
IEEE TRANSACTIONS ON MULTIMEDIA 1

A Hybrid Approach for Detecting Prerequisite
Relations in Multi-modal Food Recipes

Liangming Pan, Jingjing Chen, Shaoteng Liu, Chong Wah Ngo, Member, IEEE,
Min-Yen Kan, Member, IEEE, and Tat-Seng Chua, Member, IEEE

Abstract—Modeling the structure of culinary recipes is the
core of recipe representation learning. Current approaches mostly
focus on extracting the workflow graph from recipes based on
text descriptions. Process images, which constitute an important
part of cooking recipes, has rarely been investigated in recipe
structure modeling. We study this recipe structure problem from
a multi-modal learning perspective, by proposing a prerequisite
tree to represent recipes with cooking images at a step-level gran-
ularity. We propose a simple-yet-effective two-stage framework
to automatically construct the prerequisite tree for a recipe by
(1) utilizing a trained classifier to detect pairwise prerequisite
relations that fuses multi-modal features as input; then (2)
applying different strategies (greedy method, maximum weight,
and beam search) to build the tree structure. Experiments on
the MM-ReS dataset demonstrates the advantages of introducing
process images for recipe structure modeling. Also, compared
with neural methods which require large numbers of training
data, we show that our two-stage pipeline can achieve promising
results using only 400 labeled prerequisite trees as training data.

Index Terms—Food Recipes, Cooking Workflow, Prerequisite
Trees, Multi-modal Fusion, Cause-and-Effect Reasoning, Deep
Learning

I. INTRODUCTION

Posting recipes and food images to sharing cooking experi-
ence is prevalent on social media. Millions of cooking recipes
are available online on cooking sharing platforms, such as “all
recipes”, “Cookpad”, and “Yummly”, etc. A recipe is usually
presented in multimedia setting, with textual description of
cooking steps aligned with process images to illustrate the
visual outcome of each step. See Figure 1(a) for multimedia
presentation of the recipe for “strawberry shortcake”. These
information potentially provide opportunity for multimodal
analysis of recipes, including cuisine classification [1], food
recognition [2], [3], recipe recommendation [4], [5] and cross-
modal image-to-recipe search [6], [7], [8], [9]. A common
fundamental problem among these tasks is the understanding
of the cause-and-effect relations of cooking process. Neverthe-
less, this problem is not fully explored and mostly addressed
with text-only analysis. For example, text-based dependency
parsing is employed for prerequisite tree construction [10],
[11], [12], and hierarchical LSTMs is studied to model the
causality effect for feature embedding [13].

Liangming Pan, Min-Yen Kan and Tat-Seng Chua are with National
University of Singapore, Singapore. Jingjing Chen is with Fudan University,
Shanghai, China. Chong Wah Ngo is with City University of Hong Kong,
Hong Kong, China. Shaoteng Liu is with Xi’an Jiaotong University, Shanxi,
China.

Corresponding author is Jingjing Chen (chenjingjing@fudan.edu.cn).

This paper studies the construction of prerequisite tree
representation for recipe based on multimodal fusion. The
representation provides the cooking workflow by ordering of
instructions as a tree, which vividly describes the temporal
evolution of food preparation as shown in Figure 1(b). Build-
ing a multi-modal prerequisite structure for food recipes is
beneficial for both real-world cooking and automatic food
analysis. In real-life, the prerequisite tree representation pro-
vides a clear guidance for the cook on which steps should be
done sequential and which steps can be done in parallel. Many
applications of food analysis, such as cross-modal retrieval
and image-to-recipe generation, can also benefit from this
representation. For example, in image-to-recipe generation, it
is easier for machines to produce a recipe with an understand-
ing of the prerequisite relations between cooking images. The
workflow structure also benefits cross-modal retrieval by pro-
viding additional semantic information about cause-and-effect
relations. Moreover, tree-based matching can be employed for
similarity ranking of recipes for food recommendation.

