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Prerequisites can play a crucial role in users’ decision-making yet recommendation systems have not fully utilized such contextual
background knowledge. Traditional recommendation systems (RS) mostly enrich user–item interactions where the context consists
of static user profiles and item descriptions, ignoring the contextual logic and constraints that underlie them. For example, a RS
may recommend an item on the condition that the user has interacted with another item as its prerequisite. Modeling prerequisite
context from conceptual side information can overcome this weakness. We propose Prerequisite Driven Recommendation (PDR), a
generic context-aware framework where prerequisite context is explicitly modeled to facilitate recommendation. We first design a
Prerequisite Knowledge Linking (PKL) algorithm, to curate datasets facilitating PDR research. Employing it, we build a 75k+ high-
quality prerequisite concept dataset which spans three domain. We then contribute PDRS, a neural instantiation of PDR. By jointly
optimizing both the prerequisite learning and recommendation tasks through multi-layer perceptrons, we find PDRS consistently
outperforms baseline models in all three domains, by an average margin of 7.41%. Importantly, PDRS performs especially well in
cold-start scenarios with improvements of up to 17.65%.
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1 INTRODUCTION

Prerequisites are defined as the necessary contexts that enable downstream activity or state in human cognitive processes
[16]. In certain domains— especially education [1, 24, 34] — such requisites are an important consideration that constrains
item selection. Context-aware recommendation systems have integrated the use of collaborative filtering with auxiliary
metadata about users’ current background or state, such as time sand location [22, 32]. However, the role of prerequisite
context (represented in the form of concepts [16] describing items) has been neglected in recommendation, where such
dependent information is crucial for modeling users’ interests. Take the educational domain example in Figure 1: The
item’s key concept Probability Classifier and user’s prior knowledge are both prerequisite contexts for recommendation.
By leveraging the implicit prerequisite relationships between them (represented in the form of a prerequisite graph),
we can achieve a comprehensive and explainable recommender that connects the user prerequisite context with item
prerequisite context. In our example, Probability Classifier is beyond the knowledge of what the user already knows
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Fig. 1. An illustration of prerequisite driven recommendation: in which a recommender (right) incorporates prerequisite knowledge
(left), distilled from both user and item prerequisite context. Dashed edges link users to the concepts they have mastered as prior
concepts and the desired concepts to acquire as target knowledge.

(Bayes’ Theorem) but on the path towards to the user’s desired target knowledge (Naive Bayes Classifier), thus deserving
a higher recommendation probability. Comparatively, items containing the concept of Conditional Random Field —
although related to Bayes’ Theorem — would be poor choices since the user lacks the prerequisite prior knowledge
of Hidden Markov Model. Given the importance of user and item prerequisite context, we explore the possibility of
modeling and leveraging them in recommendation.

Though previous work [12] focused on the sequential modeling between items, there is virtually no work investigating
the next-step decision in light of users’ conceptually-mastered knowledge. We fill this gap by capturing the user and
item prerequisite contexts through the compilation of a prerequisite graph, and treating the user’s knowledge as static
context. Specifically, both the set of prior concepts that a user has already mastered, and the set of target concepts the
user aims to acquire, directly influence the sequence of items to recommend. Based on this, we make a key observation
that prerequisite driven recommendation requires two subtasks: (1) prerequisite modeling at the concept level, and (2)
user modeling that identifies the prior and target concepts at the user–item level. More concretely, concept prerequisite
modeling is the identification of prerequisite links among concepts; cf Fig. 1, prerequisite edges link the introductory
concept Probability Classifier to the more advanced Naïve Bayes Classifier. Prior and target concept identification is
thus the the process of inferring the state of knowledge for each user, with respect to the inventory of concepts in the
prerequisite graph.

To demonstrate the effectiveness of leveraging prerequisite context for recommendation, we propose a Prerequisite-
Driven Recommendation System (PDRS) embodying this formalism. The key challenge here is how to accurately acquire
user- and item- forms of prerequisite context for use in recommendation. However, there is an important shortcoming.
Explicit prerequisite knowledge is often sparse, requiring laborious effort to compile. It is often also brittle, as items and
their relationships with underlying contextual concepts can evolve over time. Assuming manually-labeled prerequisites
[33, 34] is often unrealistic due to the heavy cost of human annotation. An automatic means of inferring prerequisites
is called for. We address this in two parts by contributing a) an automatic key knowledge concept extractor from item
descriptive text, and b) a prerequisite relation constructor for concept pairs by inferring prerequisite weights from both
internal and external domain features. Our encoding components finds a suitable representation of a user in terms of
prior and target knowledge, leveraging pretrained language models. We then integrate such prerequisite context into
the recommendation process by joint training of both the recommendation and prerequisite knowledge learning tasks.

We evaluate our PDRS system on three datasets representing different domains. We find that PDRS achieves
performance gains in recommendation not only in domains where prerequisites exist as hard constraints — such as
(educational) course recommendation — but also in domains where prerequisites are soft, personal preferences, as in
movie and book recommendation. Importantly, we also show that such model makes an especially strong impact in
sparse data cold-start scenarios, a pervasive problem in RS.
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(a) Prerequisite Knowledge Inference (b) Prerequisite Context Modeling in Recommendation
Fig. 2. Our instantiated neural PDRS framework. It consists components of a) prerequisite constructor, b [left]) twin encoders pretrain
embedding of users, items (BEM), and prerequisites (KEM), and b [right]) a fine-tuned neural recommendation system.

