
SciWING – A Software Toolkit for Scientific Document Processing

Abhinav Ramesh Kashyap

National University of Singapore

abhinav@comp.nus.edu.sg

Min-Yen Kan

National University of Singapore

knmnyn@comp.nus.edu.sg

Abstract

We introduce SciWING, an open-source soft-
ware toolkit which provides access to state-of-
the-art pre-trained models for scientific doc-
ument processing (SDP) tasks, such as cita-
tion string parsing, logical structure recov-
ery and citation intent classification. Com-
pared to other toolkits, SciWING follows a full
neural pipeline and provides a Python inter-
face for SDP. When needed, SciWING pro-
vides fine-grained control for rapid experimen-
tation with different models by swapping and
stacking different modules. Transfer learning
from general and scientific documents specific
pre-trained transformers (i.e., BERT, SciB-
ERT, etc.) can be performed. SciWING incor-
porates ready-to-use web and terminal-based
applications and demonstrations to aid adop-
tion and development. The toolkit is avail-
able from http://sciwing.io and the
demos are available at http://rebrand.
ly/sciwing-demo1.

1 Introduction

Automated scientific document processing (SDP)
deploys natural language processing (NLP) on
scholarly articles. As scholarly articles are
long-form, complex documents with conven-
tional structure and cross-reference to external re-
sources, they require specialized treatment and
have specialized tasks. Representative SDP
tasks include parsing embedded reference strings
(Prasad et al., 2018; Thai et al., 2020); identify-
ing the importance, sentiment and provenance for
citations (Cohan et al., 2019; Su et al., 2019); iden-
tifying logical sections and markup (Luong et al.,
2012); parsing of equations, figures and tables
(Clark and Divvala, 2016); and article summa-
rization (Qazvinian and Radev, 2008; Qazvinian

1Watch our demo video at https://bit.ly/
sciwing-video

Figure 1: SciWING Components: Text classification and
Sequence labelling Datasets, Models composed from
low-level Modules, and Engine to train and record ex-
periment parameters. Infer middleware does the in-
ference and high-level functionality (e.g., developing
APIs; low-level and web applications).

et al., 2013; Cohan and Goharian, 2015; Cohan
et al., 2018; Cohan and Goharian, 2018). SDP
tasks, in turn, help downstream systems and as-
sist scholars in finding relevant documents and
manage their knowledge discovery and utilization
workflows. Next-generation introspective digital
libraries such as Semantic Scholar (Ammar et al.,
2018), Google Scholar and Microsoft Academic
have begun to incorporate such services.

While NLP, in general, has seen tremendous
progress with the introduction of neural network
architectures and general toolkits and datasets to
leverage them, their deployment for SDP is still
limited. Over the past few years, many open-
source software packages have accelerated the de-
velopment of state-of-the-art (SOTA) NLP mod-
els. However, these frameworks have a few lim-
itations concerning SDP. First, most are general
purpose frameworks aimed at producing SOTA
models for natural language understanding tasks
or specific domains such as biomedicine. Sec-

http://sciwing.io
http://rebrand.ly/sciwing-demo
http://rebrand.ly/sciwing-demo
https://bit.ly/sciwing-video
https://bit.ly/sciwing-video

Framework Pretrained models SOTA Neural first Extensible Language/Framework

SciSpaCy 4 Py

AllenNLP 4 4 4 Py(Torch)

FLAIR 4 4 4 Py(Torch)

Grobid 4 Java

SciWING 4 4 4 4 Py(Torch)

Table 1: Comparison of SciWING with popular frameworks. Pretrained models: availability of pretrained models.
SOTA: state-of-the-art models for SDP Neural-Networks first - framework supports end-end neural networks.
Extensible: flexibility to allow new datasets and architectures

ond, they do not provide immediately deployable,
SOTA models for SDP. Most provide limited or
no means for researchers to train models on their
datasets, or experiment with model architectures.

