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Adapter-based Selective Knowledge Distillation for
Federated Multi-domain Meeting Summarization

Xiachong Feng∗, Xiaocheng Feng∗, Xiyuan Du, Min-Yen Kan, Bing Qin†

Abstract—Meeting summarization has emerged as a promis-
ing technique for providing users with condensed summaries.
However, existing work has focused on training models on
centralized data, neglecting real-world scenarios where meeting
data are infeasible to collect centrally, due to their sensitive
nature. This gap motivates us to explore federated learning for
meeting summarization. Two critical challenges impede progress.
First, state-of-the-art summarizers are based on parameter-
heavy pre-trained models. Exchanging such a model’s param-
eters across clients imposes large bandwidth costs. Second, as
real-world meeting data belong to various domains and are
distributed across clients, they are instances of non-identically
and independently distributed (non-IID). IID assumptions do
not hold, which changes which forms of learning algorithms
best apply. To address this, we propose Adapter-based Federated
Selective Knowledge Distillation (ADAFEDSELECKD) for training
performant client models. Specifically, we develop an adapter-
based summarization model where two adapters cooperatively
facilitate learning using fewer parameters to reduce communi-
cation costs. Then, we devise a selective knowledge distillation
strategy, assisting clients in robustly handling domain-focused
modelling on their own data, while leveraging global parameters
based on non-IID data. Extensive experiments on the QMSum
benchmark demonstrate ADAFEDSELECKD can achieve compa-
rable performance with powerful centralized training methods,
and shows its generalizability and robustness.

Index Terms—Meeting Summarization, Federated Learning,
Knowledge Distillation, Parameter-efficient Fine-tuning.

I. INTRODUCTION

MEETING summarization aims to produce concise meet-
ing summaries given lengthy meeting transcripts, effi-

ciently facilitating readers to grasp essential meeting informa-
tion [1]. With the advancement of meeting technologies, many
meetings are now also recorded regularly and automatically
transcribed with AI tools, facilitating offline meeting reviews.
Meeting summarization can leverage these inputs, further
building capabilities to mitigate meeting overload.

Meeting summarization has attracted extensive research
attention as of late [2], [3]. Existing endeavours focus on
developing performant summarization models, utilizing data
resources located in a single location (also known as central-
ized meeting summarization). [4]–[10].
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Fig. 1. The overall federated learning framework of multi-domain meeting
summarization. In the concrete setting for this paper, there is one central
server and three clients covering distinct domains: Academic, Committee and
Product. Each client uniquely maintains its own domain-specific data.

While meaningful in theory, in practice real-world meeting
summarization has additional privacy challenges that sub-
stantially change the problem framing. Concretely speaking,
real-world meetings inextricably contain highly private and
sensitive information; e.g., confidential company contents and
personal information that are private [11]. When extended to
multi-modal data, video and audio meeting recordings often
also meet with facial representation and voiceprint issues since
both are likewise highly sensitive [12]. For these reasons,
meeting data is highly sensitive and unable to be shared for
model training purposes and is typically siloed. This makes
the collection of meeting data in a central location infeasible.

As such, despite the encouraging research achievements
reported in the current literature, we find such solutions do not
meet the requirements of real-world scenarios. They neglect
the investigation towards developing solutions where meeting
data are necessarily siloed and are distributed across different
client sites.

To close the above gap, we take the first step to study the
meeting summarization task by leveraging a federated learn-
ing framework, a widely-adopted approach for decentralized
machine learning. It enables model training across multiple
distributed clients [13], [14]. Figure 1 depicts the entire learn-
ing framework that aims to effectively train performant client-
side summarization models by deriving global knowledge
from other clients, without needing to access their private
data. However, there are two critical challenges that need
to be carefully addressed in order to learn high-performance
summarization models under federated learning. First, current
state-of-the-art meeting summarization models are based on
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pre-trained language models that maintain a very large number
of parameters. Updating all model parameters represents an
infeasible communication cost. Instead, limited scale client–
server communication is more realistic. This restricts the ex-
change of parameter updates between the server and its clients
to a budget. Second, meetings distributed across multiple
clients often belong to different domains. Figure 1 illustrate
this scenario, in which there exists three meeting domains:
academic, committee, and product, respectively. A single,
central model would not serve to support the distinct needs
of the different domains. This challenging non-identically and
independently distributed (non-IID) data learning setting often
causes the client model to deviate from its own domain as it
learns global knowledge based on non-IID data.

To mitigate the above two challenges, we propose a unified
method, dubbed Adapter-based Federated Selective Knowl-
edge Distillation (ADAFEDSELECTKD). To address the first
challenge, we draw support from parameter-efficient fine-
tuning techniques and design an adapter-based summarization
model to reduce communication costs. Specifically, we intro-
duce a few lightweight trainable adapters [15] to pre-trained
language models [16], [17] while keeping the pre-trained
language models frozen. We meticulously design two types
of adapters — global adapter and local adapter — tailored
for the federated learning framework to facilitate information
exchange between the server and clients. In particular, the
global adapter is responsible for providing global knowledge
while local adapters are optimized towards the local meeting
summarization task. To address the second challenge, we
devise a federated selective knowledge distillation strategy to
not only effectively derive global knowledge for the client
summarization model, but also train the model to favour
its own local domain performance. Specifically, the client
model adopts knowledge distillation [18] as the optimization
algorithm to both learn from its local data and distill global
knowledge from the global adapter. Moreover, we propose an
entropy-based selective strategy based on the assumption that
the higher the entropy of global knowledge, the more uncertain
the knowledge. This adaptively distills knowledge from the
global adapter.

We conduct experiments on the QMSum benchmark [6],
which comprises meeting summarization data across three
distinct domains: academic, committee and product. The
automatic evaluation results based on three model variants
across three clients consistently demonstrate the efficacy of
our proposed method. Our results achieve comparable results
to centralized training methods. Moreover, human evaluation
results validate the substantial improvements attained by our
method over baseline approaches. We further conduct down-
stream analyses of our model’s various settings that allow us
to conclude that our method is both generalizable and robust.

II. PRELIMINARIES

We first introduce the multi-domain meeting summarization
dataset and the task definition, then provide an overview of
federated learning. We define all of the mathematical notation
employed in this work in Table I.

TABLE I
MATHEMATICAL NOTATIONS UTILIZED IN THIS PAPER.

Notation Description

Dataset-related

D meeting summarization dataset
X a set of input documents
Y a set of meeting summaries
X one input document X ∈ X
Y one meeting summary Y ∈ Y
V vocabulary

Framework-related

S server
C client
i index of the client
C a set of clients, Ci ∈ C
Ac client-side optimization algorithm
As server-side aggregation algorithm

Model-related

M client-side task model (meeting summarizer)
W learnable parameters of the model M
X output representation of the encoder layer
Y output representation of the decoder layer
Ŷ output representation of the adapter
l index of the transformer layer
L the number of transformer layers
n the dimension of the model M
m adapter bottleneck dimension
q normalized output distribution (after softmax)

Learning-related

L loss function
λ weight for the knowledge distillation loss LKD

r index of the federated learning round
H(q) entropy of the distribution q
τ threshold for the entropy

A. Multi-domain Meeting Summarization Dataset

In this paper, we leverage the QMSum dataset [6] to conduct
experiments under the federated learning setting. QMSum
consists of query–summary pairs over 232 meeting transcripts
from three distinct domains: namely academic, committee and
product meetings. This dataset is thus well-suited for the multi-
domain meeting summarization task. Under our federated
scenario, we posit that three clients hold meetings from each
of the three distinct domains, respectively. Notably, QMSum is
a query-based meeting summarization dataset, in which each
instance is composed of a specific query, the relevant meeting
transcripts and the corresponding summary. Following Lee
and Sogaard [8], we concatenate the query and the meeting
transcripts to construct the input document X , resulting in
a parallel corpus D : (X ,Y) ∈ (X,Y), where Y is the
corresponding summary with respect to X . We give detailed
statistics for the QMSum dataset in Table II.