2 PROBLEM FORMULATION

Definition 1. Prerequisite Context. The context of each user 𝑢 can be seen as a personal concept repository consisting of a
set of mastered prior concepts and a set of target concepts to be acquired, represented as sets {C𝑝𝑢 , C𝑡𝑢 } ⊆ C, respectively.
Items then contain these concepts: each item 𝑣 ’s context are denoted as C𝑖𝑣 . Importantly, items manifest concepts in a
latent, implicit manner, such that the item concept inventory must be inferred.

Definition 2. Prerequisite Graph. We represent prerequisite context as a graph G, having concepts C as nodes, and
prerequisite relations R among them as edges, where 𝑟 ∈ R represents the confidence towards prerequisite relation
linking knowledge 𝑐𝑝 to knowledge 𝑐𝑞 . G can thus be represented as a series of edge tuples; for example, (logic, 0.99,
python) means that logic is prior knowledge required for python with a confidence score of 0.99.

The task of Prerequisite-Driven Recommendation (PDR) aims to learn the latent factors not only from user–item
interactions Y (where 𝑦𝑢𝑣 = 1 means 𝑢 has interacted with 𝑣), but also from prerequisite context. We can view
PDR as combining the knowledge linkage prediction task 𝑔 and context-aware recommendation prediction task 𝑓 .
Specifically, it can be formalized as: 1) inferring latent prerequisites 𝑟𝑐𝑖𝑐 𝑗 = 𝑔(𝑐𝑖 , 𝑐 𝑗 |Φ,G), where 𝑟𝑐𝑖𝑐 𝑗 represents the
predicted prerequisite confidence from concept 𝑐𝑖 to 𝑐 𝑗 ; and 2) prerequisite-driven recommendation 𝑦𝑢𝑣 = 𝑓 (𝑢, 𝑣, {𝑐 |𝑐 ∈
(C𝑝𝑢 ∪ C𝑡𝑢 ∪ C𝑖𝑣)}|Θ,Φ,Y,G). Here, Φ and Θ are the parameters for encoding knowledge concepts and users/items.

3 PDRS: PREREQUISITE-DRIVEN RS

Our instantiated framework (PDRS) is depicted in Figure 2. It consists of three components (§3.1, 3.2 and 3.3):

3.1 Prerequisite Knowledge Inference

To leverage prerequisite context, we first need to build a prerequisite graph with concept-level prerequisite links. We
decompose this process into two subtasks: extracting concepts from item descriptions, and inferring prerequisite relation
between concepts from the ordered item documents and general knowledge (topological relations in Wikipedia).

Concept Extraction. To extract key concepts from item documents (item description title, and item description
content) as prerequisite context, we extend prior work [26] on graph propagation as a three-step subprocess. First, seed
concepts are extracted from item 𝑣 ’s document titles using TextRank [23] (with an empirically tuned threshold of 50%).
Next, candidate concepts are gathered from 𝑣 ’s document content, identifying all phrases that match the part-of-speech
tag pattern for a noun phrase: ((𝐴|𝑁 ) + |(𝐴|𝑁 )∗ (𝑁𝑃)?(𝐴|𝑁 )∗)𝑁 [13] (here, 𝐴, 𝑁 , and 𝑃 indicate adjectives, nouns, and
prepositions). Lastly, we construct a fully-connected graph to include both seed concepts and candidate concepts, and
expand the seed concept set to cover its relevant concepts. We implement this by iterative propagation, where concepts’
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confidence scores (where seed concepts are initially weighted with unit confidence) are propagated to their neighbors1

regarding their semantic relatedness, as measured by cosine similarity 𝜔 (𝑐𝑖 , 𝑐 𝑗 ) = 𝑐𝑜𝑠𝑖𝑛𝑒 (ℎ𝐵𝐸𝑅𝑇 (𝑐𝑖 ), ℎ𝐵𝐸𝑅𝑇 (𝑐 𝑗 )) of the
textual meaning ℎ from BERT [7].

Inferring Prerequisites. Knowledge concepts are then associated by prerequisite relations. As shown in Fig 2(a), we
obtain the final linking scores by considering three features: i) asymmetric sequential interaction distance, ii) reference
distance from general domain, and iii) semantic relatedness (as defined above). We explain the former two features:

(i) Asymmetric Sequential Interaction Distance.We observe that concepts covered in subsequently-consumed items
are often dependent on those in previous ones; i.e., they are prerequisites. For example, courses that relate to Bayes’
Theorem are more likely to appear in a user’s interaction history before those related to Hidden Markov Model. We
introduce Asymmetric Sequential Interaction Distance (AsyD) to model this, which captures the distributional pattern
of knowledge concept pairs. Let’s say 𝑃 (𝑐𝑖 , 𝑐 𝑗 ) =

∑
𝑢

∑
(𝑣𝑝 ,𝑣𝑙 ) ∈P𝑢

𝑡 𝑓 (𝑐𝑖 , 𝑣𝑝 )𝑡 𝑓 (𝑐 𝑗 , 𝑣𝑙 ) indicates the probability of 𝑐𝑖
preceding 𝑐 𝑗 in interaction histories, where P𝑢 = {(𝑣𝑎, 𝑣𝑏 ) |𝑣𝑎, 𝑣𝑏 ∈ H𝑢 ; 𝑡𝑠𝑢 (𝑣𝑎) < 𝑡𝑠𝑢 (𝑣𝑏 )} indicates item pairs ordered
by timestamp 𝑡𝑠 in user historical interaction sequence H𝑢 and 𝑡 𝑓 (𝑐, 𝑣) denotes the term frequency of 𝑐 in item 𝑣 ’s
documents (e.g., title and description). Specifically, if 𝑐𝑖 is a prerequisite of 𝑐 𝑗 , the probability 𝑃 (𝑐𝑖 , 𝑐 𝑗 ) should be greater
than the converse association 𝑃 (𝑐 𝑗 , 𝑐𝑖 ). Thus, our defined Asymmetric Sequential Interaction Distance is a normalized
probability: 𝐴𝑠𝑦𝐷