A key barrier to entry is accessibility: a non-
trivial level of expertise in NLP and machine
learning is a prerequisite. Practitioners who wish
to deploy SDP on their field’s literature may lack
knowledge and motivation to learn it for the sake
of deployment. Thus there is a clear need for
a toolkit that unifies different efforts and pro-
vides access to pre-trained, SOTA models for SDP,
while also allowing researchers to experiment with
models rapidly to create deployable applications.

We introduce SciWING to address this need with
respect to other frameworks (cf. Table 1). Built
on top of PyTorch, it provides access to neural
network models trained for a growing number of
SDP tasks which practitioners can easily deploy
on their documents. For researchers, these models
serve as baselines for experimentation and further
construction of complex architectures in a mod-
ular manner by swapping or composing different
neural network modules. SciWING also allows re-
searchers to declare models in a configuration file
without having to write programming code.

SciWING is MIT licensed. All its pre-trained
models and freely available datasets are avail-
able for easy download. The package runs on
Python 3.7 and can be easily installed from Python
Packaging Index (PyPI) using pip install
sciwing. For researchers aiming to further de-
velop SciWING, we provide installation tools that
set up the system, alongside documentation.

2 System Overview

Our view is that SDP-specific considerations are
best embodied as an abstract layer over exist-

ing NLP frameworks. SciWING incorporates Al-
lenNLP, the generic NLP pipeline (Gardner et al.,
2017), developing models on top of it when neces-
sary, while using the transformers package (Wolf
et al., 2019) to enable transfer learning via its
pre-trained general-purpose representations such
as BERT (Devlin et al., 2019) and SDP-specific
ones like SciBERT (Beltagy et al., 2019). Fig. 1
shows SciWING’s Dataset, Model and Engine com-
ponents facilitating flexible re-configuration. We
now describe these components.

Datasets: There are many challenges for the
researcher-practitioner to experiment with differ-
ent SDP tasks. First, researchers are often dealt
with the challenge of handling various formats
of the datasets: for reference string parsing, the
CoNLL format is most common; for text clas-
sification, CSV is most common. SciWING en-
ables reading of dataset files in different for-
mats and also facilitates the download of open
datasets using command-line interfaces. For ex-
ample, sciwing download data --task
scienceie downloads the official openly avail-
able dataset for the ScienceIE task.

Current methods for pre-processing are cum-
bersome and error-prone. Processing can be-
come complex when different models require dif-
ferent tokenisation and numericalisation meth-
ods. SciWING unifies these various input formats
through a pipeline of pre-processing, tokenisa-
tion and numericalisation, via Tokenisers and
Numericalisers. SciWING also handles batch-
ing and padding of examples.

Models: The below two subcomponents are
combined to build an instance of a neural network
model – which are PyTorch classes.

Embedders: Modern NLP models represent

natural language tokens as continuous vectors
– embeddings. SciWING abstracts this concept
via Embedders. Generic (non-SDP specific)
embeddings such as GlovE (Pennington et al.,
2014) are natively provided. Tokens in scien-
tific documents can benefit from special atten-
tion, as most are missing from pre-trained em-
beddings. SciWING includes task-specific trained
embeddings for reference strings (Prasad et al.,
2018). SciWING also supports contextual word em-
beddings: ELMo (Peters et al., 2018), BERT (De-
vlin et al., 2019), SciBERT (Beltagy et al., 2019)
etc. State-of-the-art models are easily built by con-
catenating multiple representations, via SciWING’s
ConcatEmbedders module. For eg., word and
character embeddings are combined in NER mod-
els (Lample et al., 2016), multiple contextual word
embeddings are combined in various clinical and
BioNLP tasks (Zhai et al., 2019).

Neural Network Encoders: SciWING consists
of commonly-used neural network components
that can be composed to form neural architec-
tures for different tasks. For example in text
classification, encoding input sentence as a vec-
tor using an LSTM is a common task (SciWING’s
seq2vecencoder). Another common opera-
tion is obtaining a sequence of hidden states for
a set of tokens, often used in sequence labelling
tasks and SciWING’s Lstm2seq achieves this. Fur-
ther, it also includes attention based modules.