B. Task Definition

Given the document X , the client-side meeting
summarization model aims to produce a concise
meeting summary Y , where X is the concatenation
of one query’s words and relevant meeting transcripts
[x1, x2, ..., xi︸ ︷︷ ︸

query

#SEP#xi+1, xi+2, ..., x|X |︸ ︷︷ ︸
transcripts

], #SEP# denotes
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TABLE II
STATISTICS FOR THE QMSUM DATASET ENCOMPASS THREE DOMAINS: ACADEMIC, COMMITTEE AND PRODUCT. “#” INDICATES THE QUANTITY OF

DOCUMENT–SUMMARY PAIRS. THE AVERAGE NUMBER OF TURNS DURING MEETINGS IS DENOTED BY “AVG. TURNS”. “AVG. SPEAKERS” REPRESENTS
THE AVERAGE NUMBER OF SPEAKERS PARTICIPATING IN THE MEETINGS. “AVG. TOKENS” REFERS TO THE AVERAGE NUMBER OF WORDS SPOKEN

DURING THE MEETINGS, AND “AVG. SUM” INDICATES THE AVERAGE NUMBER OF WORDS IN THE SUMMARIES.

Academic Committee Product

Train Valid Test Train Valid Test Train Valid Test

# 218 45 49 284 67 66 593 125 129
Avg. Turns 54.64 59.33 46.45 9.51 9.13 10.85 68.61 79.30 77.86
Avg. Speakers 4.35 4.09 4.22 3.26 3.10 4.14 3.76 3.90 3.93
Avg. Tokens 1049.8 1156.53 912.00 667.14 607.9 713.26 898.04 903.53 933.67
Avg. Sum 46.22 50.67 43.82 77.95 73.67 69.94 65.09 65.38 57.38

one specific token between the query and transcripts. Note that
speaker roles, such as “marketing” and “project manager”,
are treated as ordinary tokens and included in transcripts. Y
consists of |Y| words [y1, y2, ..., y|Y|]. A brief example is
shown as follows:

• Query X[1:i]: Summarize the discussion about the trends
of current remote controls.

• Meeting Transcripts X[i+1:|X |]: Marketing: This is just
a presentation on the trends that we’re gonna use to make
the product stand out from ...... Project Manager: What
do you think of adding an LCD? ......

• Corresponding Summary Y: The group discussed dif-
ferent trends based on different ages of people, ..., finally
they decide to add an LCD screen.

C. Federated Learning Framework

We investigate the multi-domain meeting summarization
task under the federated learning framework. Federated learn-
ing adopts a client–server paradigm and enables the collab-
orative training of models across multiple decentralized data
sources without harvesting the sensitive raw data [13].

Roughly speaking, the federated learning methodology pro-
gresses in a synchronous, iterative fashion. During each learn-
ing round, every client locally optimizes its own client-side
model based on its private data via the client-side optimization
algorithm and then transmits the updated parameters to the
central server. Subsequently, the server gathers the updates
from clients and aggregates them into new server parameters
by means of the server-side aggregation algorithm. Finally,
the new global parameters are broadcast from the server to all
clients for the next round. It should be noted that three crucial
components constitute this learning process:

• Client-side model M housing the client-specific model
parameters W . It is in charge of generating meeting
summaries.

• Client-side optimization algorithm Ac endeavors to opti-
mize the client-side model M based on the local private
data D.

• Server-side aggregation algorithm As is responsible for
aggregating parameters furnished by clients.

Formally speaking, there exists a set C of |C| clients, where
each individual client is denoted C ∈ C. As illustrated in
our concrete scenario in Figure 1, there are three (|C| = 3)
clients in our set; namely, the academic client, the committee

client, and the product client. Each client Ci possesses its own
private domain-specific corpus of meeting summaries Di, as
well as a client-specific meeting summarization model Mi.
The learnable parameters W i of model Mi are optimized
using the client-side optimization algorithm Ac based on the
local dataset Di in the rth round of optimization.

W r+1
i ← Ac(Mi(W

r
i ),Di). (1)

Subsequently, the central server S aggregates all updated
parameters W r+1

i from the clients and adopts a server-side
aggregation algorithm (As) to consolidate the information.
In particular, we utilize the Federated Averaging (FedAvg)
algorithm [19] as our aggregation algorithm As.

W r+1 ←
|C|∑
i=1

|Di|
|D|

W r+1
i , where |D| =

|C|∑
i=1

|Di|, (2)

where |C| denotes the number of clients, |Di| represents the
number of instances in the local dataset Di and |D| gives the
total number of instances among all clients.

Afterwards, the newly-gathered server-side parameters
W r+1 are distributed to all clients Ci to offer enriched global
knowledge. In the forthcoming methodology section (§III), we
demonstrate our contribution towards a more communication-
efficient client-side model Mi and robust client-side opti-
mization algorithm Ac.

III. METHODOLOGY

We invent an integrated method, adapter-based federated
selective knowledge distillation (ADAFEDSELECTKD), to
achieve the efficient and robust federated multi-domain meet-
ing summarization task. It comprises (1) A client-side model
M, which is an adapter-based meeting summarizer, and (2)
A client-side optimization algorithm Ac: which is a selective
knowledge distillation algorithm. The overall ADAFEDSELEC-
TKD learning procedure is illustrated in Figure 2.

A. Overview

Our proposed ADAFEDSELECTKD method significantly
enhances two dimensions of the overall learning process.

• At the model level, we introduce a client-side model
called the adapter-based meeting summarizer (M), which
employs a frozen pre-trained language model as its back-
bone model (refer to §III-B2) and integrates few learnable
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Fig. 2. Illustration of our proposed ADAFEDSELECTKD learning framework. The overall framework adheres to a client–server learning paradigm. At the
bottom, three clients are depicted, where each client adopts the selective knowledge distillation algorithm to optimize its own adapter-based meeting summarizer
using its domain-specific private data. Two types of adapters are tailored for the information exchange between the server and clients, including the global
adapter and the local adapter. The optimized parameters from three clients are then conveyed to the central server. At the top, the central server employs the
federated averaging algorithm to aggregate client information. The resulting new parameters are distributed to the clients for the subsequent learning round.

lightweight adapters to facilitate communication-efficient
learning (refer to §III-B3). Specifically, we develop two
kinds of adapters tailored for the federated learning
setting, namely the global adapter and the local adapter.
The global adapter functions as an intermediary for
exchanging information between the server and clients,
while the local adapter not only distils global knowledge
from the global adapter but also is optimized towards the
local domain.