(
𝑐𝑖 , 𝑐 𝑗

)
= 𝜎{𝑃 (𝑐𝑖 , 𝑐 𝑗 )/𝑃 (𝑐 𝑗 , 𝑐𝑖 ) − 1}. When 𝑐𝑖 and 𝑐 𝑗 have arbitrary consumption order — i.e., when

they are independent of each other’s distribution — then 𝐴𝑠𝑦𝐷 = 0.5.
(ii) Wikipedia Reference Distance. Textual evidence of prerequisites in domain documents can be sparse, resulting in

noisy learned prerequisites. Contextual knowledge from general information sources, such as Wikipedia, can aid the
identification of prerequisite relations by providing supplemental evidence. We observe that related general information
that refer to domain concepts can also provide statistical evidence of prerequisites. To capture this, we propose a
domain-adaptive Reference Distance (𝑅𝑒 𝑓 𝐷) which builds on Liang’s work [20] on Wikipedia. For example, the in-
domain concept 𝑐 – "probability classifier" may not occur in Wikipedia, we measure its reference imbalance through its
related concepts 𝑡 – "bayes classifier" in Wiki corpus. Specifically, when a related concept 𝑡 is present in Wikipedia
that refers to concept 𝑐 , we capture its reference ratio, similar to 𝐴𝑠𝑦𝐷 , by calculating its normalized distance score.
𝑅𝑒 𝑓 𝐷 (𝑐𝑖 , 𝑐 𝑗 ) measures the imbalance between each pair of in-domain concepts 𝑐𝑖 and 𝑐 𝑗 via its associated reference
imbalance 𝜏 to general concepts 𝑡 . This process transforms the concept linking task to one of locating related concepts
in Wikipedia. The reference imbalance 𝜏 = 1 if and only if 𝑡𝑖 refers to 𝑡 𝑗 in any Wikipedia article but where 𝑡 𝑗 never
refers to 𝑡𝑖 . As such, 𝜏 analogously ranges [−1, +1]. Thus, 𝑅𝑒 𝑓 𝐷 can smoothly incorporate information from general
sources (𝜏), as well as in-domain sources (represented by 𝐴𝑠𝑦𝐷); i.e., 𝑅𝑒 𝑓 𝐷 (𝑐𝑖 , 𝑐 𝑗 ) =

∑
𝑖, 𝑗 𝜏 (𝑡𝑖 , 𝑡 𝑗 ) · 𝑆𝑖, 𝑗/

∑
𝑖, 𝑗 𝑆𝑖, 𝑗 , where

𝑆𝑖, 𝑗 = 𝜔 (𝑡𝑖 , 𝑐𝑖 )𝜔 (𝑡 𝑗 , 𝑐 𝑗 ) is used to represent how closely 𝑐𝑖 and 𝑐 𝑗 are linked to their related Wiki concepts, and the
denominator allows 𝑅𝑒 𝑓 𝐷 to also be interpreted as a normalized probability.

Prerequisite Learning.To obtain the final prerequisite knowledge linkage scores 𝑃𝐾𝐿(𝑐𝑖 , 𝑐 𝑗 ), we train logistic regression
over seed annotated samples (𝑛 = 300 per dataset), as shown on the right part of Fig. 2a. The regression is learned by
adjusting the contribution weights for the three features 𝜔,𝐴𝑠𝑦𝐷𝑎𝑛𝑑𝑅𝑒 𝑓 𝐷 on manually-labeled concept pairs. We then
run the regression to yield output for all knowledge concept pairs. This process reduces noise from the parameters,
providing more accurate PKL scores for downstream recommendation (Fig. 2b). Our constructed prerequisite data are
available at https://github.com/HoldenHu/PDRS/.

1For computational efficiency, we only propagate when edge scores are above a tunable parameter 𝜆.
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3.2 User/item and Prerequisite Context Encoding

The Encoding modules take the sparse input representations of users, items and concepts identified by PKL and encode
them into dense representations (Fig. 2b [left]), employing a multi-layer perceptron (MLP) for both Knowledge Encoding

Module (KEM) and Behavior Encoding Module (BEM).
KEM learns the knowledge concept embedding by training pairs of (𝑐𝑖 , 𝑐 𝑗 ) to approximate their previously-assigned

prerequisite PKL scores. Our target in this step is to obtain every concept 𝑐’s embedding c ∈ R1×d by tuning the learnable
parameters Φ to achieve the minimized L𝐾𝐸𝑀 (𝑟𝑖, 𝑗 , 𝑟𝑖, 𝑗 ), where 𝑟𝑖, 𝑗 is expected prerequisite weight 𝑃𝐾𝐿(𝑘𝑖 , 𝑘 𝑗 ), and 𝑟𝑖, 𝑗
is the estimated output from a MLP. BEM works similarly, learning user/item embeddings by minimizing the difference
L𝐵𝐸𝑀 between predicted 𝑦𝑖, 𝑗 = 𝑀𝐿𝑃 (𝑢𝑖 , 𝑣 𝑗 ,Θ) and the truth 𝑦𝑖, 𝑗 . We select a mean-squared loss for L𝐾𝐸𝑀 to best
model the real-valued prerequisite scores, and a binary cross entropy loss for L𝐵𝐸𝑀 .