We formulate the prerequisite tree construction as a clas-
sification problem, by classifying two instructions as either
sequential or parallel. Sequential relation results in parent-
child nodes, while parallel relation creates a new branch.
By chaining these relations in temporal order, a prerequisite
tree as depicted in Figure 1(b) can be produced. Constructing
such tree is a non-trivial problem because it requires an deep
understanding of both the process image (e.g., tracking how
ingredients are being cut and cooked) and the text description
(e.g., understanding how a cooking action changes the state of
an ingredient).

Prerequisite relation detection for cooking recipes are previ-
ously addressed by defining hand-crafted textual features [14],
[10], [11]. Although these features are able to capture shal-
low semantics, they are mostly domain dependent and not
transferable across applications. To address this, our recent
work [15] constructed a large-scale dataset, namely MM-ReS,
consisting of 9,850 recipes with labeled prerequisite trees.
Based on this dataset, advanced multi-modal deep learning ar-
chitectures, such as Multimodal Bitransformers (MMBT) [16]
are employed to detect prerequisite relations. Despite achiev-
ing promising results, we argue that this model can hardly
be deployed in practical applications for two reasons. First,
food recipes in the MM-Res are mostly western cuisine. To
generalize the model to other recipes such as Chinese cuisine,
we need to label a large number of new prerequisite trees,
which is extremely time-consuming and expensive. Second,
due to the huge size of the neural model, it is hard to deploy

IEEE TRANSACTIONS ON MULTIMEDIA 2

Fig. 1. Framework of multi-modal prerequisite tree construction. Given a multi-modal food recipe as the input (a), we propose a two-stage pipeline: 1)
pairwise prerequisite relation detection, and 2) prerequisite tree construction strategy. The output is a multi-modal prerequisite tree (b).

the model to resource-intensive devices such as mobiles.
To address this problem, we propose a more practical

pipeline, which first utilizes the pretrained visual and textual
features for multimodal-based prerequisite relation detection,
and then we employ different heuristic strategies to construct
the prerequisite tree by temporally chaining the pairwise pre-
requisite relations. Figure 1 gives a sketch of tree construction,
where a comprehensive tree is produced by temporally chain-
ing the pairwise prerequisite relations. Compared with [15],
our model is more light-weighted and only requires a few hun-
dreds of training instances. Surprisingly, this only makes the
model to suffer a slightly drop in performance. Experiments
on the MM-ReS show that our method can achieve 80.39
in recipe-level accuracy, compared with the 82.44 accuracy
achieved by [15].

II. RELATED WORK

The task of building multi-modal prerequisite tree for food
recipes can be regarded as a twin problem of recipe structure
modeling and prerequisite relation detection. Our research is
also related to the broad topic of Deep Learning for Food
Analysis.

A. Recipe Structure Modeling

Recipe structure modeling [17], [12], [11], [18], [19], [20],
[21] aims to learn the semantic representations of cooking
recipes. Based on the granularity of representation, exist-
ing methods can be categorized into ingredient-level and
instruction-level structure modeling.

Ingredient-level recipe structure modeling aims to represent
a recipe as a work-flow graph [11] or an action graph [10]. On
the work-flow graph, each vertex represents either a cooking
action or a raw ingredient and the directed edges represent the
“action flows” describing the temporal execution sequence or
“ingredient flows” tracking the ingredient sources. Manually
constructing such graph is highly time consuming. Therefore,
recent works mostly focus on leveraging machine learning

methods to automatically build the graph. In [10], an unsu-
pervised hard-EM approach was proposed to automatically
map instructional recipes to action graphs. The action graph is
obtained with a segmentation model and a graph model. The
segmentation extracts actions from text recipe while the graph
model defines a distribution over the connections between the
extracted actions. Yamakata et al. [11] further proposed to
enrich the action graph with cooking tools and duration with
semi-supervised method. The action graph is built via a four-
step pipeline: word segmentation, recipe term identification,
edge weight estimation, and manually action graph refinement.
Nevertheless, the aforementioned methods cannot attain high
quality recipe structures for real-world applications mainly due
to two reasons: (1) the results are highly dependent on several
NLP tasks, such as named entity recognition, co-reference
resolution and dependency parsing, which are noise-prone due
to free-form writing style in recipe, and (2) training with large-
scale labeled dataset is infeasible because fine-grained recipe
structure requires huge labeling efforts.