SciWING builds in generic linear classification
and sequence labelling with CRF heads that can
be attached to the encoders to build models. It pro-
vides pretrained state-of-the-art models for partic-
ular SDP tasks that work out-of-the-box for pre-
diction or which can be further fine-tuned.

Engine: SciWING handles all the boilerplate
code to train the model, monitor the loss and
metrics, check-pointing parameters at different
stages of training, validation and testing. It helps
researchers adopt best practices, such as clip-
ping gradient-norms, saving and deploying best
performing models. SciWING’s experimentation
framework is flexible and users have the flexibil-
ity of customizing the following:

Optimisers: SciWING supports all the optimisers
supported by PyTorch, and various learning rate
schedulers that dynamically manage learning rates
based on validation performance.

Experiment Logging: SciWING adopts current
best practices in leveraging logging tools to mon-

itor and manage experiments. SciWING writes
logs for every experiment run and facilitates
cloud-based experiment logging and correspond-
ing charting of relevant metrics via the third-party
API service of Weights and Biases2, with the inte-
gration of alternative logging services on the way.

Metrics: Different SDP tasks require
their respective metrics. SciWING abstracts
a separate Metrics module to select ap-
propriate metrics for each task. SciWING

includes PrecisionRecallFMeasure
suitable for text classification tasks, and
TokenClassificationAccuracy and
the official CONLL2003 shared task evaluation
metric 3 suitable for sequence labelling.
With these components given, SciWING’s Inference
middleware provides clear abstractions to perform
inference once models are trained. The layer runs
predictions on the test dataset, user inputs and
files. Such abstractions also act as an interface
for the development of upstream REST APIs and
command-line applications.

2.1 Configuration using TOML files

We have seen the flexible architecture of SciWING.
This enables us to equip the users with various
functionalities. One of them is a defining feature
of SciWING which allows the use of a declarative
TOML configuration file. This enables users to de-
clare dataset, model architectures and experiment
hyper-parameters in a single place. SciWING parses
the TOML file and creates appropriate instances of
the dataset, model and engine to run experiments.

A simple configuration file for reference string
parsing along with its equivalent model decla-
ration in Python is shown in the listings below.
The class declaration and configuration file have
a one-to-one correspondence. As deep learning
models are made of multiple modules, SciWING

automatically instantiates these submodules as
needed. SciWING constructs a Directed Acyclic
Graph (DAG) from the model definition to achieve
this. The DAG’s topological ordering instantiates
the different submodules to form the final model.

1 [model]
2 c l a s s =” S i m p l e C l a s s i f i e r ”
3 e n c o d i n g d i m e n s i o n =300
4 n u m c l a s s e s =23
5 c l a s s i f i c a t i o n l a y e r b i a s = t r u e

2www.wandb.com.
3Based on the official conlleval script from CoNLL.

www.wandb.com

6 [model . e n c o d e r]
7 emb dim =300
8 c l a s s =” BOW Encoder”
9 d r o p o u t v a l u e =0 .5

10 a g g r e g a t i o n t y p e =”sum”
11 [[model . e n c o d e r . embedder]]
12 c l a s s =” Van i l l aEmbedde r ”
13 embed=” word vocab ”
14 f r e e z e = F a l s e

1 c l a s s S i m p l e C l a s s i f i e r (nn . Module) :
2 d e f i n i t (
3 s e l f ,
4 e n c o d e r : nn . Module ,
5 encod ing d im : i n t ,
6 n u m c l a s s e s : i n t ,
7 c l a s s i f i c a t i o n l a y e r b i a s : boo l)

2.2 Command Line Interface

Qualitatively analyzing the results of the model
by drilling down to certain training and develop-
ment instances can be telling and help to diag-
nose performance issues. SciWING’s architecture
enables it to provide an interactive inspection of
the model for this reason through a command-
line interface (CLI). Consider the task of reference
string parsing: the confusion matrix for the differ-
ent classes can be displayed through the provided
CLI utility, which also allows finer-grained intro-
spection of (Precision, Recall, F-measure) metrics
and the viewing of error instances where one class
is confused for another. For example, sciwing
interact neural-parscit provides intro-
spection utilities for the pre-trained reference
string parsing model. Such introspection utilities
are also available for other pre-trained models.