3.3 Recommendation Module

As shown in Fig. 2b [right], PDRS combines the embedded representation of user context (user prior knowledge
concepts𝐶𝑝𝑢 and target knowledge concepts𝐶𝑡𝑢 ) and item context (item concepts𝐶𝑖𝑣 ) to output the final recommendation
prediction 𝑦𝑖 𝑗 . We apply the average pooling for the concept embedding, while a user/item corresponds to multiple
knowledge concepts. Formally, 𝑦𝑢𝑣 = 𝑀𝐿𝑃{u, v, 𝑎𝑣𝑔(C𝑝𝑢 ), 𝑎𝑣𝑔(C𝑡𝑢 ), 𝑎𝑣𝑔(C𝑖𝑣)}, where BEM and KEM provide the pre-
trained embeddings u, v, and c for the user, item and prerequisite contexts, respectively. We further tune the embedding
parameters through joint training that alternately applies the objective of L𝐾𝐸𝑀 and the final recommendation L𝑅𝑒𝑐 .
L𝑅𝑒𝑐 is also a binary cross entropy loss between model prediction 𝑦 and the ground truth interaction 𝑦.

We empirically observe that the joint training of losses L𝐾𝐸𝑀 and L𝑅𝑒𝑐 enables the model to focus on prereq-
uisite information. It also reduces the time complexity to a linear 𝑂 ( |𝑌 | + |𝑅 |) from the total quadratic complexity
𝑂 ( |𝑌 |× |𝑅 |×(𝑑𝑌+𝑑𝑅)

𝑑𝑌×𝑑𝑅 ) of alternatively executing the two objectives (where 𝑑𝑌 and 𝑑𝑅 represent the batch sizes of interac-
tion and prerequisite pairs, respectively).

4 EXPERIMENTS

To the best of our knowledge, no existing datasets are specifically designed for prerequisite context modeling. Hence, we
modify the existing datasets SSG-Data, MovieLens, and Amazon Books2 which all contain textual descriptions of items.
SSG-Data (Course) is an exhaustive anonymized listing of life-long course-taking history of citizen participants in 9
month period in SkillsFuture Singapore (SSG), which is not publicly available yet. Course content and objectives are used
as an item’s documents. We also use the public MovieLens 100K and Amazon Books asMovie and Book datasets, where
the crawled textual description from IMDB and TMDB3 serve as movies’ documents, and the crawled textual overview
from Goodreads and Google Books4 serve as books’ documents. To align the task with (binary) recommendation, where
only implicit feedback is available, we deem interactions with 𝑟𝑎𝑡𝑖𝑛𝑔𝑠 ≥ 3 as positive feedback in the movie and book
scenarios. We provide detailed dataset statistics in Appendix A.

To obtain the user’s state of knowledge C𝑝𝑢 , C𝑡𝑢 , we assume that users have mastered the knowledge contained in
items that they have previously interacted with, and take concepts from the documents of first 30% and the last 20% of
items they interacted with as their prior and target knowledge, respectively. To maintain strict training and testing
separation, we only use the remaining 50% of knowledge concepts for training and testing our PDRS. We also follow the

2(S) https://www.skillsfuture.gov.sg/, (M) https://grouplens.org/datasets/movielens/, and (A) https://jmcauley.ucsd.edu/data/amazon/
3https://www.imdb.com, and https://themoviedb.org
4https://www.goodreads.com/ and https://books.google.com/
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Model Course Movie Book
H@2 H@10 N@2 N@10 H@2 H@10 N@2 N@10 H@2 H@10 N@2 N@10

ItemPop 0.4541 0.7813 0.3973 0.5300 0.2504 0.5905 0.2152 0.3496 0.2305 0.4740 0.2003 0.2865
ItemKNN 0.7122 0.8076 0.6551 0.6785 0.2631 0.4613 0.2299 0.3092 0.0890 0.1178 0.0818 0.0944

Without SVD 0.5934 0.8256 0.5863 0.6672 0.2720 0.6552 0.2288 0.3789 0.2025 0.4002 0.1791 0.2527
Prereq. BPR 0.6650 0.8396 0.6317 0.6794 0.2882 0.6673 0.2469 0.3958 0.2048 0.4043 0.1820 0.2712
Knowl. NeuMF 0.6859 0.8455 0.6257 0.6811 0.2899 0.6641 0.2467 0.3936 0.2178 0.4404 0.1876 0.2748

GCMC 0.4081 0.7661 0.3471 0.4928 0.2518 0.5904 0.2165 0.3511 0.2234 0.4734 0.2234 0.2929
DeepFM 0.5329 0.8154 0.4630 0.5799 0.2695 0.6457 0.2341 0.3821 0.2236 0.4431 0.1915 0.2751

With GCMC+KEM 0.4512 0.7996 0.3821 0.5241 0.2618 0.6066 0.2266 0.350 0.2319 0.4885 0.2251 0.2992
Prereq. DeepFM+KEM 0.6786 0.8723 0.6101 0.6895 0.3034 0.6737 0.2125 0.4100 0.2365 0.4910 0.2026 0.3003
Knowl. PDRS 0.6894 0.8789 0.6390 0.7142 0.3290 0.6993 0.2825 0.4281 0.2427 0.5150 0.2110 0.3172
Table 1. Hit Ratio (H) and NDCG (N) @𝐾 on the Course, Movie, and Book datasets. Bold figures highlight best performers.