Compared with ingredient-level recipe modeling,
instruction-level recipe modeling is more practical in terms
of scalability. In [14], an ingredient-instruction dependency
tree representation named Simplified Ingredient Merging Map
in Recipes (SIMMER) was proposed to represent the recipe
structure. SIMMER represents a recipe as a dependency
tree with ingredients as leaf nodes and recipe instructions
as internal nodes. In SIMMER, several hand-crafted text
features were designed to train the Linear SVM-rank model
for predicting ingredient-to-instruction links as well as
instruction-to-instruction links. Similar to [14], we also focus
on instruction-level recipe modeling; however, we study from
the perspective of multi-modal learning by considering both
text procedures and process images in the recipe. Moreover,
instead of defining hand-crafted features, we improve the
feature extraction using neural models with two-stage training
to obtain deep semantic features.

IEEE TRANSACTIONS ON MULTIMEDIA 3

B. Prerequisite Relation Detection

Our work is also related to prerequisite relation detection.
Despite being a relatively new research area, data-driven
methods for learning concept prerequisite relations have been
explored in multiple domains. In educational data mining,
prerequisite relations have been studied among courses or
course concepts for curriculum planning [22], [23], [24], [25].
For example, researchers have tried to find general prerequisite
structures by analyzing student assessment data [26], [27],
[28]. Pan et al. [22], [29] proposed hand-crafted features
such as video references and sentence references for learning
prerequisite relations among concepts in MOOCs. Besides
education domain, prerequisite relation has also been mined
between Wikipedia articles [30], [31], concepts in textbooks
[32], as well as concepts in scientific corpus [33]. There are
also a few works attempting to build prerequisite structure
based on existing prerequisite relations. For example, Yang et
al. [24] proposed to mine the prerequisite relations among
courses for curriculum planning based on pre-defined concept
prerequisite relations; while Liang et al. [34] proposed to
recover concept prerequisite relations from university course
dependencies.

Our work is different from existing works in three aspects.
First, by making full use of the multimedia nature of the
recipes, we focus on mining the prerequisite relation to de-
scribe causality effect in cooking process. Second, we propose
a neural-based pipeline to extract features from both image and
text, which is more general than the domain-dependent hand-
crafted features such as in [22]. Lastly, we propose a beam-
search-based method for tree construction, which combines
the greedy search and maximum score in building prerequisite
structure.

C. Deep Learning for Food Analysis

This paper applies deep learning for food analysis. With the
enormous success of deep learning, it has been widely adopted
in various food-related tasks, including ingredient/food recog-
nition [35], cross-modal retrieval [36], [37], [38] and recipe
generation [39]. Food recognition typically involves food cat-
egorization [40], [41], ingredients recognition [42], [43], [44],
and food attributes recognition [2], [8]. Deep features extracted
from DCNN [45], which is trained on ImageNet [46] and fine-
tuned on food images, often exhibit impressive recognition
performance [47], [48]. In this work, we follow this paradigm
to extract deep features in cooking images.

Cross-modal learning in food domain has started to attract
research interest in recent years, and several large food and
recipe datasets have been developed recently, for example,
Cookpad [49] and Recipe1M+ [50] datasets. Existing neural-
based methods [8], [51], [6] typically learns a joint embedding
space between food images and recipe texts. For example,
in [8], deep belief network is used to learn the joint space
between food images and ingredients extracted from recipes.
However, previous works consider a recipe as a whole, while
ignoring its inherent structure. Different from these works,
our work investigate the cause-and-effect relations inherent in

cooking recipes, based on which we can learn better recipe
representations to benefit downstream tasks.

III. METHODOLOGY

In this section, we first give the definition of prerequisite
tree (Section III-A), and then formally introduce our proposed
two-stage framework consisting of: learning to detect pairwise
prerequisite relation (Section III-B), and constructing prereq-
uisite tree based on learned pairwise relations (Section III-C).