• At the algorithm level, we devise a client-side optimiza-
tion algorithm termed the selective knowledge distillation
strategy (Ac), which adaptively and robustly optimizes
local learnable adapters. Concretely, the knowledge dis-
tillation method permits deriving global knowledge from
the server while ensuring the summarizer is prone to
the local domain (refer to §III-C2). Furthermore, our
meticulously designed selective strategy draws support
from entropy as a measure of uncertainty and shows
great promise in transferring credible global knowledge
to clients (refer to §III-C3).

B. Adapter-based Meeting Summarizer

In this section, we elucidate our motivation for incorporating
adapters and subsequently delineate the precise model archi-
tecture for both the backbone model as well as two varieties
of adapters, namely the global adapter and the local adapter.

1) Motivation: In this section, we elaborate on the motiva-
tion underlying the design of our adapter-based meeting sum-
marization system by addressing the following two questions:

• Why do we employ the adapter? In recent years, pre-
trained language models have dominated the natural
language processing field and have achieved remarkable
success. Therefore, it is ideal to leverage such models as
potent meeting summarization systems. However, there
are two key challenges. Firstly, exchanging the param-
eters of these pre-trained language models incurs high
client–server communication costs due to a large number
of model parameters. Secondly, the lack of sufficient
hardware capabilities in real-world scenarios means some
clients may struggle to handle such compute-intensive
tasks. On this account, we apply the parameter-efficient
fine-tuning strategy to the pre-trained language model
by fine-tuning only a few lightweight adapters, thereby
addressing the above challenges.

• Why do we design two types of adapters? The most prim-
itive and widely adopted federated learning algorithm is
the Federated Averaging, which directly broadcasts newly
aggregated global parameters to clients to initialize their
models for the next round of training [19]. However,
such a method notoriously performs poorly when clients
hold non-IID data since aggregating divergent model pa-
rameters leads to model distraction [20], thereby leading
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to the client model cannot focus on its own domain.
To combat this issue, we design two types of adapters.
One is the global adapter that receives server parameters
and provides global knowledge via output distribution.
The other is the local adapter that is optimized towards
the local summarization task. By bifurcating the param-
eters in this fashion, we overcome the difficulties that
arise from aggregating disparate model parameters across
clients with non-IID data.

2) Backbone Model: We employ two types of pre-trained
language models, one is BART [16] and the other is LED [17],
as the backbone model. Both of them adopt the Transformer
architecture [21] and have been pre-trained on a huge vol-
ume of data. They inherit a sequence-to-sequence framework,
whereby the encoder first encodes the source sequence into
distributed representations, which are then decoded by the
decoder to generate the target summary.

Formally speaking, the input to the encoder is X 0, which
denotes the sum of the word embeddings X emb and position
embeddings X pos of the input document X .

L
:=
l=1

symbolizes L

identical layers and X l−1 signifies the output representation
of the l − 1th encoder layer. Besides, FFN(·) represents a
position-wise feed-forward network, and SELF-ATT(·) denotes
a multi-head self-attention.

XL = ENCODER(X 0)
L
:=
l=1

FFN
(

SELF-ATT(X l−1)
)

(3)

The decoder takes the output XL of the encoder and the
shifted right representation Y 0 of Y as the input to produce
the final representation Y L, which will be projected into the
vocabulary space in order to predict the summary.

Y L = DECODER(Y 0,XL)
L
:=
l=1

FFN
(

CROSS-ATT
(

SELF-ATT(Y l−1),XL
)) (4)

where CROSS-ATT represents multi-head cross-attention. Ad-
ditionally, each encoder and decoder layer is surrounded by
residual connection [22] and layer normalization [23].

3) Global-Local Adapters: Adapters are additional modules
interpolated between layers of a pre-trained model1.

Note that the core attribute of adapters is the exceedingly
small number of parameters compared with the entire pre-
trained language model, which paves the way for efficient
fine-tuning and communication cost reduction. Specifically, we
craft two types of adapters tailored for the federated learning
framework.

• Global adapter plays the role of parameter container,
which receives aggregated parameters from the server
and generates the output distribution that provides global
knowledge to the local client. Note that the global adapter
is only responsible for passing parameters and will not
be optimized.

• Local adapter combined with the pre-trained language
model servers as the final client meeting summarization

1We conduct preliminary experiments and find that it is more effective to
only add adapters between decoder layers of the pre-trained language model
for the meeting summarization task. Similar conclusions are corroborated by
Dai et al. [24].
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Fig. 3. Illustration of the adapter architecture. Two types of adapters are added
between transformer layers, including the global adapter and the local adapter.
Both adapters share the same architecture, comprising a down-projection feed-
forward layer, a non-linear activation function, an up-projection feed-forward
layer and a residual connection module equipped with layer normalization.
The global adapter receives parameters from the server and provides global
knowledge, whereas the local adapter is co-optimized through training on
the local data and distilling knowledge from the global adapter. The updated
parameters are then transmitted to the server for the next round of learning.

model, which is core to mitigate the non-IID data learning
challenge. Instead of directly adopting server parameters
as local adapter parameters, the local adapter is optimized
towards its local domain by training on the local private
dataset while deriving global knowledge from the global
adapter.

Despite their distinct functions, the two types of adapters
share an identical architecture. Specifically, we have adopted
the bottleneck adapter architecture exemplified in Houlsby et
al. [15] for our adapters. Precisely, each adapter consists of
two feed-forward layers, one non-linear activation function,
and a residual connection module with layer normalization.
The overall architecture is illustrated in Figure 3.

Formally speaking, given the adapter bottleneck dimension
m, each adapter first utilizes a down-projection feed-forward
module with learnable parameter W down ∈ Rn×m to project
the input Y l ∈ Rn into the m-dimensional representation2,
where Y l is produced by the lth transformer decoder layer
of the pre-trained language model and m is smaller than n.
Subsequently, a non-linear activation function ReLu and an
up-projection feed-forward module with learnable parameter
W up ∈ Rm×n are employed to project the vector back into
n-dimensional representation. Finally, a residual connection
and layer normalization is applied to produce final Ŷ

l
.

Ŷ
l
← LayerNorm(Y l + ReLu(Y lW down)W up) (5)

Concretely, upon processing by the global adapter, Y l and
Ŷ

l
are instantiated as Y l

g and Ŷ
l

g , respectively. Likewise,

when processed by the local adapter, Y l and Ŷ
l

are instan-
tiated as Y l

l and Ŷ
l

l, respectively.

2We use the notation Y since our adapters are added between transformer
decoder layers.
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C. Selective Knowledge Distillation Strategy

We first introduce our motivation to leverage knowledge
distillation as the client-side optimization algorithm, and then
present our selective strategy that further boosts the perfor-
mance.

1) Motivation: Despite the apparent benefits of federated
learning, the non-IID data learning setting leads to the domain
drift problem of the client model. In other words, directly
using the global parameters derived by aggregating updates
from distinct different domains makes it impossible for local
models to focus on their own domain. To remedy this issue,
previous efforts have discovered knowledge distillation as one
performant method [20]. Building on this foundation, we first
put forward our optimization method by dexterously unifying
both the adapter-based parameter-efficient fine-tuning strategy
and the knowledge distillation method, which not only reduces
communication costs but also facilitates the robust learning of
non-IID data across clients. Additionally, global knowledge
from the server is not always informative and beneficial
[25]. To address this concern, we devise a selective strategy,
culminating in our final client-side optimization algorithm Ac,
ADAFEDSELECTKD, which adaptively and robustly distils
credible global knowledge to the client model. Algorithm 1
shows the entire ADAFEDSELECTKD algorithm.

