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Abstract

The AI-driven Fourth Industrial Revolution and the COVID-19 pandemic

have one important thing in common: they both have caused significant and

rapid changes to the skill set landscape of various industries. These disruptive

forces mean that the early identification of the newly rising skills in a labour

market — which we call its “emerging skills” — is crucial to its workforce. It

is also crucial to the educators who, in order to provide lifelong training to the

workforce, need to quickly adapt their curricula to the new skills.

We propose a classification methodology that uses the past job ad trends of

skills to predict the emerging skills of a future period, defined as the skills that

have experienced a surge in hiring demand in said period. This general definition

allows for freedom in specifying the criteria for a skill being emerging (through

thresholds on hiring demand and its growth), which could be important to ed-

ucators. Applying our methodology to the Information and Communication

Technologies (ICT) labour market in Singapore, we show that we are able to

predict future emerging skills with good precision and recall and beat two base-

line classifiers for multiple threshold sets. Our methodology also allows us to see

where job ads fail to provide sufficient predictive signals, pointing to auxiliary
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data sources (such as Stack Overflow for ICT) and skill ontologies as potential

remedies. The success of our method shows how AI can be used to empower

learners and educators in the ICT domain (and potentially other domains) with

useful and well-curated insights at a moment’s notice, thus helping speed up the

process of curricular change.
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1. Introduction

Today, there is no shortage of disruptive forces acting on labor markets across

the world. The AI and automation-centric Fourth Industrial Revolution is in full

swing, bringing rapid change to the skills landscape of many domains (Brynjolf-

sson & McAfee, 2011, 2014; Maisiri et al., 2019). The COVID-19 pandemic has5

significantly disrupted most industries (?), making some skills outdated while

raising others to prominence. What these disruptive forces have in common

is how rapidly they change the skill sets required for many jobs and domains.

Such changes require educational institutions and firms alike to make changes

to their training programs, as employees may need retraining and entirely new10

skills may rise to prominence. The speed at which these changes happen com-

plicates these processes, as organisational cycles might struggle to keep up with

the pace (Ellis, 2003; Brynjolfsson & McAfee, 2011). This situation makes the

early identification or prediction of these skill changes necessary (Ellis, 2003;

ILO & OECD, 2018; Wilson, 2013), as such early identification can help train-15

ing providers stay on top of the trends, thus speeding up curricular change.

However, predicting the skills that are going to become important in the future

is a challenging task, be it for the near future or the far future. The near-future

prediction of skill needs becomes more challenging the earlier we wish to identify

rising skills (ILO & OECD, 2018).20

In the past, different types of approaches have been used to tackle similar

problems. Training Needs Analysis (TNA) has used questionnaires, interviews,

and focus groups to identify worker skill gaps, often for one firm/organization or
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a group thereof (Gould et al., 2004). Surveys of university alumni and students

have been used to assess the necessary skills that students do not acquire at25

university (Fowler et al., 2014; Carnegie & Crane, 2019). Analyses of job ads,

enabled by the emergence of massive online job ad datasets, have investigated

the historical trends of skill demand and projected their growth (?). However,

none of the existing approaches tackle the problem of the early identification of

fine-grained “emerging skills”, i.e. skills that are rising to importance from rel-30

ative obscurity. Traditional TNA approaches and other survey-based methods

can be difficult to apply at large scales (due to their data collection methods)

(ILO & OECD, 2018), while existing skill trend analysis methods often inves-

tigate coarse-grained skills rather than fine-grained ones (??Boehm, 2006). In

addition, many approaches focus on describing the present rather than predict-35

ing the future (?Szabó & Neusch, 2015).

Defining “emerging skills” as previously low-demand skills that have

recently experienced a surge in hiring demand, we design a classification

pipeline with the aim of predicting the emerging skills of the near future. In

other words, we aim to predict the surge in hiring demand before it occurs. Our40

hypothesis is that the job ad time series of each skill, indicating demand for the

skill over time, contains signals that help predict whether or not it is going to

emerge in the near future. Applying our methodology to data from the ICT

sector in Singapore, we find that such a predictive task is feasible, confirming

that job ads contain information that can be used to predict emerging skills.45

We also investigate the strengths and weaknesses of our classifier models, and

examine the signals that distinguish the job ad trends of emerging skills from

non-emerging ones, concluding that non-linear growth and spikes are the most

important features of an emerging skill’s job ad time series.

We first discuss the existing literature on TNA and skill trend analysis with50

a focus on analyses of online datasets, and lay out the gaps in the literature that

our work aims to fill. We then state our research questions and describe our

methodology. Afterwards, we present the results of our classification pipeline,

answer the research questions based on those results, and interpret the classifi-
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cation models and their predictions. In the end, we discuss the implications and55

limitations of our work and propose several directions for future work, aimed

at rectifying the limitations of our methodology and improving our ability to

predict the emergence of skills.

2. Related work

2.1. The need for curricular change60

The disruptive effects that automation, AI, and other disruptors such as

the COVID-19 pandemic have had on many industries cannot be overstated.