SciWING provides commands to run experi-
ments from the configuration file, aiding repli-
cation. For example, experiments declared
in a file named experiment.toml, can
be run with the command sciwing run
experiment.toml. SciWING then saves the
best model. Inference is then trivially invoked via
sciwing test experiment.toml which
deploys the best model against the test dataset and
displays the resultant metrics.

2.3 End User Interfaces

API service enables the development of various
graphical user interfaces. SciWING uses its Infer
layer and exposes APIs for various tasks including
reference string parsing, citation intent classifica-
tion, extracting abstracts and logical sections of
a research articles, identifying entities in clinical

Task SciWING Best

Reference String Parsing 88.44 90.45

ScienceIE 49.9 48.01

Logical Structure Recovery 73.2 –

Citation Intent Classification 82.16 82.6

I2B2 NER 85.83 86.23

Table 2: SciWING’s SDP task performance, compared
against other comparable models. Scores are macro F1.

notes, using fastapi4. The API enables the
following application families downstream:

• Web Demonstrations: To provide quick ac-
cess to predictions from state-of-the-art models,
fulfilling one key aim of SciWING, we develop an
interactive demo using streamlit5. An instance
of the demo is available at http://rebrand.
ly/sciwing-demo. Pre-specified data can be
chosen or user data can be entered and quickly
processed using the distributed models (Figure 2).
Both API services and demos can also be run by
installing SciWING locally.

• Programmatic Interfaces in SciWING provi-
sions more advanced usage. Users can make pre-
dictions for data stored in .pdf or text files. For ex-
ample, to parse a text file’s citations, SciWING pro-
vides a NeuralParscit class that has methods
to parse all the strings in a file, storing them in a
new file. Such a programmatic interface helps the
practitioner make predictions easily.

3 Tasks

SciWING prepackages models for various SDP
tasks. The examples demonstrate how to use the
framework effectively. These models have per-
formance close or comparable to state-of-the-art
models (Table 2). They are production-ready, but
also can be used as baselines for further research.

• Reference String Parsing assigns one of 13
classes to tokens of a reference string that corre-
spond with a in-document citation: author, jour-
nal and year of publication, among them. Neu-
ral sequence labelling models, combining a bidi-
rectional LSTM with CRF currently yield top re-
sults (Prasad et al., 2018). SciWING’s distributed
model implements the same model architecture,

4https://fastapi.tiangolo.com/
5http://www.streamlit.io

http://rebrand.ly/sciwing-demo
http://rebrand.ly/sciwing-demo

Figure 2: Sample SciWING’s demonstration (https://bit.ly/sciwing-demo) for reference string parsing
model, where input (l) is then classified into 13 output classes (r). We utilize the displaCy visualization toolkit
(www.spacy.io) and streamlit (www.streamlit.io).

but adding ELMo embeddings.
• ScienceIE: identifies typed keyphrases, orig-

inally from chemical documents: Task keyphrases
that denote the end task or goal, Material
keyphrases indicate any chemical, and Dataset
that is being used by the scientific work and the
process includes any scientific model or algorithm.
The state-of-the-art system from 2017 includes
a word and character embeddings and a bidirec-
tional LSTM with CRF and uses language model
(LM) embeddings (Ammar et al., 2017). SciWING

includes a reference implementation without using
LM embeddings and the results are comparable.
• Logical Structure Recovery identifies the

logical sections of a document: introduction, re-
lated work, methodology, and experiments. This
drives the relevant, targeted text to downstream
tasks such as summarization, citation intent clas-
sification, among others. Currently, there are no
neural network methods for this task, so SciWING’s
models can serve as strong baselines.
• Citation Intent Classification identifies the

purpose of a citation. Some citations refer to an-
other work for background knowledge, a few to a
related work’s results and others to compare and
contrast their methods or results. Such citation in-
tents get used in Semantic Scholar6. We train a
bi-LSTM with ELMo on the Scicite dataset and
achieve an F-score of 82.16 (compare verses 82.6
from Cohan et al. (2019)).
• I2B2 Named Entity Recognition identifies

three kinds of entities from clinical notes; prob-
lems (e.g., a disease), treatments (e.g., a drug) and
tests (e.g., diagnostic procedures). We use a sim-
ilar model of Bi-LSTM CRF with ELMo embed-
dings, achieving 85.83 F1.