2) Knowledge Distillation: Knowledge distillation is a solid
method for transferring knowledge of the teacher model to
the student model by minimizing the discrepancy between the
outputs from two models with a proxy dataset [26].

Formally speaking, given the training set D, for each
training instance (X ,Y) ∈ (X,Y), we obtain the final-layer
representations, Ŷ

L

g and Ŷ
L

l , produced by the global adapter
and the local adapter, respectively. After being transformed
by the language head, which projects the representation into
|V |-dimensional probability distributions (after softmax op-
eration), we obtain the outputs qg and ql, respectively. Within
our framework, we regard qg as the output of the teacher model
and ql as the output of the student model. Consequently, the
local adapter can be trained utilizing a linear combination of
two loss functions.

L = (1− λ)LCE (ql, y) + λLKL (ql, qg) (6)

where LCE represents the cross-entropy loss between the
predicted distribution ql and the one-hot true label y. LKL

denotes the Kullback-Leibler divergence between qg and ql.
The scalar λ serves to determine the weight between the two
loss terms in the overall objective function.

3) Selective Strategy: The immaturity parameters provided
by the server inevitably introduce useless information to local
model learning [27]. To alleviate this problem, we draw
inspiration from previous works in classification [28] and
summarization [29], which employ the entropy as a measure
of uncertainty, and devise a selective strategy to adaptively
distill the knowledge provided by the server.

In detail, when training the tth target word yt of the instance
(X ,Y), we have a normalized |V |-dimensional probability

Algorithm 1 Adapter-based Federated Selective Knowledge
Distillation Algorithm.
C is the client set, W is the learnable parameters, D is
the meeting summarization dataset, E is the number of local
epochs and η is the learning rate.

1: procedure SERVER EXECUTES:
2: initialize W 1

3: for each round r = 1, 2, . . . do
4: for each client Ci ∈ C in parallel do
5: W r+1

i ← ADAFEDSELECTKD(i,W r)
6: end for
7: |D| =

∑|C|
i=1 |Di|

8: W r+1 ←
∑|C|

i=1
|Di|
|D| W

r+1
i

9: end for
10: end procedure
11:
12: procedure ADAFEDSELECTKD:(i,W )
13: for each local epoch from 1 to E do
14: for each training instance (X ,Y) ∈ Di do
15: for each training target word yt ∈ Y do
16: qg, ql =Mi(W , (X ,Y[1:yt−1]))
17: if H(qg) < τ then
18: L = (1 − λ)LCE (ql, yt) +

λLKL (ql, qg)
19: else
20: L = LCE (ql, yt)
21: end if
22: W ←W − η▽L(W ; (X ,Y[1:yt−1]))
23: end for
24: end for
25: end for
26: return W to server
27: end procedure

distribution qg = [q1g , q
2
g , ..., q

|V |
g ], where |V | is the vocabulary

size. Given this, the entropy of qg is defined as:

H(qg) = −
|V |∑
i=1

P
(
qig
)
logP

(
qig
)

(7)

We assume that the higher the entropy, the more uncertain
the knowledge provided by the global adapter, which means
global knowledge with high entropy has no confidence in
handling the current learning situation, thereby needing to be
ignored. Based on this assumption, we finally propose our se-
lective knowledge distillation strategy whereby the knowledge
distillation loss is only accounted for when the entropy falls
below a pre-defined entropy threshold τ .

L =

{
(1− λ)LCE (ql, yt) + λLKL (ql, qg) if H(qg) < τ

LCE (ql, yt) otherwise.
(8)

IV. EXPERIMENTS

In this section, we first introduce our research questions and
then present baseline methods including both non-federated
and federated learning settings, and finally describe evaluation
metrics and implementation details.
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TABLE III
MAIN RESULTS OF ADOPTING BART-LARGE AS THE BACKBONE MODEL. THE ADACENTRALIZED IS ONE SUPER STRONG METHOD THAT EXPLICITLY

TRAINS THE MODEL ON DATA FROM ALL THREE DOMAINS. CLIENT MODELS OBTAINED VIA DIFFERENT METHODS ARE TESTED ON THE
DOMAIN-SPECIFIC TEST SET OF EACH CLIENT. † AND †† INDICATE THE FIRST-RANKED AND SECOND-RANKED RESULTS RESPECTIVELY. RESULTS ARE

AVERAGED OVER THREE RANDOM RUNS.

Client Setting Method ROUGE-1 ROUGE-2 ROUGE-L

Academic

Single ADASINGLE 24.83 5.70 17.24
Centralized ADACENTRALIZED 26.74†† 7.95† 20.73†
Federated ADAFEDAVG 25.76 6.18 18.70
Federated ADAFEDKD 26.66 7.02 19.26
Federated ADAFEDSELECTKD 27.09† 7.62†† 19.79††

Committee

Single ADASINGLE 32.38 13.08 23.24
Centralized ADACENTRALIZED 34.59†† 15.79† 25.32††
Federated ADAFEDAVG 33.80 14.04 24.19
Federated ADAFEDKD 34.12 14.65 24.83
Federated ADAFEDSELECTKD 34.70† 15.19†† 25.37†

Product

Single ADASINGLE 31.83 11.11 21.27
Centralized ADACENTRALIZED 34.53† 12.78†† 23.71†
Federated ADAFEDAVG 32.50 12.19 22.45
Federated ADAFEDKD 33.09 12.50 23.11
Federated ADAFEDSELECTKD 33.32†† 12.86† 23.53††

A. Research Questions

Our experiments are intended to address the following
research questions:

• Research Question 1: How does the proposed ADAFED-
SELECKD perform, and is it comparable to powerful
centralized training methods?

• Research Question 2: How well does the proposed
ADAFEDSELECKD generalize? Can it achieve good per-
formance under a variety of settings, particularly under
more severe non-IID data situations?

• Research Question 3: How does the proposed selective
knowledge distillation strategy work specifically and what
are the underlying mechanisms?

B. Baseline Methods

Our baseline methods can be divided into two categories:
non-federated learning and federated learning. All adopt the
adapter-based pre-trained language model as the backbone
model.

• ADASINGLE.
Setting: Non-federated learning setting.
Model: The model only has the local adapter that will be
optimized.
Method: Training and testing the model with data from
a single domain.

• ADACENTRALIZED.
Setting: Non-federated learning setting.
Model: The model only has the local adapter that will be
optimized.
Method: Training the model using the whole QMSum
that covers all three domains and testing the model
using only one single-domain data. Centralized training
methods are always viewed as one super strong baseline
for federated methods.

• ADAFEDAVG.
Setting: Federated learning setting.

Model: The model has one type of adapter that will be
optimized during training.
Method: The fundamental federated learning algorithm,
where clients hold client-specific parameters and perform
local updates based on their private data via maximum
likelihood estimation. Afterwards, the server gathers the
weighted average of all client updates as the new global
parameters, which will be distributed to all clients as new
client-specific parameters.