C𝑝 C𝑡 C𝑖 𝐶𝑜𝑢𝑟𝑠𝑒 𝑀𝑜𝑣𝑖𝑒 𝐵𝑜𝑜𝑘

H@10 N@10 H@10 N@10 H@10 N@10

0.8192 0.6117 0.6444 0.3796 0.4460 0.2749
✓ 0.8626 0.6944 0.6598 0.4003 0.4579 0.2810

✓ 0.8556 0.6929 0.6714 0.4026 0.4669 0.2859
✓ 0.8422 0.6539 0.6731 0.3991 0.4684 0.2826

✓ ✓ 0.8682 0.7099 0.6705 0.4043 0.4644 0.2809
✓ ✓ 0.8633 0.6968 0.6940 0.4208 0.4898 0.3053

✓ ✓ 0.8639 0.6978 0.6851 0.4134 0.4966 0.3062
✓ ✓ ✓ 0.8789 0.7142 0.6993 0.4281 0.5150 0.3172

Table 2. Ablation study on PDRS. C𝑝 , C𝑡 and C𝑖 represent user prior
concepts, user target concepts, and concepts contained by item. Bold figures
indicated leading performers; italicized figures, second-best.

User Cold Start Item Cold Start
H@10 N@10 H@10 N@10

ItemPop 0.7013 0.5010 - -
SVD 0.347 0.2259 0.0661 0.0234

NeuMF 0.7097 0.4314 0.0036 0.0012
BPR 0.3787 0.2690 0.0915 0.0414

PDRS 0.8337 0.6005 0.1989 0.1110
PDRS (w/o C𝑢/𝑣 ) 0.6381 0.3977 0.0729 0.0271

Table 3. Cold start evaluation on Course recommenda-
tion. PDRS uses knowledge from both user side and item
side. PDRS w/o C𝑢/𝑣 denotes the ablation of user/item
context in user/item cold start, respectively.

common practice [18] and only retain user records with more than three interactions, to ensure each user has at least
one item for evaluating recommendation performance and one item each for modeling prior and target knowledge.

We assess our PDRS method against traditional recommendation models (ItemPop, ItemKNN [28], and NeuMF [11])
and lightweight yet effective feature-incorporated models (GCMC [2] with optimized dropout rate 0.5, and DeepFM
[10] with optimized dropout rate 0.2). We also compare against two-widely accepted models of GCMC and DeepFM
to validate whether our prerequisite context representation is effective by replacing their user and item IDs feature
inputs and modifying them to accept our KEM-derived 64-dimension feature embedding (denoted as GCMC+KEM
and DeepFM+KEM). Specifically, the feature embedding dimensions, and node dropout rates are tuned for optimal
performance, set as {8, 8, 16}, and 0.5, respectively. The optimal knowledge concept embedding dimension is set
empirically at 64. We also employ two weak baselines: BPR [27] and SVD [14] for a comprehensive comparison.

We split our interaction data into (80%, 10%, 10%) to serve as training, validation and testing, respectively. For
studying warm-start, we leave one item out per user. For the user (item) cold-start (also called new item) scenarios, users
(items) in validation/testing set do not appear in the training set. For each test case, we follow the common practice
[11], ranking 100 items — 99 negative samples and 1 positive sample. We use Hit Ratio@k (HR@k) and Normalized
Discounted Cumulative Gain@k (NDCG@k) [30] as top-𝑘 ranking-based accuracy measures.

4.1 Main Results

Table 1 shows recommendation performance. In general, PDRS outperforms the baselines across all three datasets,
in terms of both HR and NDCG, demonstrating the effectiveness of prerequisite context. One exception is that PDRS
performs worse than ItemKNN on course recommendation when 𝑘 = 2. We believe this is due to the differing levels of
sparsity on the item side: there are 89𝐾

4.3𝐾 = 20.7 records per item for courses, but only 409𝐾
70𝐾 = 5.8 records per item for

books. This makes it easier to find similar items in the former, but more difficult in the latter. This gain evaporates when
𝑘 increases to 10, as ItemKNN only recommends accurately for users who choose courses similar to previous ones;
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however we see that users do manifest individualized learning pathways in courses, which ItemKNN does not generalize
to. GCMC and DeepFM perform well, outperforming other baselines, but they improve dramatically with addition of
encoded prerequisite information from KEM, validating that prerequisites play an important role in recommendation
tasks. The variants utilizing KEM pretraining (GCMC+KEM, DeepFM+KEM, PDRS) all improve over their corresponding
base models. Among these three models, PDRS performs best.

To verify which form of side information in PDRS is most responsible for performance gains (i.e., user prior knowledge,
user target knowledge, and item concept in Table 2), we conduct an ablation study (Table 2). When no side information
is used, the model functions just as matrix factorisation. For all three recommendation scenarios, the results are best
when all forms of side information are used, and worst when none are leveraged. The result of introducing a single
form of side information shows that user context plays the most important role in course recommendation (+5.3% with
C𝑝 , +4.4% with C𝑡 , and +2.8% with C𝑖 ), whereas item context is more helpful for movie and book recommendation
(+{2.4, 4.1, 4.4}% for movies and +{2.7, 4.7, 5.0}% for books on {C𝑝 ,C𝑡 ,C𝑖 }, respectively. Interestingly, the three datasets
exhibit different optimal combinations of two forms of side information. For courses, combining user prior and target
knowledge is best, likely because learners do choose necessary bridging courses based on their target course. In contrast,
in movie recommendation, the optimal combination is C𝑝 and C𝑖 . Watchers may choose based more on their experience
with relatable plots and characters. For book recommendation, C𝑡 and C𝑖 is the best combination. We surmise that
readers choose from their preferred book category (correlated in our PDRS by target knowledge).