A. Problem Formulation

A recipe is composed of n cooking steps, denoted as R =
{S1, · · · , Sn}, where Si is the i-th step. Each cooking step
S is further represented as its text description and cooking
images, i.e., S = {W,G}, where the text description W is a
word sequence (w1, · · · , w|W |), and G is the set of cooking
images, i.e., G = {g1, · · · , g|G|}.

Next, we give the definition of prerequisite tree. Before this,
we first define the dependency tree of a recipe R, denoted as
DR, as a directed tree that satisfies the following conditions.
• DR has n nodes S1, · · · , Sn, where Si represents the i-th

step in the recipe. The root node of DR is the last step
Sn.

• For any none-root step Si in DR, its parent SPi must be
a subsequent step of Si, i.e., satisfying i < Pi.

• Each directed edge in DR points from Si to its parent
SPi

.
The prerequisite tree of R, denoted as TR, is then defined as
a dependency tree that satisfies the following condition.
• For any two nodes Si and Sj (i < j), there is a path from
Si to Sj in TR i.f.f. Si is a prerequisite cooking step
of Sj , i.e., we cannot perform step Sj without finishing
step Si.

Figure 1(b) shows the prerequisite tree of the recipe “Straw-
berry Shortcake”. Step 5 is a prerequisite step of 9 since the
dough has to be made before baking it. However, step 2 and
step 9 are independent since we can bake the dough without
preparing the strawberry.

Given a recipe R as input, the objective is to build the
prerequisite tree TR. This poses two major challenges: (1)
how to judge whether a given step is a prerequisite step of
another, and (2) how to construct the prerequisite tree based on
noisy and even contradictory pairwise predictions. To address
the first challenge, we extract semantic features from both
images and texts with a two-stage training process and then
use early/late-fusion to combine them for prediction. For the
second challenge, we propose a beam-search-based strategy
to build the prerequisite tree, which makes a balance between
greedy search and global optimization.

B. Pairwise Prerequisite Relation Detection

We first learn to detect prerequisite relations between
cooking steps. Specifically, given any two steps Si and Sj

(i < j) from a recipe R, the objective is to learn a function
P (〈Si, Sj〉) that maps a step pair 〈Si, Sj〉 to a scalar value
between 0 and 1, representing the probability that Si is a
prerequisite step of Sj .

IEEE TRANSACTIONS ON MULTIMEDIA 4

1) Training Data Acquisition: To train the pairwise pre-
requisite relation classifier P and evaluate the performance,
we harvest step pairs from the labeled prerequisite trees
in the training data. Specifically, for a given recipe R =
{S1, · · · , Sn} and its associated prerequisite tree TR, we ob-
tain labeled step pairs following the definition of prerequisite
tree using the two rules below.

• For any step Si and its parent SPi
, we harvest a positive

sample (x = 〈Si, SPi〉,y = +1).
• If there is no path from Si to Sj in TR, we harvest a

negative sample (x = 〈Si, Sj〉,y = -1).

This gives us a dataset of labeled pairwise prerequisite re-
lations D = {v(x(i)), y(i)}Mi=1, based on which we train the
feature extractor and binary classifier to learn the mapping
P : v(x)→ y.

2) Image Feature Extraction: Process images serve as an
important clue for detecting prerequisite relations. In most
cases, visually similar steps are operating on the same in-
gredient, thus they are more likely to have a prerequisite
relation (e.g., Step 2 and Step 3 in Figure 1(b)). We use
ResNet-50 [52] to extract features for cooking images. ResNet
introduces the residual block to alleviate the gradient vanishing
problem of deep convolution network, which allows the model
to go deeper without much increase in training difficulty. The
pre-trained ResNET-50 has been widely used to extract image
features in computer vision [53], [7]. It inputs the raw pixels
of an image and outputs its image feature vector. To make
the model more adaptable to the food domain, we fine-tune
the pre-trained ResNet-50 with Recipe1M [6] dataset, which
contains 251, 980 training images of 1, 047 food categories
(e.g., chocolate cake, cookie). The image features learned by
the last convolutional layer of the ResNET-50 is projected to
a softmax output layer to predict the food category during
training. After fine-tuning, we drop the softmax layer and use
the outputs from last layer as image features.