For example, the COVID-19 pandemic brought about a sudden switch to tele-

working, which in turn caused a surge in the need for basic digital skills, such

as the use of teleconferencing software (?). The disruption brought about by65

AI and automation is even more fundamental, as many tasks that were previ-

ously only feasibly done by humans become doable by increasingly intelligent

machines (?). This covers a wide range of tasks, from driving a vehicle, deliv-

ering goods to customer care, even diagnosing disease (?). Research based on

recent economic trends shows that although these trends have led to increased70

productivity, they have spelled trouble for the median worker: as their skills

(and at times even their jobs) are rendered obsolete through automation, these

workers face worsening wages and employment prospects, leading to increasing

economic inequality (Brynjolfsson & McAfee, 2011). At the same time, there is

an explosion in the demand for skills relevant to the new industry, such as tech-75

nological, programming, and data analysis skills (Goldfarb et al., 2021; Maisiri

et al., 2019). All of these changes are happening in a short time frame, and

research shows that many institutions, including educational institutions, have

fallen behind (Brynjolfsson & McAfee, 2011). Therefore, educational institu-

tions are in dire need of appropriately rapid methods for curricular change in80

order to keep up with these rapid developments and provide workers with the

appropriate training.
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2.2. Methodologies for curricular change

There is a significant body of literature dealing with methodologies for cur-

ricular change or for processes that are closely related to it. One such pro-85

cess is Training Needs Analysis (TNA), which is the process through which

discrepancies are identified between the current workforce skills and the nec-

essary workforce skills (Gould et al., 2004). This process can alternatively be

referred to as the identification of skill needs (Wilson, 2013; ILO & OECD,

2018). These processes can be applied to individuals, departments, companies90

(or small groups thereof), or to a labor market as a whole (Gould et al., 2004).

We are mainly interested in methods that can identify training needs in an en-

tire labor market, as this is the scale that is most relevant to curricular change in

educational institutions. The methodologies come in several varieties, as sum-

marized by the International Labour Organization and the Organization for95

Economic Co-operation and Development in their 2018 report (ILO & OECD,

2018). Many of these methodologies are survey-based. Focus groups, in-

terviews, and surveys of domain experts help gather their opinions on

which skills are currently important or are rising in importance. Employer-

employee surveys are used to elicit the skill needs of the employees, both from100

the employers’ perspective and from their own. Graduate surveys, in which

graduates of an educational institution give their views on the necessary skills

that their education had not given them. Job vacancy studies are another

type of methodology, and look at the jobs that employers have been unable

to fill. Finally, quantitative forecasts, where the near-future or far-future105

demand for each skill is predicted based on past data, are quite important for

the large-scale identification of skill needs. These methods often involve formal

models of the underlying economic processes, such as E3ME (?), but purely-

predictive models also exist. The data used in these methods may involve both

existing, continuously-generated data (e.g. online job ads) and collected data110

(e.g. population or economic censuses).

All the methodologies that involve collecting data (through surveys, inter-

views, or on the largest scale, censuses) have an important downside: the process
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of collecting the data is time-consuming and often difficult. For example, attain-

ing an appropriate response rate can be a challenge for survey-based methods,115

especially when it comes to surveys aimed at experts and executives (Baruch

& Holtom, 2008; Fan & Yan, 2010). Also, economic censuses and other such

administratively curated data (which past labor market research has relied on)

are only periodically collected due to the difficulty of their collection (Horton

& Tambe, 2015). This is why big data from online labor market intermediaries120

such as hiring websites and Massively Open Online Courses (MOOCs) enable

previously impossible research approaches: they are always-on and provide fine-

grained data (Horton & Tambe, 2015; ILO & OECD, 2018).

Previous labor market research on skills using novel big data sources has

often focused on higher-level skill or job trends (Gallivan et al., 2004; Lee &125

Mirchandani, 2010; Matsuda et al., 2019; Gurcan & Cagiltay, 2019), and the

potential of such data for curricular change remains mostly untapped. Most

of the previous works on curricular change either use expert, graduate, or stu-

dent surveys to effect it (Carnegie & Crane, 2019; Fowler et al., 2014; Stevens

et al., 2011), or focus on personalizing education using student learning analytics130

(Williamson, 2017; Cen et al., 2015). The previous work that is of particular in-

terest to us are analyses of more granular skill trends (??Dawson et al., 2019).

Some of these are conducted by the corporations that host or own the data,

while others are academic research. For example, the whitepaper published

by the Boston Consulting Group and Burning Glass Technologies in 2019 (?)135

groups skills into five categories, based on two factors: their overall hiring de-

mand, and the growth of this demand. One of these categories, which they call

“high-growth skills”, is the main inspiration for our work. These are defined as

skills with fewer than 10,000 ads in three years, whose growth over these years

has been over 40%. These are the skills that are growing rapidly, but which140

are less likely to have already been identified as important due to their low

previous popularity (compared to those skills that are growing fast and already

enjoyed significant popularity to begin with). Our concept of “emerging” skills

is essentially a generalization of this concept, without the specific thresholds,
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Figure 1: Number of job ads per calendar month in the 2017–2020 period in our data. Note

the rather drastic growth of the number of ads over time, which may be due to a growth in

the popularity of JobTech itself. Considerable drops in job ad counts can be observed both

in late summer and around the time of the Chinese new year in the later years.

and combining this idea with the skill demand projections common in the liter-145

ature is the basic idea behind our work. Another interesting work is (Dawson

et al., 2019), where the authors use several hand-picked measures — including

the growth in demand for a job title and its predictability — for detecting high-

level skill shortages in Australian job ads. Their work particularly touches upon

the difficulty of predicting hiring demand, although in their case, it is for job150

titles rather than skills.

3. Objectives and methodology

3.1. Data and definitions

Our data consists of all the job ads in the Singaporean Information and

Communication Technology (ICT) sector between the beginning of 2017 to the155
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beginning of Q2 20201, although we only examine the data between the be-

ginning of 2017 and the beginning of 2020, in order to exclude the disruptions

caused by the COVID-19 pandemic in 2020 (since the effects of the pandemic

are not a focal point of our study). Every job ad in our dataset contains the

company posting the ad, the date the ad was posted, the textual description of160

the ad and skills extracted from it. For the period we have chosen (2017–2020),

the dataset contains a total of 31,350 job ads, spread across 2,264 companies

and involving 987 skills that can in some way be called ICT skills. These skills

include both programming-related skills and skills related to using specific com-

puter software (such as Microsoft Office products, Adobe products, etc.). Figure165

1 below shows the total number of job ads in the dataset on a monthly basis.