• ADAFEDKD.
Setting: Federated learning setting.
Model: The model has two types of adapters including
both the global adapter and the local adapter. The local
adapter is optimized during training.
Method: Each client performs local updates via knowl-
edge distillation while the server employs federated av-
eraging as the parameter-aggregation algorithm.

• ADAFEDSELECTKD.
Setting: Federated learning setting.
Model: The model has two types of adapters including
both the global adapter and the local adapter. The local
adapter is optimized during training.
Method: Based on the ADAFEDKD, the selective strat-
egy is introduced to filter out global knowledge.

C. Evaluation Metrics

We adopt the standard metrics ROUGE [30] for evaluation
and obtain the F1 scores for ROUGE-1, ROUGE-2, and
ROUGE-L that measures the word-overlap, bigram-overlap
and longest common sequence between the ground-truth and
the generated summary respectively. We use the implementa-
tion provided by HuggingFace3.

3https://github.com/huggingface/evaluate

https://github.com/huggingface/evaluate
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TABLE IV
MAIN RESULTS OF ADOPTING BART-BASE AS THE BACKBONE MODEL. THE ADACENTRALIZED IS ONE SUPER STRONG METHOD THAT EXPLICITLY

TRAINS THE MODEL ON DATA FROM ALL THREE DOMAINS. CLIENT MODELS OBTAINED VIA DIFFERENT METHODS ARE TESTED ON THE
DOMAIN-SPECIFIC TEST SET OF EACH CLIENT. † AND †† INDICATE THE FIRST-RANKED AND SECOND-RANKED RESULTS RESPECTIVELY. RESULTS ARE

AVERAGED OVER THREE RANDOM RUNS.

Client Setting Method ROUGE-1 ROUGE-2 ROUGE-L

Academic

Single ADASINGLE 23.97 5.70 17.81
Centralized ADACENTRALIZED 25.66† 6.72† 18.88††
Federated ADAFEDAVG 24.19 6.19 18.20
Federated ADAFEDKD 24.84 6.25 18.32
Federated ADAFEDSELECTKD 25.25†† 6.48†† 18.98†

Committee

Single ADASINGLE 27.68 9.41 19.30
Centralized ADACENTRALIZED 28.61†† 11.23† 21.21†
Federated ADAFEDAVG 28.09 9.87 20.31
Federated ADAFEDKD 28.21 10.40 20.49
Federated ADAFEDSELECTKD 28.88† 11.14†† 21.07††

Product

Single ADASINGLE 28.47 9.86 19.85
Centralized ADACENTRALIZED 30.83† 11.15†† 20.92††
Federated ADAFEDAVG 29.34 10.47 20.42
Federated ADAFEDKD 29.89 10.56 20.74
Federated ADAFEDSELECTKD 30.41†† 11.25† 21.15†

Academic ProductCommittee

tau超参数选择实验

15.00
17.50
20.00
22.50
25.00
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Fig. 4. Effect of the entropy threshold τ for the BART-large model.

D. Implementation Details

We use the Flower framework to simulate the federated
learning environment4. Specifically, we establish one central
server and three distributed clients for the academic, commit-
tee, and product domains, respectively. During each round of
federated learning, all three clients are engaged in the training
process, indicating a client participation rate of 100%. The
server employs the federated averaging algorithm to aggregate
the gathered information. On the client side, we employ
both BART [16] and LED [17] as the backbone model to
conduct experiments. For the BART-large model and LED-
large model, adapters are added to the top six transformer
decoder layers with an adapter bottleneck dimension of 2048.
For the BART-base model, adapters are added to the top
three transformer decoder layers with an adapter bottleneck
dimension of 1536. During the training phase, all parameters
within the local adapter—spanning the down-projection feed-
forward module, the up-projection feed-forward module, and
layer normalization—are updated. Conversely, the parameters
of the global adapter remain frozen. For each client, we used
the AdamW optimizer with a learning rate of 2e-4 and a batch
size of 16. The weight decay is set to 0.01. The loss weight λ
is set to 0.2. We conducted exhaustive hyperparameter search
experiments to determine the final entropy threshold τ . Figure

4https://github.com/adap/flower

TABLE V
AVERAGE ROUGE RESULTS OF DIFFERENT FEDERATE ALGORITHMS.

Academic Committee Product

ADAFEDAVG 16.88 24.01 22.38
ADAFEDOPT 17.58 24.36 22.72
ADAFEDPROX 17.89 24.57 23.04
ADAFEDNOVA 18.09 24.81 23.11
ADAFEDSELECTKD 18.17 25.08 23.23

4 illustrates the search results for the BART-large model5.
Accordingly, the entropy threshold τ for the selective strategy
is set to 5 across all model variants6.

V. RESULTS

A. Research Question 1

To answer the first research question “How does the pro-
posed ADAFEDSELECKD perform, and is it comparable to
powerful centralized training methods?”, we conduct both au-
tomatic evaluations by comparing various methods and human
evaluations to comprehensively access the performance.

1) Automatic Evaluation: The results illustrated in Tables
III, IV and VI correspond to the BART-large, BART-based
and LED-large backbone models, respectively. To sum up,
the following conclusions can be drawn. Firstly, the outcomes
confirm that our proposed ADAFEDSELECTKD outperforms
the baseline method ADAFEDAVG, improving the ROUGE
score by approximately 1.2 points. Secondly, compared with
ADAFEDKD, our optimized ADAFEDSELECTKD demon-
strates superior performance, which confirms that the selective
strategy constitutes the vital component for robust and effica-
cious federated knowledge distillation. Thirdly, the results also
validate that our ADAFEDSELECTKD can achieve comparable
even superior performance relative to ADACENTRALIZED,

5Search experiments for other model variants show the same results.
6Our codes and models will be made public.

https://github.com/adap/flower
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TABLE VI
MAIN RESULTS OF ADOPTING LED-LARGE AS THE BACKBONE MODEL. THE ADACENTRALIZED IS ONE SUPER STRONG METHOD THAT EXPLICITLY

TRAINS THE MODEL ON DATA FROM ALL THREE DOMAINS. CLIENT MODELS OBTAINED VIA DIFFERENT METHODS ARE TESTED ON THE
DOMAIN-SPECIFIC TEST SET OF EACH CLIENT. † AND †† INDICATE THE FIRST-RANKED AND SECOND-RANKED RESULTS RESPECTIVELY. RESULTS ARE

AVERAGED OVER THREE RANDOM RUNS.