4.2 Discussion: Is prerequisite context beneficial for Cold-start Problem?

User cold-start (also termed as new-user) and item cold-start problems [15, 29] are major recommendation system
concerns. Table 3 compares PDRS in the course recommendation against baselines in user and item cold-start scenarios.

From the table, item cold start is more serious than user cold start, as evidenced by the drastic drop in performance
in the former case. Missing item interactions — in addition to high user sparsity — makes item and user representations
inaccurate. Note that as ItemKNN locates items similar to users’ previous interactions and ItemPop uses item popularity,
both baseline models do not apply to this item cold start scenario. The performance of latent factor based approaches
(SVD, BPR) severely drops in such cold start scenarios. NeuMF, being able to learn nonlinear relationships, is aware
of more complex information from interaction data, yielding comparable HR@10. PDRS significantly outperforms
baselines in both cold start scenarios, validating the value added by prerequisite knowledge modeling in recommendation
accuracy. By comparing the use of user side information in user cold start problem, we observe the advantage of user
information. The same applies to items with item information linking items to users through knowledge linkage.

4.3 Discussion: Is our induced prerequisite knowledge accurate?

PDRS relies on accurate and comprehensive prerequisite inference from documents. To verify the reliability of our
automatically compiled prerequisites, we also conduct a quality evaluation of our induced prerequisite graphs.

Recall that during relation inferring in prerequisite graphs (§ 3.1), we train a logistic regression model to predict
the strength of prerequisite edges between concepts. We validate our PKL score fitted from the use of features, and
evaluate using precision, recall and F1. We take 80% as training samples and the remaining 20% as test. We compare
against two baselines in this knowledge learning prediction task: 1) Hyponym Pattern Method (HPM) [36]: detects
whether prerequisites among noun phrases pairs in sentences fulfill 10 lexico-syntactic patterns (e.g., “Python (NP1),
one of the Programming Language (NP2)”). 2) Reference Distance (RD) [20]: where we modify RD’s feature extraction
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Approach Precision Recall F1

HPM 66.68 16.09 25.92
RD 59.37 47.44 52.79

AsyD (Ours) 77.08 60.66 67.89
PKL (Ours) 76.00 62.29 68.47

Table 4. Prerequisite extraction perfor-
mance (%) on our Course dataset. AsyD
is an ablated form of our prerequisite
inferring component by testing only
the Asymmetric Distance (AsyD) mod-
ule. Bold figures highlight the best per-
former.

Domain Knowledge PKL Knowledge PKL Knowledge PKL

Course
Python 0.38 Code 0.50 Feature Learning 0.73

Machine Principle 0.34 Program 0.50 Deep Learning 0.78
Computer Basic 0.34 Database 0.50 Algorithm Analysis 0.73

Movie
Voldemort 0.38 Policeman 0.56 Handsome Boy 0.75

Triwizard Tournament 0.34 Battle 0.50 Europe 0.78
Evil Dragon 0.31 Merchant 0.50 Fate of Human 0.93

Book
Scientist 0.39 Atom Bomb 0.50 Space Travel 0.91

21𝑡ℎ Centuries 0.35 Flash 0.50 Ethologist 0.80
World War 0.35 Earthquake 0.50 Star Trek 0.87

Table 5. Example Prerequisite Knowledge Linkage (PKL) scores for items 𝑃𝐾𝐿(‘Machine
Learning’, knowledge) from Course, 𝑃𝐾𝐿(‘Harry Potter’, knowledge) from Movie, and
𝑃𝐾𝐿(‘Alien’, knowledge) from Book.

methodology to be able to apply it to our task (cf 3.1) by empirically tuning a symmetric threshold 𝜃 = 0.15, which is
used for an 𝑅𝐷 (𝑘𝑖 , 𝑘 𝑗 ) of [−1,−𝜃 ), [−𝜃, 𝜃 ], (𝜃, 1] denoting a posterior, neutral, or prior prerequisite relationship.

Table 4 shows the macroscopic comparative results against the Course ground truth. Both AsyD and the final PKL
outperform the other two baselines by large margins (+15 F1). The performance improvement is mostly attributed to
domain-specific features (AsyD is much better than RD), whereas general domain features brought in by the final PKL
bring a minor boost. We zoom in on a typical microscopic case study of the machine learning knowledge concept from
the Course dataset. Table 5 lists knowledge concepts that frequently co-occur with machine learning. Large, positive
PKL scores indicate that machine learning is a prerequisite of the knowledge concept. We see that concepts on the right,
high-PKL column have higher probability of being recommended to users who master machine learning, compared to
concepts on the left, low-PKL side. As an example, people taking up a course on machine learning usually have learned
python. Prerequisite linking in our other two datasets is less intuitive, but meaningful nonetheless.

5 RELATEDWORK

Context-aware recommender systems handle static metadata as auxiliary information, such as user profiles [17, 38]
and item attributes [4]. Textual content is a typical form with rich contextual information to facilitate RS accuracy.
Some works treat item content as raw features by hidden vectors [31, 40], while others select important text pieces,
such as item tags [8, 19], and semantic clues [35]. However, few works focus on establishing context causality between
user and item, where our approach uses prerequisite context.