Our analysis relies on the job ad time series of each skill in order to predict

the skills that will have a surge in hiring demand in the near future. However,

looking at the number of ads that include the skill in a particular period of time

(e.g. a month) is only one way to analyse the trends of that skill in job ads.170

In order to formalize our point, we will define two concepts: The hiring

volume of a skill is the number of job positions that have been announced for

it in a particular time period. The hiring spread of a skill is the number of

companies that have announced job positions for a skill in a particular period

of time. Based on these two concepts, we will introduce three types of job175

ad time series for skills. These will serve two purposes: they will allow us to

define emerging skills precisely, and will serve as competing data inputs to our

classification pipeline.

1. Raw popularity (rawpop): The value of the skill’s time series for each

period of time t (whose length can be one month, one quarter, etc.) is

1The job ads come from JobTech, a Singaporean online hiring platform who have kindly

provided the data to us through SkillsFuture Singapore (SSG) as an intermediary. All data

rights belong to JobTech.
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simply the total number of job ads posted for it during that period:

rawpops,t =
∑

c∈companies

adsc,t

Where adsc,t is the number of ads posted during time period t by company

c. This type of popularity (and by extension, time series) ignores hiring180

spread and only emphasises hiring volume.

2. Logarithmic popularity (logpop): For the value of the skill’s time series

for period t, instead of summing up the total number of ads each company

has posted for the skill, we first compute the logarithm of that number

and then sum them up:

logpops,t =
∑

c∈companies

log(1 + adsc,t)

What this type of popularity does is strike a balance between hiring volume

and spread: one more ad by a company that has already posted an ad for

the skill is worth less than an ad by a company that has not already posted

an ad for it. However, it does not throw hiring volume out the window185

entirely, as more ads by the same company still matter, albeit less than

they would in rawpop.

3. Binarised popularity (binpop): The value of the skill’s time series for time

period t is simply the number of companies that have posted an ad for it:

binpops,t =
∑

c∈companies

I{x>0}(x = adsc,t)

Where I{x>0} is the indicator function that is 1 for positive numbers. This

type of popularity throws hiring volume out entirely and only focuses on

spread.190

An example demonstrating the differences between the three popularity

types can be seen in Table 1.

3.1.1. Ground truth and data points

The last preliminary to cover before describing our classification pipeline is

to discuss the ground truth that we are going to predict. The definition we have195
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Skill 1 Skill 2 Skill 3

# of ads

by

companies

Company 1 1 2 3

Company 2 1 2 3

Company 3 1 0 3

Company 4 1 10 3

Popularity

type

Rawpop 4 14 12

Logpop 2.77 4.60 5.55

Binpop 4 3 4

Table 1: A comparison of the three popularity types for a hypothetical example. For example,

Skill 2 has 2 ads posted by Company 1 and 2 each, and 10 ads by Company 4. Although

the rawpop of Skill 2 is the highest, recruitment for it is mostly concentrated in Company

4, resulting in its binpop being lower than that of skills 1 and 3. In addition, the logpop of

Skill 3 is again higher than Skill 2’s due to greater spread, despite Skill 2’s higher rawpop.

given for emerging skills is a rather vague definition, and needs to be specified

further for our prediction task. The two vague parts that need to be specified

are “recency” and the “size of the surge”.

Let’s denote the rawpop of a skill s in the year y by Pops,y, and the n-th

quantile of a set T as Quantile(T, n). Also, let’s define the quantities Prevpops,y200

and Growths,y as follows:

Prevpops,y = Pops,y−1

Growths,y = Pops,y − Prevpops, y − 1

We then declare s an emerging skill in the year y if it satisfies:

Growths,y >= Quantile({Growths, y}s∈Skills, qL)

Prevpops,y <= Quantile({Prevpops,y}s∈Skills, qU )
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where qU and qL are, respectively, quantile upper and lower bounds on previous

year popularity and popularity growth. The first condition (with the quantile

qL) requires the skill to have grown considerably, and eliminates skills that have

not experienced a surge in hiring demand from one year to the next. However,205

with qL alone, what we have is growing skills, rather than emerging skills. This

is why we have the second condition (with the threshold qU ): putting an upper

bound on the previous rawpop of a skill enforces the recency part of the defi-

nition, as the skill must not have already been too popular in the year y − 1.

Since qU and qL are quantiles, they allow the upper and lower bound values to210

be determined from the data itself, and for simplicity’s sake, we use the same qU

and qL pair for all years. These two quantiles are two degrees of freedom in our

model, and they decide the general popularity level and growth of the skills we

deem emerging. For example, lowering qU will push some of the more popular

skills into the non-emerging set, while increasing qL will shrink the emerging set215

by making sure that only skills with larger growth values are deemed emerging.

It is not a given that our model would work well for any choice of qU and qL

(and we will see that it does not), and we will discuss how we can set their

values.

It is worth discussing here that the concept of emerging skills does not have220

to be defined through pure hiring volume (i.e. rawpop); it could also be defined

based on hiring spread. Such a definition would focus on how much the skill

has spread among companies, rather than how much hiring has happened for it.

However, for our main objective of providing insights to training providers on

which skills are more in need of training programs, we believe that the number225

of available positions for a skill is of much greater importance than its spread

among companies. As such, we have decided to base our specific definition of

emerging skills on hiring volume, rather than spread. However, the question

of whether or not signals from hiring spread can help predict hiring demand is

a different one; we will explore this question by pitting the three previously-230

defined popularity types (rawpop, logpop, and binpop) against each other as

competing inputs to our predictive pipeline, and compare the performance of
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their respective models.

It is worth noting that a caveat of our method for generating ground truth

is that some skills can emerge in successive years: a skill s could be below the235

threshold qU for both the year y− 1 and the year y and be above the threshold

qL for both years, thus putting it into the set of emerging skills twice in a row.

We will discuss the implications of this situation in the results section.