3) Text Feature Extraction: To extract deep semantic fea-
tures from instruction texts, we adopt the idea of language
model (LM) pre-training [54], [55], [56], [57], [58], which
first pretrain neural networks on large-scale unlabeled text
corpora, and then finetune the models or representations on
downstream tasks. Among them, the Bidirectional Encoder
Representations from Transformers (BERT) [56] is a multi-
layer Transformer network [59] consisting of stacked self-
attention layers, which is a widely-used pretraining approach
in NLP. Given an input sequence s = {[CLS], w1, · · · , w|s|}
([CLS] is special token marking the whole sequence), BERT
first packs them together into H0 = [x0,x1, · · · ,x|s|], where
xi is the input vector for token wi. Then, an L-layer Trans-
former is used to encode the input to obtain the final layer
representations HL = [hL

0 ,h
L
1 , · · · ,hL

|s|]. Typically, hL
0 is

used as the semantic representation of the whole sequence
s.

BERT is pre-trained on two large corpus (English Wikipedia
and BookCorpus [60]) for the masked token prediction task.
Given the input token sequence s, a certain portion of tokens
are replaced by a special symbol [MASK], and the model
is trained to recover the original tokens from the corrupted

version ŝ. As BERT is not trained on recipe data, we fine-
tune BERT with the same masked token prediction task on the
training dataset. The fine-tuned model is then used to extract
text features for each step. We treat each step as a sequence
of tokens and obtain the semantic representations from hL

0 .
4) Multi-modal Fusion: To fuse the features from different

modalities, we explore two widely-adopted paradigms: (1)
early-fusion which combines the image and text features
before predicting the prerequisite relations, and (2) late-fusion
which first predicts the prerequisite relations from each
modality separately and then combines the prediction results.

Early Fusion. As shown in Figure 2(a), given a step
pair 〈Si, Sj〉, we first extract the feature vectors of process
images and text instructions respectively for steps Si and
Sj . The resulting feature vectors are denoted as mi and mj

for images, and ei and ej for text features. We then add a
feature transformation layer to map the image feature and text
feature into the same semantic space with same dimension.
Feature transformation layer is implemented as a feed forward
network with one hidden layer. The transformed vectors for
mi, ei, mj , and ej are concatenated as a single vector v, and
then we employ a feed forward network with 2 hidden layers
to learn the prerequisite relations based on the feature vector
v. In training, the parameters for the feed forward layer and
the feature transformation layer are jointly trained, while the
parameters for ResNet-50 and BERT are fixed.

Late Fusion. As shown in Figure 2(b), in late fusion, we train
two prerequisite relation classifiers separately from image fea-
tures and text features. In testing time, the output probability
from the image side (Pm) and from the text side (Pe) are
linearly combined to obtain the final prediction score P , i.e.,
P = α · Pm + (1 − α) · Pe, where α is a parameter trading
off the prediction. To train a text-based relation classifier,
we use BERT in double-sentence mode, in which the texts
from step Si and Sj are concatenated as a single sequence
separated by a special token [SEP]. The extracted feature
vector e is then linked to a feed forward network with 2
hidden layers to predict prerequisite relations. For image-
based relation classifier, we adopt the Siamese network [61],
a famous network structure in learning image relations. The
siamese neural network consists of twin networks (in purple)
which accept distinct inputs but share weight matrices at each
layer. We follow the structure of [61] to use a network with
three convolutional layers, with a contractive loss function at
the top.

C. Prerequisite Tree Construction

We denote the learned pairwise prerequisite relation clas-
sifier as a function P (Si, Sj) that takes any step pair x =
〈Si, Sj〉 from a recipe R as input, and outputs a confidence
score ranging from 0 to 1. The score represents the probability
that Si is a prerequisite step of Sj , denoted as Si → Sj .
The major challenge of constructing the prerequisite tree
from P (Si, Sj) is the presence of conflicting relation between
step pairs, which results in transitivity property cannot be

IEEE TRANSACTIONS ON MULTIMEDIA 5

Step 2: first cut the
meat on little pieces
or use meat mince

Step 3: rub the garlic
with marjoram and
add it to the meat.