6www.semanticscholar.org

4 Use Cases

SciWING caters to both use cases of practition-
ers looking to deploy pre-trained models as well
as researchers looking to refine model architec-
tures and perform fine-tuning domain adaptation
on top of state-of-the-art contextual word embed-
ding models. We now examine both use cases.

4.1 Using Pretrained Reference String Parser
SciWING provisions out-of-the-box access to pre-
trained models for direct deployment. Citation
string parsing can be deployed with just a few lines
of code as shown below.

1 from s c i w i n g . models . n e u r a l p a r s c i t
i m p o r t N e u r a l P a r s c i t

2

3 # i n s t a n t i a t e t h e b e s t model f o r
r e f e r e n c e s t r i n g p a r s i n g .

4 n e u r a l p a r s c i t = N e u r a l P a r s c i t ()
5

6 # p r e d i c t f o r some r e f e r e n c e
7 n e u r a l p a r s c i t . p r e d i c t f o r t e x t (”

r e f e r e n c e ”)
8

9 # p r e d i c t f o r a f i l e c o n t a i n i n g one
r e f e r e n c e p e r l i n e

10 n e u r a l p a r s c i t . p r e d i c t f o r f i l e (/
p a t h / t o / f i l e)

4.2 Building a Reference String Parser from
Scratch

State-of-the-art models (SOTA) are built by stack-
ing up multiple components. We illustrate how to
construct such SciWING models, building up to such
SOTA model by simple modifications. Such sim-
ple step-by-step building of models facilitates ab-
lation which is a common part to empirical studies.

1. Bi-LSTM tagger: Our base model is a bi-
LSTM with a GLoVE embedder. Every input to-
ken is classified into one of 13 different classes.

https://bit.ly/sciwing-demo

1 # i n i t i a l i z e a word embedder
2 word embedder = WordEmbedder (
3 embedd ing type = ” g love 6B 100 ”)
4

5 # i n i t i a l i z e a LSTM2Seq e n c o d e r
6 l s t m 2 s e q e n c o d e r = LSTM2SeqEncoder (
7 embedder = word embedder ,
8 h idden d im = 100 ,
9 b i d i r e c t i o n a l = True)

10

11 # i n i t i a l i z e a t a g g e r w i t h o u t CRF
12 model = SimpleTagger (
13 r n n 2 s e q e n c o d e r = l s t m 2 s e q e n c o d e r

, encod ing d im = 200)

2. Bi-LSTM Tagger with CRF: We then make
a single modification to the above code, swapping
the simple tagger with one that uses a CRF.

1 . . .
2

3 # an RNN t a g g e r wi th CRF on t o p
4 model = RnnSeqCrfTagger (
5 r n n 2 s e q e n c o d e r = l s t m 2 s e q e n c o d e r

, encod ing d im = 200
6)

3. Bi-LSTM tagger with character and
ELMo Embeddings: We modify the code to in-
clude a bidirectional LSTM character embedder.
We use the ConcatEmbedders module to create the
final word embeddings (Line 16), which concate-
nates the character embeddings with those from
the previous word embedding and a pretrained
ELMo contextual word embedding. This final
model is the provisioned model for the reference
string parsing task provided in SciWING.

1 . . .
2 word embedder = WordEmbedder (
3 embedd ing type = ” g love 6B 100 ”
4)
5

6 # LSTM c h a r a c t e r embedder
7 c h a r e m b e d d e r = CharEmbedder (
8 c h a r e m b e d d i n g d i m e n s i o n = 10 ,
9 h i d d e n d i m e n s i o n = 25 ,

10)
11

12 # ELMo embedder
13 elmo embedder = ElmoEmbedder ()
14

15 # C o n c a t e n a t e t h e embeddings
16 embedder = ConcatEmbedders ([

word embedder , cha r embedder ,
e lmo embedder])

5 Related Work

Grobid (GRO, 2008–2020) is the closest to a gen-
eral workbench for scientific document process-
ing. Similarly to SciWING, Grobid also performs
document structure classification, reference string

parsing, among other tasks. But Grobid is ar-
chitected in the traditional, manual feature engi-
neering approach, leading to performance losses
for many SDP tasks, and difficulties in retrofitting
neural models into its framework.