Once we have the ground truth, for each type of job ad time series (i.e., each

popularity type), we can create data points and create our training/test sets out240

of them. We call these data points skill–periods, with a skill-period for the

year y consisting of the skill’s job ad time series for the entirety of year y − 1,

along with the ground truth label of the skill in the year y (1 if emerging, 0 if

not).

Our full training set consists of all the skill–periods for the year 2018, whereas245

our full test set consists of all the skill–periods for the year 2019. This year-based

split is necessary to avoid information leaking from the test set into the training

set. In order to compute confidence intervals for our performance measures,

we also create skill-based splits, wherein each classifier is trained and evaluated

on several random subsamples of the full training and test sets, respectively. In250

each such subsample, some skills are randomly selected to be in the test set, and

are removed from the training set, thus making the training and test sets disjoint

both in years and skills. This helps ensure that there is no information spillover

from the training set into the test set. We use 20 skill-based splits to create

confidence intervals for the precision, recall, and F1 scores of our classifiers.255

3.2. Classification pipeline

3.2.1. Extracting features

The input to our classifier consists of features extracted from time series

(where the time series come from the skill-periods). The features extracted in-

clude summary statistics (e.g., mean, various quantiles, variance), linear trends,260
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measures of non-linearity and spikes, FFT coefficients, and many more2. Many

of these features are intuitively expected to be important (e.g., fast linear or

non-linear growth or large spikes can be indicators of quick “emergence”), and

the completeness of the set of features ensures that we do not miss out on signals

in the data that could be useful to our prediction task.265

Before feature extraction, we median-normalise each time point of each skill–

period using the median of that time point. We then also apply moving average

smoothing to reduce noise in our time series. Afterwards, feature extraction is

performed on all the data points.

After the feature extraction, feature reduction is necessary in order to avoid270

overfitting. This is because the number of data points is quite limited (around

1000 in each of the training and test sets), and the number of extracted features

is relatively large (around 300). Our feature reduction pipeline has two steps.

In the first, we perform feature selection on the training data to eliminate some

of the less discriminating features. This is achieved by performing a one-way275

ANOVA for every feature and the output, choosing the top N1 features in

terms of F-value. In the second step, we apply Principal Component Analysis

(PCA) to the training data and project both the training and test data into the

new subspace spanned by the top N2 principal components. The values of N1

and N2 (the number of features after feature selection and PCA, respectively)280

are, along with the model’s other hyperparameters, determined using cross-

validation, with the F1-score as the evaluation measure.

3.2.2. Classifier models

For our classifier, we design two competitor models: a one-step binary

classifier model that predicts our binarized ground truth directly, and a two-285

step regression model that predicts Growths,y itself. The output of the

2The features have been extracted using the Python package tsfresh. Its doc-

umentation, including a full list of the extracted features, can be found at

https://tsfresh.readthedocs.io/en/latest/.
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binary classifier model can be evaluated directly, whereas the qL quantile will

be used to binarize the output of the regression model for evaluation (making

it a two-step classifier). The reason we have a regression model as our second

model type is that the binary ground truth may be noisy near the Growth lower290

bound (i.e. the difference between a skill above the threshold and a skill below

it may be quite small). Since the regression model predicts Growth itself, it

avoids that noise entirely in its training (although the noise from the Prevpop

upper bound will still be present).

The one-step binary classifier is a logistic regression model trained on295

the binarized ground truth with a post-filtering step, in which we only compute

its predictions for skills with Prevpop below the upper bound, and predict the

rest as negatives. The post-filtering step essentially means that our classifier

only learns the indicators of growth that appear in the time series of emerging

skills. In other words, among the skills below the Prevpop upper bound, it300

learns to discriminate between those that would grow considerably in the next

year and those that would not. It does not, however, learn to discriminate

between skills with Prevpop values above the threshold and those with values

below the threshold. This makes sense, as this threshold is always a known

value, even in a real future prediction scenario (since, for example, the upper305

bound for 2019 skill-periods is computed using the job ad time series in 2018,

and uses no information from 2019). In line with this post-filtering step, we

perform a pre-filtering step as well: we delete the skills with Prevpop above the

upper bound from the classifier’s training set. This means that the skills the

classifier trains on are emerging and not-yet-emerging, while it sees none of the310

has-already-emerged skills.

The two-step regression model is a ridge regression model which, instead

of training on the binarised ground truth, learns to predict Growth directly. If

we denote the output of the model as PredictedGrowths,y, then we predict the

skills where

PredictedGrowths,y >= Quantile({PredictedGrowths,y}s∈Skills, qL)

14



Prevpops,y <= Quantile({Prevpops,y}s∈Skills, qU )

as emerging skills, and all the rest as non-emerging. The same pre-filtering step

is applied, involving the deletion of skills above the Prevpop upper bound from

the training set. Much like the logistic regression model described above, this

model learns the signals of growth in emerging skills. However, it has three315

advantages over the binary classifier model. First of all, as discussed before,

it could potentially avoid the noise introduced by the binarized ground truth.

Secondly, the direct forecasting of each skill’s Growth can be useful per se.

Finally, the forecasting of growth in demand means that the model could also

be used to predict the skills that are expected to decline in popularity (although320

this paper is not concerned with such a prediction).

3.2.3. Baselines

In order to evaluate the performance of our model, we need to have some

baselines that we can compare our models with. The structure of our problem

lends itself to several types of baseline:325

1. Previous-year baseline: This baseline reports the emerging skills of

the previous year as positives and the rest as negatives. This corresponds

to the idea that every skill that was emerging last year will be emerging

again this year (which is made possible due to the fact that skills can be

emerging two years in a row).330

2. Below Upper Bound baseline: This improved baseline relies on the

fact that many emerging skills already have some degree of popularity

before they emerge. Using our own terminology, it relies on the fact that

the most likely candidates for emergence in year y are the ones whose

Prevpop is just below the upper bound. It reports the top K most previ-335

ously popular skills as emerging (and the rest as non-emerging). This is a

realistic baseline, since it only relies on our past knowledge of a skill. The

Below Upper Bound baseline requires training, as we need to choose the

value of K; i.e., how many of the below-threshold skills we want to report
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as emerging. This is done using a grid search for the best value of K on340

the training set, using the F1 score as the evaluation measure.