ResNet-50 BERT

⋯

Feature
Transformation

⋯

Feature
Transformation

ResNet-50 BERT

⋯

Feature
Transformation

⋯

Feature
Transformation

Feed Forward

Softmax

Output Probability

Images of 𝑺𝒊 Texts of 𝑺𝒊 Images of 𝑺𝒋 Texts of 𝑺𝒋

𝒎𝒊 𝒆𝒊 𝒎𝒋 𝒆𝒋

𝒗𝒊 𝒗𝒋

𝒗

(a) Early Fusion

Step 2: first cut the
meat on little pieces
or use meat mince

Step 3: rub the garlic
with marjoram and
add it to the meat.

ResNet-50 BERT

⋯

Sister
Network #1

ResNet-50

⋯

Images of 𝑺𝒊 Texts of 𝑺𝒊Images of 𝑺𝒋 Texts of 𝑺𝒋

𝒎𝒋

Feed Forward

Softmax

𝑷𝒆

⋯𝒆

Sister
Network #2

Contractive Loss

𝒎𝒊

Weights

𝑷𝒎

Output Probability
𝑷 = 𝜶𝑷𝒎 + (𝟏 − 𝜶)𝑷𝒆

(b) Late Fusion

Fig. 2. Multi-modal Fusing for Prerequisite Relation Detection. Early fusion (a) concatenates visual and textual features before detecting prerequisite relation.
Late fusion (b) first detect prerequisite relation from texts and images separately and then combines the predictions.

guaranteed for pairwise prediction. An example is: S1 → S2,
S2 → S3, but S1 9 S3. In this case, the tree can be either
S1 → S2 → S3 or S1 → S2, S1 → S3. How to address these
potential contradictions in tree construction depends on the
prior assumption and the construction strategy. This section
first proposes two baseline algorithms based on greedy search
and maximum score, which give priority to step pairs in
close proximity and high-scoring step pairs respectively. A
generalized algorithm based on beam search is then proposed
to combine their respective advantages.

1) Greedy-based Method: Given a recipe
R = (S1, · · · , Sn) with n steps as input, Greedy-based
Prerequisite Tree Construction (Greedy-PTC) iteratively
builds the tree by manipulating the dependency forest F
(initialized as an empty set) each time the algorithm reads in
a new step from R. Each tree in F is a subtree of the final
prerequisite tree, and the node set of F contains all steps
that have been read before. In the i-th iteration, the algorithm
reads step Si and tests its prerequisite relation with the root
node of each tree T ∈ F via the learned prediction function
P (Si, rT) (rT is the root of T). Once P (Si, rT) is above a
pre-defined threshold θ, a new edge from rT to Si is created.
Note that two trees T1 and T2 in F will merge into a single
tree with Si as the root, if both P (Si, rT1

) and P (Si, rT2
)

are above the threshold. Finally, if Si is not connected to any
tree in F , Si is treated as a single-node tree and add it to the
forest F . The greedy-PTC essentially links Si to Sj whenever
it finds an Sj that satisfies P (Si, Sj) > θ. This makes the
greedy-PTC to some extent “short-sighted”, preferring to link
Si to a satisfactory subsequent step close in distance, but
failing to consider better steps after Sj .

2) Maximum-weight Method: The Maximum-weight Pre-
requisite Tree Construction (Max-PTC) addresses the problem
of greedy-PTC by searching for the prerequisite tree TR
globally, i.e., finding the best-scoring tree from all possible
dependency trees of R, denoted as ΩR. The score of a
dependency tree T ∈ ΩR is simply defined as the sum of

prediction scores of all n− 1 edges in T , as follows.

TR = arg max
T∈ΩR

 ∑
〈Si,Sj〉∈ET

P (Si, Sj)

 (1)

where ET is the edge set of T . Note that in a dependency
tree, the parent step of Si (1 ≤ i ≤ n − 1) comes from
one of its subsequent steps Λi = {Si+1, · · · , Sn}. With this
constrain, to find a maximum-scoring tree in ΩR, for each
step Si, we simply need to choose the step S ∈ Λi with the
maximum prediction score P (Si, S) as the parent of Si, i.e.,
SPi = arg maxS∈Λi P (Si, S). In this way, we can efficiently
find TR in a time complexity of O(n2).

