and modifies it to reinforce the two features identified as key to accurate course recommendation.

Fig. 1. An illustration of K-LightGCN model architecture. Pairwise similarity matrices computed by ItemKNN are used to supervise
the embedding learning in LightGCN. Predictions generated by LightGCN and ItemKNN are combined as final recommendation.

4.2.1 K-LightGCN Structure. K-LightGCN consists of paired LightGCN and ItemKNN components (Fig. 1). K-LightGCN
enhances the strength of KNN by having the LightGCN component learn student and course embeddings with similarity
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values close to that computed in KNN models. Thus, we introduce a new term to the original BPR loss. At each training
batch, user–user cosine similarity matrix𝑤𝑢𝑠𝑒𝑟

𝐿𝑖𝑔ℎ𝑡𝐺𝐶𝑁
and item–item cosine similarity matrix𝑤𝑖𝑡𝑒𝑚

𝐿𝑖𝑔ℎ𝑡𝐺𝐶𝑁
are computed

respectively using the learned student and course embedding in LightGCN. The squared differences between the
similarity matrices computed by LightGCN and KNN are added to the loss. The resultant loss function in K-LightGCN is
defined in Equation 2 where 𝐿𝐵𝑃𝑅 is the original BPR loss defined in Equation 1. The final prediction is the 𝜇-weighted
sum of LightGCN and ItemKNN predictions, with different weights learned for each student.

𝐿′𝐵𝑃𝑅 = 𝐿𝐵𝑃𝑅 + 𝜇 (
𝑦∑︁
𝑖=1

1
𝑦

𝑦∑︁
𝑗=1

(𝑤𝑖𝑡𝑒𝑚
𝐿𝑖𝑔ℎ𝑡𝐺𝐶𝑁𝑖,𝑗

− 𝑤𝑖𝑡𝑒𝑚
𝑖,𝑗 )2 +

𝑥∑︁
𝑖=1

1
𝑥

𝑥∑︁
𝑗=1

(𝑤𝑢𝑠𝑒𝑟
𝐿𝑖𝑔ℎ𝑡𝐺𝐶𝑁𝑖,𝑗

− 𝑤𝑢𝑠𝑒𝑟
𝑖,𝑗 )2) (2)

4.2.2 K-LightGCN Performance. The experiment results of K-LightGCN is shown in Table 2c. As K-LightGCN outper-
forms both ItemKNN and LightGCN, the effectiveness of the underlying design for course recommendation is validated.
By learning embeddings with pairwise similarity close to that computed by KNN models, LightGCN is sharper in
capturing the essential pairwise relations. For example, for the test case between Student s37 and Course 4f6, ItemKNN
recommends accurately but LightGCN misses the hit. Previously, Student s37 has interacted with eight courses and
identified by ItemKNN, the target Course 4f6 is highly similar to three of them, including Courses 0d, f5, and z9. Hence,
ItemKNN successfully recommends the target course. However, LightGCN misses this relation as the cosine similarity of
the LightGCN embedding between the four courses is close to zero. With ItemKNN supervising the embedding learning,
K-LightGCN learns similar embeddings for the four courses identified, leading more accurate recommendation.

5 OBJECTIVE 2: PREFERENCE-POPULARITY MATCH

Accuracy solely learns student selections. However, with more information, students can adjust their plans to improve
experience. There are multiple ways to quantify student experience. Our user study identified that students vary in
preference in taking popular or niche courses. Hence, we measure student preference and course popularity to further
optimize student experience by matching the two values, inspiring our Popularity-Match K-LightGCN model.