3.3. Research questions

With our definitions and methodology all laid out in detail, we can now

specify our research questions as follows:

RQ1: How well can we predict the emerging skills of the near future?345

RQ2: How much does performance degrade when predicting further into

the future?

RQ3: To what degree does our ability to predict emerging skills depend on

how we precisely define them, i.e. the upper and lower bounds used to specify

the skills that are emerging? Are there areas where predictive performance is350

systematically worse?

RQ4: What are the features of a skill’s job ad time series that indicate its

near-future emergence?

4. Results

In order to answer our research questions, we have tested our models (each355

of which uses one particular popularity type and one of the two classifier types)

against the two baselines (Previous-year and Below Upper Bound) for three

different (qU , qL) pairs. To choose the three (qU , qL) pairs, we compiled a

list of skills that came up as emerging/high-growth in the skill analysis white

papers that we reviewed, and sorted them by popularity. We then tried to set the360

parameters in the three pairs such that the three corresponding emerging skill

sets would cover different segments of this list. In this way, we can ensure that

the ground truth skills are reasonable, and we are able to test the performance

of our system for different (popularity-wise) specifications of emerging skills.

4.1. Predictive performance365

Our first research question is concerned with the predictive performance of

our model. Table 2 shows 90% confidence intervals for the performance of our
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Ground Truth

Threshold Set
Popularity Type Classifier Type Precision Recall F1

qU = 0.8

qL = 0.65

(166 positives

in 2019)

Binpop
Two-step (0.565, 0.648, 0.715) (0.5, 0.58, 0.681) (0.555, 0.605, 0.681)

One-step (0.531, 0.603, 0.656) (0.658, 0.72, 0.801) (0.6, 0.658, 0.713)

Logpop
Two-step (0.486, 0.534, 0.58) (0.739, 0.79, 0.842) (0.587, 0.637, 0.683)

One-step (0.577, 0.631, 0.701) (0.516, 0.59, 0.72) (0.546, 0.616, 0.693)

Rawpop
Two-step (0.549, 0.616, 0.736) (0.499, 0.55, 0.64) (0.533, 0.594, 0.66)

One-step (0.444, 0.493, 0.588) (0.619, 0.69, 0.761) (0.528, 0.573, 0.655)

–
Baseline

Previous year
(0.375, 0.434, 0.481) (0.399, 0.44, 0.481) (0.392, 0.436, 0.481)

–
Baseline

Below Upper Bound
(0.404, 0.448, 0.495) (0.8, 0.86, 0.921) (0.537, 0.591, 0.639)

qU = 0.8

qL = 0.7

(116 positives

in 2019)

Binpop
Two-step (0.489, 0.619, 0.68) (0.371, 0.543, 0.714) (0.468, 0.579, 0.677)

One-step (0.446, 0.5, 0.607) (0.51, 0.643, 0.689) (0.485, 0.554, 0.643)

Logpop
Two-step (0.4, 0.463, 0.502) (0.684, 0.771, 0.859) (0.511, 0.592, 0.633)

One-step (0.489, 0.559, 0.609) (0.513, 0.586, 0.686) (0.507, 0.570, 0.644)

Rawpop
Two-step (0.457, 0.523, 0.636) (0.314, 0.486, 0.6) (0.399, 0.506, 0.578)

One-step (0.405, 0.462, 0.556) (0.429, 0.514, 0.629) (0.434, 0.493, 0.578)

–
Baseline

Previous year
(0.225, 0.288, 0.346) (0.227, 0.329, 0.373) (0.23, 0.307, 0.346)

–
Baseline

Below Upper Bound
(0.377, 0.427, 0.474) (0.599, 0.714, 0.773) (0.48, 0.533, 0.579)

qU = 0.7

qL = 0.65

(99 positives

in 2019)

Binpop
Two-step (0.472, 0.54, 0.741) (0.2, 0.367, 0.502) (0.307, 0.431, 0.572)

One-step (0.056, 0.2, 0.45) (0.032, 0.067, 0.167) (0.04, 0.101, 0.229)

Logpop
Two-step (0.36, 0.424, 0.503) (0.565, 0.667, 0.738) (0.449, 0.519, 0.598)

One-step (0.165, 0.317, 0.573) (0.065, 0.1, 0.168) (0.087, 0.165, 0.24)

Rawpop
Two-step (0.393, 0.517, 0.701) (0.167, 0.3, 0.402) (0.263, 0.367, 0.474)

One-step (0.091, 0.258, 0.503) (0.033, 0.1, 0.167) (0.049, 0.145, 0.234)

–
Baseline

Previous year
(0.166, 0.215, 0.301) (0.197, 0.25, 0.4) (0.188, 0.235, 0.339)

–
Baseline

Below Upper Bound
(0.225, 0.256, 0.296) (0.598, 0.667, 0.768) (0.328, 0.373, 0.427)

Table 2: Confidence intervals for the test-set performance of our models versus the baselines

for three sets of ground truth thresholds. Each parenthesis is in the format (5th percentile,

median, 95th percentile). The classifiers (including the Below Upper Bound baseline) are

trained on ground truth from 2018 and tested on ground truth from 2019. For each threshold

set, those of our models that significantly beat all baselines in terms of F1 (based on a

Kruskal-Wallis test, significance level of 0.05) are in bold font. The thresholds qU and qL are

the percentiles (between 0 and 1) used for getting the upper and lower bounds, respectively.