SciSpaCy (Neumann et al., 2019) focuses on
biomedical related tasks such as POS-tagging,
syntactic parsing and biomedical span extraction.
However, SciSpaCy primarily caters for practi-
tioners; it does not easily allow for the develop-
ment and testing of new models and architectures.

Task- and domain-agnostic frameworks also ex-
ist. NCRF++ (Yang and Zhang, 2018) is a tool for
performing sequence tagging using Neural Net-
works and Conditional Random Fields and FLAIR

(Akbik et al., 2018) is a framework for general-
purpose NLP and mainly provide access to differ-
ent embeddings and ways to combine them.

6 Conclusion and Future Work

We introduce SciWING, an open-source scholarly
document processing (SDP) toolkit, targeted at
practitioners and researchers interested in rapid
experimentation. It provisions pre-trained models
for key SDP tasks that achieve state-of-the-art per-
formance and aids practitioners to deploy models
directly on their community’s literature.

SciWING’s modular design also greatly facilitates
SDP researchers in model architecture develop-
ment, speeding train/test cycles for architecture
search, and supporting transfer learning for use
cases with limited annotated data. SciWING allows
declaration of models, datasets and experiment pa-
rameters in a single configuration file.

SciWING is actively being developed. We con-
sider the following improvements in our roadmap:
• SciWING has yet to incorporate natural lan-

guage generation related models. We would like
to consider sequence to sequence neural models
which have proven useful for scientific document
summarization tasks, among others.
• Scientific document processing involves min-

imal training data and has found benefits in in-
corporating document structure, both of which
are tackled using multi-task learning. Multi-task
learning is thus a future milestone in SciWING.
• We would like SciWING to foster collaboration

among the SDP community and encourage assis-
tance with these goals through contributions to our
Github repository in the form of models, datasets
and improvements to the framework.

References
2008–2020. Grobid. https://github.com/
kermitt2/grobid.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In COLING 2018, 27th International Con-
ference on Computational Linguistics, pages 1638–
1649.

Waleed Ammar, Dirk Groeneveld, Chandra Bhagavat-
ula, Iz Beltagy, Miles Crawford, Doug Downey, Ja-
son Dunkelberger, Ahmed Elgohary, Sergey Feld-
man, Vu Ha, Rodney Kinney, Sebastian Kohlmeier,
Kyle Lo, Tyler Murray, Hsu-Han Ooi, Matthew Pe-
ters, Joanna Power, Sam Skjonsberg, Lucy Wang,
Chris Wilhelm, Zheng Yuan, Madeleine van Zuylen,
and Oren Etzioni. 2018. Construction of the liter-
ature graph in semantic scholar. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 3 (Industry
Papers), pages 84–91, New Orleans - Louisiana. As-
sociation for Computational Linguistics.

Waleed Ammar, Matthew Peters, Chandra Bhagavat-
ula, and Russell Power. 2017. The AI2 system at
SemEval-2017 task 10 (ScienceIE): semi-supervised
end-to-end entity and relation extraction. In Pro-
ceedings of the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), pages 592–596,
Vancouver, Canada. Association for Computational
Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Christopher Clark and Santosh Kumar Divvala. 2016.
Pdffigures 2.0: Mining figures from research pa-
pers. 2016 IEEE/ACM Joint Conference on Digital
Libraries (JCDL), pages 143–152.

Arman Cohan, Waleed Ammar, Madeleine Van Zuylen,
and Field Cady. 2019. Structural scaffolds for cita-
tion intent classification in scientific publications. In
NAACL.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A discourse-aware attention
model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615–621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Arman Cohan and Nazli Goharian. 2015. Scientific ar-
ticle summarization using citation-context and arti-
cle’s discourse structure. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 390–400, Lisbon, Portugal.
Association for Computational Linguistics.