5.1 Preliminary Study

We propose a continuous measure for course popularity and student preference. Course popularity is computed as
𝑝𝑜𝑝 = 𝑙𝑜𝑔( #𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠#𝑠𝑒𝑚𝑒𝑠𝑡𝑒𝑟𝑠 ) which is the average number of enrollments when it is offered. Higher pop indicates on
average, more students take the course, implying it is more highly desired in terms of course selection criteria like
course content, instructor quality, and course difficulty [6]. Student preference is computed as 𝑝𝑟𝑒 𝑓 =

∑
𝑖∈𝐼 𝑝𝑜𝑝 (𝑖)

|𝐼 | ,
where I represents the set of courses (s)he has interacted with previously. Higher pref indicates the student tends to
take more popular courses. Fig. 2 and Fig. 3 show the distribution for course popularity and student preference in our
dataset, respectively. In both plots, wider sections indicate most courses (students) have pop (pref ) within that range
and those beyond the 75th percentile are in orange. For courses, a limited few have pop above 4 but as they dominate
the enrollment records, they are recommended more, even when the target student prefers niche courses. As required
by IHLs, a typical student takes several extremely popular core courses and some relatively niche electives, resulting in
most with pref above 4.

5.1.1 Preference-Popularity Match Definition and Evaluation. The distribution of student preference demonstrates large
variation: some prefer popular courses whereas others enjoy niche ones. Hence, to provide quality user experience for
all, our goal is to expose students with low pref to niche courses as well as recommending popular courses that better fit
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Fig. 2. Violin plot of course popularity. Fig. 3. Violin plot of student preference.

the interests of students with high pref ; i.e., preference-popularity matching. In contrast, preference-popularity
mismatch is a loss: a mismatch between student preference and popularity of recommended courses. This occurs when
popular (niche) courses are recommended to students with low (high) pref. With the former, students are not exposed to
the niche courses they are looking for; with the latter, students are likely recommended with courses they already know
of or those that only loosely fit their preference. Such recommendations do not value add to students’ decision making.

We propose Preference-Popularity Mismatch@K (PP-Mismatch@K) loss to measure preference-popularity match
performance, defined as 1

𝑧

∑
𝑟𝑠𝑖 ∈𝑅

1
|𝐾 |

∑
𝑗 ∈𝑟𝑠𝑖

��𝑝𝑟𝑒 𝑓 (𝑠𝑖 ) − 𝑝𝑜𝑝 (𝑐 𝑗 )��. For each test case, it takes in top 𝐾 = 10 recom-
mendation list 𝑟𝑠𝑖 , computing the absolute difference between student’s preference and recommendations’ average
popularity. PP-Mismatch@10 is the average mismatch of all 𝑧 test cases and higher values indicate poorer performance.

5.2 PM K-LightGCN: Multi-Objective Course Recommender

Matching popularity of recommended courses with student preference is key to meeting students’ varied needs and
providing quality user experience. We propose Popularity-Match K-LightGCN (PM K-LightGCN) to explicitly capture
this criterion by aligning model recommendations with students’ preference on top of accuracy optimization. PM
K-LightGCN takes the top 50 recommendations by K-LightGCN and selects 10 courses that minimize the mismatch
defined as 1

|𝐾 |
∑
𝑗 ∈𝑟𝑠𝑖

��𝑝𝑟𝑒 𝑓 (𝑠𝑖 ) − 𝑝𝑜𝑝 (𝑐 𝑗 )�� by choosing those with popularity closest to the target student’s preference.
We do not perform another round of optimization using all available courses to achieve the second objective as we

believe accuracy is the primary criterion to be fulfilled. After K-LightGCN generates accurate recommendations, we
select the 10 courses that fit the second objective as the final recommendations.

5.2.1 Experiment Results. Recommenders’ performance on both objectives indicate that recommendations by PM
K-LightGCN better match students’ preference (a mismatch reduction of 17%; Table 4). The only difference between PM
K-LightGCN and K-LightGCN is the filtering component that selects the 𝐾 = 10 courses out of the top recommendations
by K-LightGCN. PM K-LightGCN successfully mitigates preference-popularity mismatch, but K-LightGCN generates
recommendations with the highest mismatch. To optimize solely for accuracy, K-LightGCN picks up the pattern that
most students enjoy popular courses as indicated by the wider sections between 𝑝𝑟𝑒 𝑓 = 4 − 5 in the violin plot for
student preference (Fig. 3) and recommends popular courses more often to cater to the majority.