For example, 0.8 means the 80th percentile.
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best models for each of the three threshold sets, along with the performance of

their respective baselines3. The three numbers in the parentheses are the 5th

percentile, the median, and the 95th percentile, respectively. The first and most370

important takeaway from this table is that our model outperforms both

baselines for all three threshold sets where we employ the correct

classifier, with the gap between the median F1 scores of our best classifiers

and the best baseline (which is the Below Upper Bound baseline) always being

greater than 0.05.375

Most of our models soundly beat the Previous-year baseline, proving that

they learn more than to simply predict all the emerging skills of the previous year

as the emerging skills of the next. When it comes to the Below Upper Bound

baseline, they almost always have greater precision and lower recall. However,

for the purpose of our work, the results of our models are much more useful380

than those of the Below Upper Bound baseline, as we will demonstrate with

an example. Let us take the Logpop + two-step classifier for the (0.8, 0.65)

threshold set, whose confidence intervals versus those of the baselines can be

seen in the boxplots of Fig. 2. We train it on the full training set, and call

the resulting model the reference classifier. This model, which beats the385

ensemble Below Upper Bound baseline (F1 of 0.645 vs 0.600), predicts a total

of 243 skills as emerging, whereas said baseline predicts 310 as emerging (some

examples of these skills can be seen in Table 3). The baseline has 11 more true

positives (and thus 13 fewer false negatives) than our classifier, at the cost of

56 more false positives. Since the emerging skills predicted by our classification390

pipeline are to be reviewed by experts, it is desirable to keep the number of

false positives low, as they make experts’ job harder. The reference classifier

achieves better performance than the baseline while predicting over 20% fewer

3Other baselines, such as simplified versions of our classifier models where we use a handful

of simple features as our input, were also possible. However, we generally found such classifiers

to be outperformed by the Below Upper Bound baseline, and thus excluded them from the

results.
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Reference classifier

(243 predicted positives)

Below Upper Bound baseline

(310 predicted positives)

Kubernetes + +

Kotlin + −

AR/VR + +

Tensorflow + +

Keras − +

Logstash − +

Apache Cordova + −

Bigquery − −

Numpy − +

D3.js − +

Cryptocurrency + +

Table 3: Examples of skills predicted as positive (+) or negative (−) by the reference classifier

(Logpop+two-step; qU = 0.8, qL = 0.65) versus the corresponding Below Upper Bound

baseline. The skills have been selected to be recognizable and are not randomly sampled. The

skills in green are ground truth positives; i.e., emerging (per the definition of emerging skills,

and for the thresholds qU = 0.8 and qL = 0.65), while those in red are ground truth negatives.

skills as emerging, and is therefore much more suitable for our goal of providing

experts with insights.395

When it comes to a comparison of the different model types, the best-

performing model across the board is Logpop + two-step, while Binpop +

two-step also generally shows good performance. One for one (i.e. keeping

every other factor constant), Rawpop classifiers fails to outperform any Logpop

or Binpop classifiers. This has a very interesting implication: hiring spread is400

a very important component in predicting hiring volume. Comparing one-step

and two-step classifiers shows that the former fail badly for the threshold set

(0.7, 0.65), showing the greater robustness of the two-step classifier for different

threshold sets.
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(a)

Figure 2: Boxplots comparing the F1 score of the 20 Logpop + two-step classifiers versus the

respective Previous Year and Below Upper Bound baselines for qU = 0.8 and qL = 0.65.

4.1.1. Predicting the further future405

We now move on to the second research question, which is the question of

whether our performance drops when trying to predict further into the future.

It is a rather difficult question to answer with the data that we have, since

its length is limited to 3 years. To answer it, we define first-half emerging

skills as follows: skills that are emerging if we only consider hiring demand410

in the first half of the year and delete the second half of the year from our

calculations. In a similar way, we can define second-half emerging skills. We

then define first-half-only emerging skills as those that are first-half emerging
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but not second-half emerging, and define second-half-only as the inverse4. The

first-half-only emerging skills of 2019 should, intuitively, be easier for our models415

to predict than the second-half-only emerging skills of 2019, as the latter are

essentially being predicted 6 months further into the future. Unsurprisingly,

by reviewing the predictions of our reference classifier, we find this intuition to

be true. Our true positives correctly predict 38 out of 47 of the first-half-only

emerging skills, while only predicting 23 out of the 39 second-half-only emerging420

skills. A chi-squared test to see if the recall on second-half emerging skills is

significantly different from recall on the rest rejects the null hypothesis (i.e. the

recall being the same) at a significance level of 0.01, whereas the same test for

the first-half emerging skills fails to reject the null hypothesis. Therefore, we can

conclude that performance does deteriorate significantly when trying425

to predict further into the future, making this an important direction for

future improvement.

4.2. The limits of predictive performance

Our third research questions concerns the relationship between the specific

definition of emerging skills (or in other words, the values of qU and qL) and the430

performance of our models. As we saw in the results shown in Table 2, reducing

qU led to a considerable worsening of performance across the board. The fact

that the threshold set (0.7, 0.65) differs from the threshold set (0.8and0.65)

only in terms of qU , which sets the upper bound on Prevpop, suggests that our

models are generally worse at predicting the less popular emerging skills.435

To see whether or not this is true, we investigate the true positives, false pos-

itives, and false negatives of our reference classifier by examining their Prevpop

and Growth values. Figure 3 shows the violin plots of these distributions. Ac-

cording to Figure 3a, the Prevpop values of the reference classifier’s false nega-

4Bear in mind that, although unlikely, it is possible for first-half-only or second-half-only

emerging skills to not be emerging when considering the whole year. In our analysis, we only

consider those that are emerging.
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(a) (b)

Figure 3: The distributions of (a) Prevpop and (b) Growth values for true positives, false

positives, and false negatives of the reference classifier (on the test set, meaning that these

are the rawpop values of these skills in 2018). Note that Prevpop values are non-negative.