Client Setting Method ROUGE-1 ROUGE-2 ROUGE-L

Academic

Single ADASINGLE 24.28 6.03 17.58
Centralized ADACENTRALIZED 26.30† 6.94†† 18.64††
Federated ADAFEDAVG 25.13 6.34 18.19
Federated ADAFEDKD 25.49 6.58 18.30
Federated ADAFEDSELECTKD 25.92†† 7.09† 18.67†

Committee

Single ADASINGLE 32.69 13.03 22.58
Centralized ADACENTRALIZED 33.71† 14.94†† 23.87†
Federated ADAFEDAVG 32.72 13.88 23.22
Federated ADAFEDKD 32.98 14.39 23.46
Federated ADAFEDSELECTKD 33.53†† 14.95† 23.85††

Product

Single ADASINGLE 30.12 9.85 19.70
Centralized ADACENTRALIZED 32.72† 10.75† 22.17††
Federated ADAFEDAVG 30.43 9.93 21.66
Federated ADAFEDKD 31.69 10.12 21.93
Federated ADAFEDSELECTKD 32.07†† 10.67†† 22.64†

Human eval JMLC

4

14

31

4

5

3

52

41

26

AdaFedAvg

AdaFedKD

AdaCentralized

Win Tie Loss

0 30 60

Fig. 5. Generated meeting summary comparison of ADAFEDSELECTKD with
other methods on 60 randomly-chosen meetings. For example, compared with
ADAFEDSELECTKD, ADAFEDAVG performs better on 4 of the 60 summaries
and worse on 52.

which is a piece of solid evidence to verify the effectiveness of
our method. Fourthly, the improvements achieved across the
three model variants indicate the stability and generalizability
of our method. Due to the better results based on the BART-
large backbone model, the following experiments are all
based on the BART-large model.

To further substantiate the effectiveness of ADAFEDSELEC-
TKD in managing non-IID data, we conduct comparative anal-
yses against three established federated learning algorithms:
FedOPT [31], FedProx [32], and FedNova [33]. These algo-
rithms are particularly tailored for non-IID data scenarios. For
the sake of ensuring consistency across models, adapter-based
models are utilized for all clients involved in the study. The
outcomes of these comparisons are detailed in Table V. From
these results, we infer two key insights: firstly, ADAFEDOPT,
ADAFEDPROX, and ADAFEDNOVA, being designed for non-
IID contexts, exhibit superior performance in comparison to
the conventional ADAFEDAVG approach; secondly, despite the
competitive landscape, our ADAFEDSELECTKD emerges as
the most effective, thereby underscoring its robustness and
superior capability in handling non-IID data challenges.

2) Human Evaluation: We employ three evaluators to
undertake our human evaluation. All three evaluators are
researchers in natural language processing who are well-
versed in the task of meeting summarization. Each evaluator

is remunerated $30 for this evaluation task.
First, 20 meetings are randomly selected per domain,

amounting to 60 meetings in total. For each meeting, we gen-
erate its meeting summary based on four methods: ADACEN-
TRALIZED, ADAFEDAVG, ADAFEDKD and ADAFEDSELEC-
TKD. Each evaluator is provided with the meeting and a pair
of summaries generated based on ADAFEDSELECTKD and
another method respectively, in random order. Ehe evaluator
determines which summary is better (wins) or decides a tie
between the two summaries according to domain expertise,
informativeness and factual correctness of summaries.

We count the number of wins, ties and losses for each
method, with the average results across the three evaluators
(Figure 5). These observations point to the conclusion that
our method exhibits an impressive win rate of up to 87% vis-
à-vis the baseline ADAFEDAVG method. It is noteworthy that
ADAFEDSELECTKD achieves competitive results compared
with the strong ADACENTRALIZED, with a 43% win rate.
Additionally, the comparison with ADAFEDKD also proves
the necessity of our designed selective strategy.

B. Research Question 2

To answer the second research question “How well does the
proposed ADAFEDSELECKD generalize? Can it achieve good
performance under a variety of settings, particularly under
more severe non-IID data situations?”, we set up various
experimental settings to provide more comparisons.

1) IID and Balanced Data Setting: Under this setting,
each client maintains meeting summarization data of the same
distribution (IID), with equal quantities distributed across the
three clients (balanced). First, we evenly divide the data of
the three domains into three parts respectively. Then, for the
data of each domain, we distribute the three divided parts
into the three clients respectively, resulting in our IID and
balanced data setting, wherein each client holds one-third
of the data in each of the three domains. Subsequently, we
conduct experiments leveraging ADAFEDAVG, ADAFEDKD
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Fig. 6. Average ROUGE results based on the IID and balanced data
setting, where each client maintains meeting summarization data of the same
distribution (IID) and holds the same amount of data instances (balanced).
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Fig. 7. Average ROUGE results based on the non-IID and balanced data
setting, where each client maintains domain-specific meeting summarization
data (non-IID) and holds the same amount of data instances (balanced).

and ADAFEDSELECTKD based on this newly curated data.
The results (shown in Figure 6) are averaged over three
random runs, with the data being randomly re-divided for each
run. We find that given the IID and balanced data, all three
clients demonstrate similar performance, with our ADAFED-
SELECTKD being more effective compared with other feder-
ated baselines. Despite the effectiveness of both ADAFEDKD
and ADAFEDSELECTKD, we find they contribute marginally
under this setting. Our evidence reinforces the findings of
previous works that federated knowledge distillation methods
excel at overcoming the challenge of non-IID data learning
but contribute little under the IID data setting.

2) Non-IID and Balanced Data Setting: Under this setting,
each client maintains domain-specific meeting summariza-
tion data (non-IID), with equal quantities distributed across
the three clients (balanced). Specifically, for each domain,
we randomly select 200 training instances, 40 validation
instances and 40 testing instances from the corresponding
QMSum portion, resulting in balanced data quantities across
the three clients. Subsequently, we conduct experiments using
ADAFEDAVG, ADAFEDKD and ADAFEDSELECTKD based
on this newly curated balanced data. The results (depicted
in Figure 7) are averaged over three random runs, with data
randomly re-selected for each run. Firstly, it is evident that the
ROUGE results show varying degrees of decline due to the
reduction of data quantity relative to the full amount of data.
Secondly, under this well-formed setting, the utility of our
ADAFEDSELECTKD is more fully exploited, with over 1 point
ROUGE improvement directly compared with ADAFEDKD.
We attribute this to the fact that the balanced data setting,
which facilitates a consistent parameter optimization process
on the client side, thus generating stable global parameters that
allow our entropy-based selective strategy to make reliable
distillation decisions. Thirdly, the results reveal that despite
having the same amount of data across all three clients, the
committee client attains superior performance. As indicated
in Table II, this can be attributed to the committee meeting’s
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Fig. 8. Average ROUGE results based on the extreme non-IID and unbalanced
data setting. “Learning without SAMSum client” means the original three
clients participate in the federated learning process while “Learning with
SAMSum client” means there are four clients in total with the newly-added
SAMSum client joining the learning process.

TABLE VII
AVERAGE ROUGE RESULTS FOR NEW DOMAIN ADDITION USING

ADAFEDSELECTKD. “BASELINE” REPRESENTS THE INITIAL THREE
CLIENTS IN THE FEDERATED LEARNING PROCESS. “POST-ADDITION”

ADDS THE FOURTH SAMSUM CLIENT AFTER THE FIRST THREE
CONVERGE. “PRE-ADDITION” INCLUDES THE FOURTH CLIENT FROM THE

BEGINNING, LEARNING ALONGSIDE THE INITIAL THREE CLIENTS.

Academic Committee Product SAMSum

Baseline 18.17 25.08 23.23 -
Post-addition 18.62 26.07 23.79 34.25
Pre-addition 18.87 26.40 24.32 34.86

fewer turns and reduced input tokens, making it easier to train
an effective summarizer.