Arman Cohan and Nazli Goharian. 2018. Scientific
document summarization via citation contextualiza-
tion and scientific discourse. Int. J. Digit. Libr.,
19(2–3):287–303.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Minh-Thang Luong, Thuy Dung Nguyen, and Min-Yen
Kan. 2012. Logical structure recovery in scholarly
articles with rich document features. In Multime-
dia Storage and Retrieval Innovations for Digital Li-
brary Systems, pages 270–292. IGI Global.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. Scispacy: Fast and robust models for
biomedical natural language processing.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, Doha, Qatar.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In NAACL-HLT.

Animesh Prasad, Manpreet Kaur, and Min-Yen Kan.
2018. Neural parscit: A deep learning-based
reference string parser. Int. J. Digit. Libr.,
19(4):323–337.

Vahed Qazvinian and Dragomir R. Radev. 2008. Sci-
entific paper summarization using citation summary
networks. In Proceedings of the 22nd International
Conference on Computational Linguistics (Coling
2008), pages 689–696, Manchester, UK. Coling
2008 Organizing Committee.

Vahed Qazvinian, Dragomir R. Radev, Saif M. Mo-
hammad, Bonnie Dorr, David Zajic, Michael

http://arxiv.org/abs/1:dir:6a298c1b2008913d62e01e5bc967510500f80710
https://github.com/kermitt2/grobid
https://github.com/kermitt2/grobid
https://doi.org/10.18653/v1/N18-3011
https://doi.org/10.18653/v1/N18-3011
https://doi.org/10.18653/v1/S17-2097
https://doi.org/10.18653/v1/S17-2097
https://doi.org/10.18653/v1/S17-2097
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/D15-1045
https://doi.org/10.18653/v1/D15-1045
https://doi.org/10.18653/v1/D15-1045
https://doi.org/10.1007/s00799-017-0216-8
https://doi.org/10.1007/s00799-017-0216-8
https://doi.org/10.1007/s00799-017-0216-8
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://doi.org/10.18653/v1/N16-1030
http://arxiv.org/abs/arXiv:1902.07669
http://arxiv.org/abs/arXiv:1902.07669
https://www.aclweb.org/anthology/C08-1087
https://www.aclweb.org/anthology/C08-1087
https://www.aclweb.org/anthology/C08-1087

Whidby, and Taesun Moon. 2013. Generating ex-
tractive summaries of scientific paradigms. J. Artif.
Int. Res., 46(1):165–201.

Xuan Su, Animesh Prasad, Min-Yen Kan, and Kazu-
nari Sugiyama. 2019. Neural multi-task learning for
citation function and provenance. 2019 ACM/IEEE
Joint Conference on Digital Libraries (JCDL), pages
394–395.

Dung Thai, Zhiyang Xu, Nicholas Monath, Boris
Veytsman, and Andrew McCallum. 2020. Using
bibtex to automatically generate labeled data for ci-
tation field extraction. In Automated Knowledge
Base Construction.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Jie Yang and Yue Zhang. 2018. Ncrf++: An open-
source neural sequence labeling toolkit. In Associa-
tion for Computational Linguistics.

Zenan Zhai, Dat Quoc Nguyen, Saber Akhondi,
Camilo Thorne, Christian Druckenbrodt, Trevor
Cohn, Michelle Gregory, and Karin Verspoor. 2019.
Improving chemical named entity recognition in
patents with contextualized word embeddings. In
Proceedings of the 18th BioNLP Workshop and
Shared Task, pages 328–338, Florence, Italy. Asso-
ciation for Computational Linguistics.

https://openreview.net/forum?id=OnUd3hf3o3
https://openreview.net/forum?id=OnUd3hf3o3
https://openreview.net/forum?id=OnUd3hf3o3
http://aclweb.org/anthology/P18-4013
http://aclweb.org/anthology/P18-4013
https://doi.org/10.18653/v1/W19-5035
https://doi.org/10.18653/v1/W19-5035