tives (with a median of 10) are generally much lower than the Prevpop values440

of the true positives (with a median of 22) and false positives (with a median

of 36), and the Prevpop distribution of false negatives is much more different

from the Prevpop distribution of true positives, compared to the Prevpop dis-

tribution of false positives. Meanwhile, Figure 3b shows that when it comes to

Growth values, the false negatives (with a median of 28) are more similar in445

distribution to the true positives (with a median of 46), whereas false positives

have much lower values (with a median of 6). For both Prevpop and Growth,

the distribution for the false negatives is significantly different from that of the

true positives (Kruskal-Wallis test, significance level of 0.01), but the effect size

is much smaller in the case of Growth distributions, as we have seen. All this450

evidence means that the set of false negatives is comprised of skills whose annual

growth was relatively comparable to the true positives, but whose previous-year

popularity was much lower. This resulted in much weaker signals from their

past job ad time series, which caused our model to incorrectly classify them

as negatives. In other words, their surge in popularity emerged too rapidly for455

our model to appropriately detect. Therefore, the answer to our third research

question is that classification performance deteriorates for skills whose
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past popularity is too low, and this is another area for future improvement,

which we shall discuss further.

4.3. Important features460

Our last research question is concerned with feature importance. For this

analysis, we take the reference classifier, and we investigate the coefficients of the

model’s features (made possible by the fact that both of our classifier types are

linear models), which are themselves linear combinations of the original time

series features (since we have used PCA). To compute an ad-hoc importance465

score for each original feature, we multiply its coefficient in each of the model’s

features by the weight of that feature in the model, and sum these values up.

We then rank the original features using this ad-hoc score. The ranked features

and their scores can be seen in Appendix A (Table 4). Based on the values

seen in the table, the most two important families of features that contribute470

positively to the “emergence” of a skill are as follows:

• Features pertaining to non-linearity, sudden growth, and spikes, such as

the number of data points below the mean, the value of the time

reversal asymmetry statistic, skewness, and the longest strikes

below and above the mean.475

• Features related to the amount of variation in the time series, such as vari-

ance, mean absolute sum of changes, and whether the variance is

larger 1.

The features that contribute negatively to emergence are murkier in general.

The most important family is the number of recurring data points, which480

would penalise time series where many of the values are the same number.

Some nonlinearity features show up as negative contributors, but the positive

contributors of that family outweigh the negatives.

Looking at these positive and negative contributors, it seems that the most

important signals of skill emergence are sudden growth, spikes, and generally485
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larger variation, which is something we would intuitively expect, given the defi-

nition of emerging skills. This is also consistent with the false negative problem

that we had previously discussed: when a skill’s job ad counts are low, almost

all of the positive features will have reduced values, making it much more likely

for the skill to be classified as non-emerging.490

5. Discussion

5.1. Implications for educational institutions

Our results showcase the feasibility of forecasting emerging skills in the ICT

domain, although work remains to be done on its generalizability to other ICT

labor markets and other professional domains. This success shows that AI can495

help enable educational institutions to keep up with rapid changes in the labor

market, especially since the ICT domain is among the most rapidly evolving

professional domains. Although our methods do not have perfect precision or

recall, they often only fail to predict the emergence of much less popular skills,

which are usually (but not always) related to larger skills that our methods500

do classify as emerging (e.g. even though Keras is not predicted as emerging,

TensorFlow is). This, plus the fact that our methods predict a manageable

number of skills as emerging, means that they are able to provide insightful

information about the evolution of the skills landscape to training providers and

decision makers. For example, the early warning provided by our methods allows505

training providers to create short, skill-based online courses in anticipation of

the emergence of particular skills, thus speeding up curricular change. Here, the

unique focus of our methodology on less popular and more granular skills (which

are the ones more likely not to have already been identified as important skills)

provides an additional advantage: finer-grained skills require shorter courses,510

which would in turn be quicker to make.

5.2. Limitations

Our pipeline and its results have a few limitations. Firstly, we effectively

only had access to three full years of data, meaning that we could only compute
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ground truth emerging skills for two years (2018 and 2019). As a result, the515

only test of future prediction we could perform was to train models that predict

one year into the future for one specific year. The fact that we are able to

predict the emerging skills of 2019 with good performance means that after

our preprocessing steps, the skill time series from 2017–2018 and those from

2018–2019 look reasonably similar. In other words, the changes in the market520

from the year 2017 to the year 2018 are not so big as to make the signals

learned based on 2017 data useless for 2018 data, and our model is able to

pick up signals that are relevant for both years. However, we do not know if

this phenomena would hold for other periods, since we have only tested the

forecasting ability of our methodology for a single pair of years. Additionally,525

as we saw, our model’s predictive ability deteriorates when we try to predict

further into the future. However, if training programs can be created rapidly

enough; e.g. in 2–3 months, we believe this would not be a big issue. Such a time

frame is not unreasonable for skill-based MOOCs, due to their smaller size than

full-fledged training programs, and previous research has shown decentralized530

MOOC platforms such as Udemy to be quite agile (Yazdanian et al., 2020).

The second important limitation of our work is that it ignores all trends

that are larger in scope than individual skill trends. This means that it ignores

the relationships between skills and is oblivious to larger trends, such as the

collective rise of a group of skills (e.g. the simultaneous rise of several deep535

learning-related skills) or the rise of one group accompanied by the fall of an-

other (e.g. a new wave of JavaScript-based technologies phasing out older web

technologies).

Finally, as we have discussed before, our methodology struggles to correctly

predict emerging skills whose previous popularity is too low. In other words,540

our methodology does not work well when a skill emerges very quickly and

unexpectedly. This is a limitation of job ad data, and its impact on the value

of our results depends on the experts that wish to use our results: if they only

consider lower-popularity skills to be truly emerging, then the impact of this

issue will be larger. Therefore, addressing this problem is a high priority for545
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future work on our methodology.