3) Extreme Non-IID and Unbalanced Data Setting: To
further verify the effectiveness and robustness of our method,
we set up an extreme non-IID and unbalanced data distribution
setting to assess the performance of different methods. To this
end, we employ the SAMSum dialogue summarization dataset
[34] and establish the fourth client, which will participate in
the federated learning process along with the previous three
clients. Specifically, SAMSum is a widely-used dataset for
the dialogue summarization task, which is vastly different
from QMSum. The number of instances (more than 16000
instances), topics (in various scenes of real life), the length
of the dialogue (120 tokens on average), the length of the
summary (23 tokens on average) and the number of turns
(11 turns on average) all differ greatly from QMSum. We
conduct experiments leveraging ADAFEDAVG, ADAFEDKD
and ADAFEDSELECTKD. The results are shown in Figure 8.
Firstly, according to Figure 8(a), we find the previous three
clients do not benefit from the newly introduced SAMSum
client and actually perform worse. This is in line with the
previous conclusion that the federated averaging algorithm has
severe limitations in the presence of non-IID data. Secondly,
on the contrary, knowledge distillation-based federated learn-
ing algorithms exhibit their advantages under this challenging
setting, with improvements regarding the ROUGE score, as
shown in Figure 8(a) and (b). Thirdly, it is worth noting that
ADAFEDSELECTKD achieves the best results, demonstrating
its efficacy when dealing with extreme non-IID data.

Building on the results discussed earlier, we broaden our ex-
perimental framework to explore the possibility of continuing
federated training with the inclusion of new domain clients
after the initial federated learning phase has concluded. To
investigate this, we commence with training the Academic,
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Fig. 9. Average ROUGE score for AMI, ICSI, ELITR and MeetingBank
meeting summarization datasets.
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Fig. 10. Average ROUGE score based on the client sampling setting. “Sample
2 clients” means that during each round of learning, 2 clients are randomly
selected to participate in the learning process.

Committee, and Product clients using the ADAFEDSELEC-
TKD methodology. Upon reaching convergence with these ini-
tial clients, we introduce an additional, fourth client from the
SAMSum domain to extend the training process. We term the
scenario involving this subsequent integration of the SAMSum
client as the “post-addition” scenario, in contrast to the “pre-
addition” scenario where the SAMSum client is involved from
the start. The comparative outcomes are detailed in Table VII.
It is evident from these results that our ADAFEDSELECTKD
strategy surpasses baseline performances in both scenarios
of new domain client integration. Notably, the “pre-addition”
scenario outperforms the “post-addition” scenario. We believe
this is because the “pre-addition” approach can better ensure
the consistency of parameter updates among clients, thereby
achieving globally optimal performance.

4) Long Meeting Setting: In this scenario, considering that
meetings often involve longer input texts, we select four
datasets: AMI [35], ICSI [36], ELITR [37], and MeetingBank
[9], and set them up as four clients to conduct experiments
using our proposed ADAFEDSELECTKD. It is noteworthy
that, due to the longer input length of these datasets, we chose
to use the LongT5 [38] for our experiments. The LongT5
model allows for a maximum input length of 16,384, enabling
effective modelling of the aforementioned lengthy meeting
texts. The experimental results are shown in Figure 9. The
results clearly demonstrate that ADAFEDSELECTKD not only
outperforms competing methods but also exhibits exceptional
generalizability across different model architectures and a va-
riety of meeting summarization datasets, thereby underscoring
its robustness and adaptability.

5) Client Sampling Setting: In this scenario, we simulate
a more pragmatic federated learning environment, in which
only a subset of clients participate in each round of the
learning process. Specifically, we set the participation rate to
70%, meaning that in our setup, two clients are randomly
chosen to participate in the learning procedure during each
round. The results are illustrated in Figure 10. Firstly, the
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Fig. 11. Part-of-speech tag distribution for academic target summary words
learned (a) using knowledge distillation loss and (b) without using knowledge
distillation loss.
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Fig. 12. Averaged ROUGE results based on the noun–verb-based hard
knowledge distillation and our proposed selective knowledge distillation
strategy.

experiment shows that utilizing all three clients — academic,
committee and product — leads to better performance than
learning from only two clients. Secondly, our proposed method
ADAFEDSELECTKD consistently and stably outperforms the
other baseline methods.

C. Research Question 3

To answer the third research question “How does the
proposed selective knowledge distillation strategy work specif-
ically and what are the underlying mechanisms?”, we assess
the training process by examining whether appropriate target
summary words are learned using knowledge distillation and
their part-of-speech (POS) tag distribution.

For each client, we extract all target summary words trained
from the first round until the final, optimally-performing round
to determine whether each summary word adopts knowledge
distillation loss and its POS tag information. For example,
at the first client, suppose there is only one training instance
with the corresponding summary “project manager decides to
use lcd”, and after two rounds of training, the model achieves
its best performance with three target summary words: man-
ager (once), decides (twice). These are optimized using the
knowledge distillation loss. Therefore, the proportion of words
optimized via knowledge distillation is 3/(2 × 6) = 25%,
where 2 is the number of learning rounds and 6 is the number
of words in the sentence.

Accordingly, our statistics show that knowledge distillation
loss is 86%, 88%, and 89% utilized in generating the target
summary words during the training process for the academic,
committee, and product clients, respectively. Furthermore, we
calculate the part-of-speech tag distribution of target sum-
mary words learned with and without knowledge distillation.
Figure 11 illustrates the outcomes for the academic client,
while the other two clients exhibit similar distributions. The
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TABLE VIII
MEETING SUMMARIES FROM OUR THREE DOMAINS GENERATED BY DIFFERENT METHODS.

Method Meeting Summaries

Academic

ADAFEDAVG PhD C explained that there were various delays with different components along the processing chain.

ADAFEDSELECTKD PhD C said that there were delays of 100ms for silence, 40ms at the input, and 10ms from LDA filters.

GOLD STANDARD
PhD C explained that the silence probabilities had a 100ms delay, the delta at the input had
a 40ms delay, and a 10ms delay was created by LDA filters.

Committee

ADAFEDAVG
The governing organization developed the framework and simplified the options for
resolving issues outside of legal proceedings.

ADAFEDSELECTKD The National Police Chiefs’ Council streamlined out-of-court disposals by developing the police approach.

GOLD STANDARD
The National Police Chiefs’ Council was responsible for developing the police approach to out-of-court
disposals and simplifying the range of out-of-court disposals.

Product

ADAFEDAVG
Industrial Designer proposed an eco-friendly option but Project Manager agreed more with
the commercially-appealing proposal.

ADAFEDSELECTKD The Industrial Designer suggested solar panel and rechargeable batteries but the Project Manager
preferred Project Manager’s cradle idea.

GOLD STANDARD
Industrial Designer proposed to incorporate a solar panel and rechargeable batteries, but Project Manager
agreed more with Marketing’s proposal to include a cradle.

observations suggest that nouns and verbs constitute nearly all
of the words optimized through knowledge distillation loss,
aligning with the intuition that both nouns and verbs are
essential for articulating the core and domain-specific ideas of
the meetings. In contrast, determiners and pronouns make up
74% of all words learned without using knowledge distillation
loss.