Model PP-Mismatch@10 HR@10 NDCG@10
ItemKNN 1.050 0.7762 0.3337
UserKNN 1.071 0.7294 0.2521
LightGCN 1.077 0.7008 0.2542

K-LightGCN 1.109 0.7905 0.3346
PM K-LightGCN 0.920 (-17.0%)† 0.7570 (-4.23%)* 0.3000 (-10.3%)*

Table 4. Performance in Two Objectives (relative to K-LightGCN). †: For PP-Mismatch, lower values are desirable and negative
percentage change indicates better performance. *: For HR and NDCG, negative percentage change indicates worse performance.7
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5.2.2 Case Studies. We select three test cases, listed in Table 5 to examine preference-popularity mismatch mitigation in
PM K-LightGCN. For simplicity, we list the first five courses in the top 10 recommendations. In the first case study, both
PM K-LightGCN and K-LightGCN recommend accurately. In addition to accuracy optimization, with PM K-LightGCN
filtering the outputs of K-LightGCN to minimize preference-popularity mismatch, the popularity of its recommendations
all align with the student’s preference. Hence, the student is likely to be inspired by PM K-LightGCN’s recommendations
as they additionally have the relevant characteristics considered by the student.

In the second case study, the connection between target course and the student’s preference is missed by K-LightGCN,
which is corrected with the additional filtering process in PM K-LightGCN. However, both models fail in the third case
study. Despite this, PM K-LightGCN recommends several niche courses that are of similar popularity to the student’s
preference. This offers the student possibilities to make a more informed decision.

Case
Study

Student
Preference

Target
Course Popularity of Top 5 Courses Recommended

Popularity PM K-LightGCN K-LightGCN
#1 #2 #3 #4 #5 #1 #2 #3 #4 #5

1 4.381 3.883 3.946 3.883 3.876 3.588 3.419 3.946 3.377 3.883 3.411 2.508
2 3.343 3.434 3.332 3.377 3.434 3.583 3.588 3.876 1.872 3.030 4.200 2.085
3 1.749 1.398 1.621 1.477 1.407 1.376 1.301 3.030 3.168 1.477 2.347 2.684

Table 5. Case Study of PM K-LightGCN (accurate recommendations are bolded, #𝑘 represents the 𝑘𝑡ℎ ranked course)

6 CONCLUSION

We propose a multi-objective course recommender that optimizes for accuracy and preference-popularity match. For
accuracy optimization, we propose K-LightGCN, which combines KNN models and LightGCN and uses the former to
supervise embedding learning in LightGCN. For preference-popularity match, we post-filter top recommendations by
K-LightGCN to select 𝐾 = 10 courses of popularity closest to the target student’s preference. Typical IHL curriculum
requires students to read core courses in junior years and electives to be chosen from the available ones in senior years.
Hence, as students mature, they will benefit more from PM K-LightGCN which matches their personalized preference.
In our study, the PP-Mismatch@10 improvement in PM K-LightGCN mainly comes from recommendation in later years.

Course recommendation remains a developing area. This project sheds lights on the importance of neighborhood
information and multi-objective recommender development. Future studies could improve on PM K-LightGCN with
alternative student preference measure. Currently, it is computed as the average popularity of courses taken previously
which neglects the popularity variations in the enrollment history. Such limitation will result in poor performance when
the student takes extremely popular and niche courses together. It could be mediated with next-basket recommendation
[27] which matches the popularity distribution of the recommended basket with that of courses taken previously.

Though PM K-LightGCN’s post-filtering step does not involve intricate machine learning, it is sufficiently lightweight
and saves space and time when deployed. Besides, this lightweight design is both effective in preference-popularity
mismatch mitigation and balancing both objectives. Although the pursuit of preference-popularity match lowers
accuracy, compared to K-LightGCN, PM K-LightGCN achieves a 17% improvement in preference-popularity match with
the sacrifice of only 4% in accuracy. As enrollment records may not optimize student experience due to their limited
knowledge [25], the fall in accuracy can improve user satisfaction. However, due to the inherent constraints of our
dataset not including actual course information, it is infeasible to conduct a user study for better model evaluation from
user’s perspective. Besides, the design of PM K-LightGCN allows scaling to additional criteria. When other needs like
the promotion of certain courses to better prepare students for the workplace arise, they can be formulated as additional
loss functions or post-filtering criteria to be added to the recommender in the same lightweight and efficient manner.
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