Proper Prerequisite Relation Identification is thus crucial for both intrinsic prerequisite representation task and
our ultimate extrinsic task of recommendation. Many works rely on statistical methods to determine prerequisites.
An early study by Vuong et al. [34] examined the effect of learning curriculum units in various orders. Chen et al. [6]
treated prerequisite relations as a Bayesian network, which requires a mapping of courses to fine-grained skill and
relevant student performance data. Chen et al. [5] apply probabilistic association rule mining to infer student knowledge
from performance data. To make the prerequisite relation identification more feasible, others — including ourselves
— tap into generic information sources. Pan et al. [25] utilize a Wikipedia corpus to learn semantic representation
of concepts for detecting prerequisites in MOOC. Talukdar and Cohen [33] study how prerequisites can be inferred
betweenWikipedia entities. Wang et al. [36] use Wikipedia articles and categories for Concept Graph Learning that uses
observed prerequisite relation to learn unobserved ones. Although this task has mostly been applied to education [39],
our findings emphasize that prerequisites indeed generalize and do not need to be restricted to a particular context.
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6 CONCLUSION AND FUTUREWORK

To the best of our knowledge, we are the first to explore the use of prerequisites — an overlooked but crucial form of
context — for recommendation. We introduce Prerequisite Knowledge Linking (PKL) method to induce a prerequisite
graph automatically, through semi-supervised learning over both general and domain-specific features. We instantiate
our formalism in the form of a Prerequisite Driven Recommendation System (PDRS; §3) embodied as a modern neural
architecture, which adopts joint training to optimise the model for the twin objectives of knowledge linking prediction
and recommendation. We demonstrate that prerequisite context is a functional booster to solve cold-start problem, and
can benefit recommenders universally through our experiments on our Course, Movie, and Book datasets (§4).

While our PDRS is a simple instantiation of a prerequisite driven recommendation, its elegance leads to synergistic
performance gains. Designing more sophisticated models to leverage captured prerequisite knowledge is open future
work. As our prerequisite graph is a structured format of knowledge, future work may seek more complex encoding
methods, such as typical translation-based methods (e.g., TransE [3], TransH [37]). Moreover, our work opens the door
for studying user’s state of knowledge in dynamic scenarios, such as conversational recommendation and long-term
sequential recommendation.
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Appendix A DATASET STATISTICS

Dataset # Users # Items # U–I # Concepts # C–C Pairs
Course 34,235 4,322 89,565 5,131 227,515
Movie 608 7,354 49,738 12,503 8,402,493
Book 92,971 70,695 409,616 58,492 15,889,953

Table 6. Statistics of the datasets used in our experiments. U–I: user–item interactions; C–C pairs: concept-concept pairs.

Detailed dataset statistics are shown in Table 6. Our Course dataset is sparser per user, validating observations that
educational activities are hard to recommend without any side information. We follow the commonly-used annotation
method [9, 21, 25] in inferring prerequisite relations: manually labeling a small number of concept pairs to train a
logistic regression to label the rest. We annotated 300 pairs (𝑐𝑖 , 𝑐 𝑗 ) for each task with +1 if 𝑐𝑖 is 𝑐 𝑗 ’s prerequisite, −1 if
𝑐 𝑗 is 𝑐𝑖 ’s prerequisite, or 0 if no obvious dependency relation exists. Of the 300 labeled samples 80% = 240 are used for
model training, and the remaining 20% = 60 are held out for testing. The main purpose of this process is to de-noise the
PKL scores by considering three indicators, discussed in § 4.3.

Appendix B DETAILED MICROSCOPIC CASE STUDY OF GENERATED PREREQUISITE GRAPHS

As shown in Table 5, prerequisite linking in our other two datasets feels less intuitive, but is meaningful nonetheless.
Taking selected concepts from our Movie dataset for the film ’Harry Potter’ as an example, we see that the film is
learned as a prerequisite for the knowledge concept ’Fate of Human’. This means that the source IMDB and TMDB
documents mentioning ’Harry Potter’ mention ’Fate of Human’ but not vice versa, leading to a large PKL score, hence a
prerequisite. Casual inspection of the general Web confirms that Harry Potter is a foil for subsequent discussions about
fate and free will, which makes sense. While the prerequisite does not constitute a strictly sequential viewing order
among ’Harry Potter’ and other movies featuring fate and free will as a central theme, these soft constraints do model
inspiration; in Books, people who have read ’Alien’-themed books may go on to choose similarly themed ’Space Travel’

books, including ’Star Trek’ novels.
We also find that prerequisite graphs have different structural properties. Course prerequisite graphs contain the

richest dependency relations (i.e., longer average path and larger average node degree), while graphs for the Movie
and Book datasets are sparser and shallower. Our casual observation of the graphs also reveal that longer prerequisite
paths correlate with more specific terms (e.g., ’Voldemort’), while the shorter paths refer to more general knowledge
(’Love’). Both studies show consistency, in that movies and books have fewer dependencies on required prerequisites,
as compared to the formal knowledge acquired in courses, but that such soft constraints still aid recommendation
accuracy.

Appendix C THE ROLE OF PREREQUISITES IN RECOMMENDATION

C.1 What embedding size is most suited for prerequisite representation?

Here, we use Root Mean Squared Error (RMSE) and R Squared (R2) to measure the fidelity of the KEM prediction; that
is, after encoding. In the figure, KEM (Knowledge Encoding Module) refers to the results from knowledge encoding
module alone (ablating recommendation), RM (Recommendation Module) refers to the training of recommendation
target without constraints from KEM, and PDRS applies both sets of constraints.