This distribution insight on the target summary words elicits
a natural follow-up: “How effective would it be to use knowl-
edge distillation by absolute means only when learning target
nouns and verbs?”. To address this question, we conduct
experiments by exclusively adopting knowledge distillation
rigorously upon learning nouns and verbs. Figure 12 shows
the results. We can clearly find that our ADAFEDSELECTKD,
which adaptively makes the distillation decision exhibits su-
perior performance compared to the hard distillation method,
demonstrating the necessity of our designed selective strategy.

D. Case Study
Table VIII illustrates summaries of meetings from three

domains generated using various methodologies. We observe
that the baseline method, ADAFEDAVG, consistently produces
generic meeting summaries lacking in detailed information. In
contrast, our proposed method, ADAFEDSELECTKD, yields
summaries that are more informative and tailored to the
domain. Moreover, the gold standard meeting summaries
continue to demonstrate advantages in conciseness and infor-
mativeness, highlighting the challenges intrinsic to meeting
summarization.

VI. RELATED WORK

A. Meeting Summarization
Meeting summarization [2], [3], [39] aims to pack crucial

information of a given meeting into a concise yet comprehen-

sive summary highlighting the most salient points. In addition
to the challenges inherent in traditional summarization tasks,
meeting summarization must address unique difficulties arising
from its multi-participant nature. To facilitate progress in this
domain, various datasets have been curated [6], [9], [10], [35],
[36], enabling the development of state-of-the-art models that
incorporate versatile knowledge [4], [5], [7], [40]–[43] and
achieve the best results. However, privacy concerns, which are
inextricably intertwined with meeting content, have received
little attention in the literature, hampering real-world applica-
tion. Lee and Sogaard [8] take the initiative to address this
issue by exploring differential privacy (DP) [44] for meeting
summarization, focusing primarily on a single domain. In this
work, we conduct the first systematic study of meeting sum-
marization under the federated learning framework, accounting
for the heterogeneity and unbalance of data across multiple
domains.

B. Federated Learning

Federated learning enables collaborative machine learning
without the centralized collection of potentially sensitive raw
data, thereby paving the way for stronger privacy guarantees
when building predictive models [19]. With mounting con-
cerns regarding privacy issues, this paradigm has garnered
significant research interest including diverse research direc-
tions [13]. In particular, owing to the inevitable inclusion
of private information in texts, a variety of studies have
explored diverse natural language processing tasks within the
federated learning framework [14]. The predominant efforts
in this realm have focused on natural language understanding
tasks, such as spoken language understanding [45] and text
classification [46]. Recent years have witnessed a trend toward
applying the federated learning framework to natural language
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generation tasks [47]. Additionally, amid the rapid ascent of
Large Language Models (LLMs), several studies offer their
perspectives on federated LLMs. [48]. Our work follows this
line of work and is the first to explore the federated multi-
domain meeting summarization task.

C. Parameter-efficient Fine-tuning

The field of natural language processing is currently domi-
nated by large language models [49]. Despite their superiority,
fine-tuning all the parameters of these immense models on
various downstream tasks becomes prohibitively complicated
as both model size and number of tasks increase [50]. To al-
leviate this problem, parameter-efficient fine-tuning is coming
to the rescue by updating only a small number of extra param-
eters while keeping most pre-trained parameters frozen [15],
[51]. Opportunely, such lightweight alternatives are well-suited
for reducing communication costs in the federated learning
framework. Based on this foundation, the amalgamation of
federated learning and parameter-efficient fine-tuning unveils
vast potential for diverse applications [52]. In this paper, we
craft two types of adapter modules, a global adapter and a
local adapter, which collaboratively and efficiently facilitate
federated client–server communication.

D. Knowledge Distillation

Knowledge distillation refers to the process of transferring
knowledge from a teacher model to a student model without
significant performance degradation. It has proven to be an
effective method for improving model performance [26]. In
recent years, knowledge distillation has been applied in the
federated learning framework and has demonstrated its ability
to mitigate the effects of data heterogeneity [20]. Our proposed
framework builds upon this and takes one step further to
explore the combination of both knowledge distillation and
parameter-efficient fine-tuning while introducing one carefully
designed selective strategy to enable an adaptive learning
process.

VII. LIMITATIONS AND POTENTIAL ADVANCEMENTS

The aforementioned experiments are conducted using the
dataset provided by the research community and based on a
simulated federated environment. This may not fully reflect
the complexities of real-world scenarios and could potentially
lead to two limitations:

1. Well-curated dataset exhibits less variability. In reality,
meetings, even those within the same domain, vary with
respect to their participants, discussion topics, and duration.
Moreover, meeting transcripts are typically generated via au-
tomatic speech recognition (ASR) systems, resulting in noisy,
imperfect textual data. Useful forms of meeting summaries
also depend on the target user needs, spanning full-text
summaries, highlighted extracts, identification of action items,
and more. While our research attempts to address real-world
limitations, the dataset employed in our experiment likely does
not adequately capture the complexities of real-world meeting

settings. We envision that future advancements can develop
more appropriate benchmarks, design more comprehensive
experimental paradigms, and possibly even collaborate with
corporations to narrow the divide between research explo-
rations and practical real-world applications.

2. Simulated federated environment lacks uncertainty.
In practical federated learning deployments, addressing the
challenges of non-IID and unbalanced data is still insufficient.
It is also imperative to overcome various issues stemming from
communication uncertainties, such as client–server latency,
asynchronous client learning updates, and client dropout.
These factors are unaddressed in the current research, and
present challenges to any federated learning techniques. As
such, future advancements could conduct larger-scale decen-
tralized experiments in which the federated learning procedure
is intentionally perturbed to stress-test such a framework’s
robustness to uncertainty, thereby approximating real-world
conditions more closely.

VIII. CONCLUSION AND FUTURE WORK

We examine the multi-domain meeting summarization task
under a federated learning paradigm. We show that this
represents a more pragmatic and realistic configuration than
prior work on learning meeting summary models over cen-
tralized meeting data. Moreover, to mitigate two challenges,
namely limited server–client communication and the non-
IID data learning situation, we propose a unified method,
ADAFEDSELECTKD, which succeeds in reducing communi-
cation costs and addressing the domain drift problem of the
client model. Through comprehensive empirical studies, our
method demonstrates its effectiveness and robustness that can
achieve comparable results with centralized training methods
while exhibiting its superiority in handling the intricacies of
non-IID data.

We believe that future work will strive to apply the proposed
method to real scenarios. In our own work, we aim to craft
data resources and design experimental settings to adequately
simulate real-world federated learning circumstances. We plan
to collaborate with organizations to implement the feder-
ated learning framework and evaluate our proposed method
in addressing a variety of exigencies. Further investigation
will build from this foundation, to incorporate differential
privacy techniques to further augment our model’s privacy
preservation characteristics. In addition, we also plan to apply
the ADAFEDSELECTKD framework to a broader range of
summarization and text generation tasks, such as dialogue
response generation and financial data-to-text generation tasks,
thereby further extending the applicability of our proposed
method. Beyond this, we are also considering extending our
algorithm to more complex scenarios, such as cases where
there is collaboration between clients. This involves designing
a server-side hierarchical aggregation method and a client-side
transfer learning approach from both data and algorithmic per-
spectives to further enhance performance. All these advances
promise to make ADAFEDSELECTKD a practical solution for
meeting summarization and more diverse tasks.
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