5.3. Future directions

Our work opens up multiple avenues for future work, both in the form of

generalizations and improvements to the existing system.

First is the generalization of our methodology to other domains. Since our550

methodology is self-contained, with the emerging skill ground truth and the

predictive signals all coming from job ads, it is generalizable to any professional

domain and any labour market where formal job ads exist. The main ques-

tion, when it comes to generalizability, is whether emerging skills are a viable

practical concept in the professional domain in question. The most important555

factor in answering this question is the rate at which the labour market evolves,

both in terms of the appearance of new skills and the growth of existing skills.

This is something we essentially took for granted in the ICT domain, as it is

probably the fastest-evolving professional domain at the moment. Our proposed

methodology provides a framework for verifying the viability of emerging skill560

prediction through the question of whether or not we can beat baseline emerg-

ing skill predictors, and a study of the professional domain’s rate of evolution

would further strengthen our method’s ability to verify the applicability of the

concept of emerging skills to said domain.

Secondly, since our results imply the importance of hiring spread in the pre-565

diction of hiring volume, we can ask the following question: Is there a particular

set of companies that anticipate skill trends well? In other words, is a skill’s

spread among certain companies more important than its spread among oth-

ers? The idea that such a set of companies exists makes intuitive sense in the

ICT domain, where Big Tech are often the creators of new technologies, and570

following these corporations alone can yield valuable insights into the direction

of the market in the near future. This idea could provide an improvement to our

pipeline: An approach where the spread of a skill among companies is weighted

by the “influence” of each company (as opposed to the current approach, where

every company has the same weight), with more “trend-anticipating” companies575
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having larger weights. The “influence” concept would have to be defined based

on the company’s past ability to predict emerging skills.

There are several research directions directed towards rectifying the limita-

tions of our current pipeline. One of the limitations of our models is that they

predict the emergence or non-emergence of each skill only using its own job ad580

trends, essentially ignoring the relationships between skills. In reality, many

skills are related, and their trends are part of larger trends. For example, the

simultaneous rise of “Tensorflow”, “Keras”, and “PyTorch” is not accidental,

but rather due to the rise of “Deep Learning” in general. This points towards

an approach incorporating a skills ontology: if the relationship between the four585

skills mentioned above is made explicit (e.g. through “Deep Learning” being

a parent of the other three), it could be incorporated into a model that looks

not only at the job ad trends of the skill it’s predicting, but also at those of its

parents and children. Such a classifier model would need to be more complex

than the linear models we have used in this study.590

Another limitation to address is the fact that our current pipeline only uses

one source of data. On one hand, this is a strength, since it makes our method

self-contained and applicable to any domain. On the flip side, however, auxil-

iary data sources that are domain-specific could provide additional signals and

improve our predictive ability. For the ICT domain, an interesting auxiliary595

data source is Stack Overflow, a massively popular Q&A platform for software

developers. Incorporating signals from Stack Overflow could improve our abil-

ity to forecast skill trends, since previous work has shown that it tends to be

faster than job ads at manifesting new skills. This could be a potential solution

to another limitation of our method, which is the problem of low-popularity600

skills becoming false negatives: Stack Overflow could show earlier and stronger

signals of these skills’ rise in popularity.
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6. Conclusion

We have presented a generalizable methodology to predict emerging skills,

and have showed its feasibility in the ICT domain, which is one of the fastest-605

changing domains. Our methodology’s early identification of rising skills pro-

vides training providers and domain experts with insights that help speed up

the process of curricular change. This allows educational institutions to keep

up with the trends and to equip workers with the right skills for a changing la-

bor market. Our work shows that AI is a double-edged sword, disrupting labor610

markets but also able to help institutions and people adjust to the new markets,

thus addressing some of the problems it causes. We believe that future work

incorporating skill ontologies and auxiliary signals can help address the limita-

tions of our method and push the boundaries of emerging skill prediction even

further, providing more accurate and more comprehensive insights to experts.615
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Appendix A Importance scores for original features

Original Feature Ad-hoc Importance

cid_ce__normalize_True 3.260370174

last_location_of_minimum 3.041300917

longest_strike_above_mean 1.819125048

time_reversal_asymmetry_statistic__lag_2 1.7711566

skewness 1.746095463

kurtosis 1.721839525

longest_strike_below_mean 1.704475687

minimum 1.490589562

variance_larger_than_standard_deviation 1.470279171

has_duplicate_min 1.470279171

benford_correlation 1.470279171

mean_abs_change 1.453978262

standard_deviation 1.300465484

variance 1.254512743

mean_second_derivative_central 1.218262811

first_location_of_maximum 1.210340323

last_location_of_maximum 1.174841021

median 1.107915982

variation_coefficient 1.050612425

maximum 1.000516271

absolute_sum_of_changes 0.985774444

has_duplicate_max 0.944529448

sum_of_reoccurring_data_points 0.944529448

abs_energy 0.944529448

c3__lag_3 0.7474519

ratio_value_number_to_time_series_length 0.559784466

c3__lag_1 0.449628367
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Original Feature Ad-hoc Importance

sum_of_reoccurring_values 0.39138383

first_location_of_minimum 0.258098861

count_above_mean 0.204591848

time_reversal_asymmetry_statistic__lag_3 0.030081356

mean_change -0.218127186

sum_values -0.233810196

percentage_of_reoccurring_values_to_all_values -0.353926206

count_below_mean -0.52953518

percentage_of_reoccurring_datapoints_to_all_datapoints -0.571704456

has_duplicate -0.655769556

mean -0.850531591

time_reversal_asymmetry_statistic__lag_1 -1.468221572

c3__lag_2 -1.631146116
Table 4: A list of features used in the reference classifier, along with their ad-hoc

importance scores. Explanations of the features and their names can be found at

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html .
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