Both plots in Figure 3 show a consistent trend: adding more latent dimensions improves knowledge representation
and prerequisite capture. Furthermore, the joint training in PDRS of both L𝑃𝐾𝐿 and L𝑅𝑒𝑐 shows a slight but consistent
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benefit. Both exhibit large improvements compared against optimizing RM alone. Seen this way, good prerequisite
capture through PKL is its own reward, but has the free side effect of benefitting downstream recommendation as well.
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Fig. 3. Effect of varying the dimensionality of the knowledge concept encoding (x-axes) on downstream recommendation performance
(y-axes, as measured in (l) RMSE (lower better) and (r) R2 (higher better).

C.2 Do prerequisites complement user–item interaction?

Unlike collaborative filtering, prerequisites play a decisive and logical factor in driving users’ sequential interactions
with items. While collaborative filtering may find quality recommendations, such recommendations may not account
for the immediate needs of the user.

Take the first row of Table 7 as in example of the role of such knowledge. Here, the left portion of the table gives the
input user’s state of knowledge and the right portion shows the output recommendation from both the interaction-only
BEM and our full PDRS. We see this user has handled basic office skills, and thus she may be interested in other related
skills such as team work, or soft social skills, which may be recommended by collaborative filtering as is done in BEM.
But perhaps their priority is in building on existing credentials: here, ’Microsoft Word’ can be seen as a more efficient
means of ’text’ entry.

User Context Model First Recommended Item’s Knowledge Concepts
PriorK: ’sort’, ’text’, ’ribbon’, ’page orientation’, ’manipulation’ PDRS ’read’, ’document’, ’page’, ’undo’, ’microsoft word’
TargetK: ’file’, ’combo box’, ’footnote’, ’layout’, ’form’, ’controller’ BEM ’team’, ’development’, ’plan’, ’social response’, ’application’
PriorK: ’muscle’, ’tissues’, ’bone’, ’mobile’, ’neck’ PDRS ’autonomic nervous system’, ’profile’, ’nervous system’, ’area’
TargetK: ’privacies’, ’skill’, ’certifier’, ’participant’ BEM ’compliance’, ’requirement’, ’response’, ’investigation’
PriorK: ’protein’, ’sugar’, ’food product’, ’selection’ PDRS ’bread’, ’baking’
TargetK: ’tour’, ’participation’, ’competition’, ’visitor’ BEM ’preventive act’, ’report’, ’unit’
PriorK: ’conversation’, ’spot’, ’paper’,’detection’ PDRS ’data analysis’, ’skill’, ’sql’, ’in demand’, ’database’
TargetK: ’database’, ’product’, ’real world’, ’code’, ’data feature’, ’universe’ BEM ’facial’, ’neck’, ’eye’, ’client’, ’facial car’

Table 7. Course examples where PDRS behaves differently. Underlined concepts are strongly induced by PKL.

Can prerequisite knowledge be derived from user–item interaction directly? In short, yes, but much less effectively as we
have done in PDRS. To illustrate the fine-grained level of useful prerequisite knowledge captured (item or concept), we
also benchmark PDRS with coarser, obvious prerequisites. We build another item dependency graph directly from the
interaction sequence order in our Course scenario. We set an aggressive threshold, keeping only the top ∼250 item pairs
satisfying a minimal number of occurrences and prerequisite strength. We run these identified, salient prerequisites
through BEM but find that performance suffers significantly, leading to a 3.6% drop in performance. This finding direct
attributes the power of the fine-grained prerequisite capture, and the effectiveness of PDRS in incorporating general
features enhance the signal coming from sequential interaction histories.
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Appendix D DISCUSSION: IS PDRS SENSITIVE TO HYPERPARAMETER SETTING?

We examine how PDRS handles both prerequisite context and user/item encodings as the model complexity (in terms of
hidden layers) is varied. As shown in Table 8, models with or without pretraining both perform best with 𝐿 = 4. Fewer
layers are insufficient to learn the complex relationship between embeddings (especially for PDRS to learn the relation
between knowledge embedding from both user and item), whereas larger numbers suggest overfitting.

PDRS with pretraining achieves better performance with more hidden layers, but is worse than the case without
pretraining, when number of layers is small (i.e., 𝐿 = 1, 2, 3). It can be seen that using pretraining may yield more
accurate user/item and knowledge embeddings as initial values for PDRS. Again, too few layers may be insufficiently
rich to model embeddings for recommendation.

With Pre-training Without Pre-training
# Layers HR@10 NDCG@10 HR@10 NDCG@10

1 0.7965 0.5884 0.8042 0.5961
2 0.8543 0.6717 0.8542 0.6723
3 0.8592 0.6937 0.8613 0.6986
4 0.8703 0.7051 0.8682 0.7028
5 0.8641 0.6993 0.8633 0.6984
6 0.8640 0.6989 0.8638 0.6932

Table 8. Performance of PDRS with varying numbers of layers, with and without pretraining. Bold figures indicate the better strategy
w.r.t. each number of layers.

We also examine the impact of the combination of the dimension 𝑑 used for BEM and the dimension 𝑑 ′ used for KEM
on Course recommendation. As can be seen from the heat map in Figure 4, NDCG@10 improves as 𝑑 and 𝑑 ′ increases.
This supports using more factors to store the latent signals and thus improving the model capacity. The best HR@10 is
achieved when 𝑑 = 128, 𝑑 ′ = 64, and larger models tend to overfit.

(a) HR@10 (b) NDCG@10
Fig. 4. Top-10 recommendation Hit Ratio and NDCG scores w.r.t. various # latent factor 𝑑 in BEM and 𝑑′ in KEM (# layer = 4).
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