Although max-PTC addresses the shortsightedness problem
in greedy-based method, a maximum-scoring tree is not guar-
anteed to be a prerequisite tree. Consider a tree where each
step S1, · · · , Sn−1 directly links to the last step Sn. As each
step Si (1 ≤ i ≤ n−1) is a prerequisite step of Sn, the overall
score for the tree is high, although it is not the prerequisite
tree we want. In practice, max-PTC tends to directly link
early steps to latter steps without considering the intermediate
process. This problem is not likely to happen in greedy-PTC
as closer steps are processed in priority.

3) Beam Search-based Algorithm: To inherite the advan-
tages of both greedy-PTC and max-PTC, we propose a novel
Beam Search-based Prerequisite Tree Construction (beam-
PTC) algorithm to jointly consider the distance and the score in
the building process. Given an input recipe R = (S1, · · · , Sn),
we sequentially read one step at a time. In the i-th iteration, the
algorithm maintains L number of intermediate states Ψ(i) =

{F (i)
1 , · · · , F (i)

L }. Each intermediate state F (i)
j is a dependency

forest with i nodes in total. In each iteration, given the
previous intermediate states Ψ(i−1) = {F (i−1)

1 , · · · , F (i−1)
L },

and the current step Si, we derive the intermediate states
for the current iteration Ψ(i) via over-generating and ranking.
First, for each state F (i−1)

k , we generate its derived states by
enumerating all valid dependency forests after adding Si as an
additional node. As an example, in Figure 3, we show the first

IEEE TRANSACTIONS ON MULTIMEDIA 6

three iterations of beam-PTC. We generate 4 derived states
(F (3)

1 , · · · , F (3)
4) for the state F

(2)
1 , by considering all valid

cases after adding the node S3. Then, we rank all derived states
Ψ

(i)
d and select the top-L scoring states as the intermediate

states Ψ(i) for the current iteration. The full algorithm is
presented in Algorithm 1.

Algorithm 1: Beam Search Algorithm for Prerequisite
Tree Construction

Input: Recipe R = {S1, · · · , Sn}, Prediction function
P (·, ·), State size L

Output: Prerequisite tree TR
Ψ

(0)
d ← {∅ }

for i from 1 to n do
Ψ

(i)
d = ∅

foreach state F in Ψ
(i−1)
d do

Ψ
(i)
d ← Ψ

(i)
d ∪ derive states(F, Si)

end
Ψ(i) ← select topN(Ψ

(i)
d , T)

end
TR ← select topN(Ψ(n), 1)
return TR

To rank the derived states, we propose a scoring function h
to evaluate each state. A state (random forest) F can be formu-
lated as a directed graph with a node set N = {S1, · · · , Sm}
and an edge set E . The score for state F is defined as follows.

h(F) =
∑

1≤i<j≤m

h(Si, Sj) (2)

h(Si, Sj) =

{
P (Si, Sj), if 〈Si, Sj〉 ∈ E
1− P (Si, Sj), otherwise

(3)

where h(Si, Sj) is the edge score of 〈Si, Sj〉. If this edge
exists in F , its edge score is the prediction score P (Si, Sj).
Otherwise, we set the edge score as 1−P (Si, Sj). To calculate
the score of the state, we enumerate all 〈Si, Sj〉 pairs with
1 ≤ i < j ≤ m, and sum up their edge scores. For
example, in Figure 3, suppose P (S1, S2) = 0.55, P (S1, S3) =

0.6, P (S2, S3) = 0.3, the score for state F
(3)
2 would be

(1− 0.55) + 0.6 + 0.3 = 1.35.
When L = 1, beam-PTC is equivalent to greedy-PTC with

the threshold θ = 0.5, as we only derive the most promising
state in each iteration. When L = ∞, the states in the last
iteration will contain all valid dependency trees of R, i.e.,
Ψ(n) = ΩR. In this case, beam-PTC is equivalent to max-
PTC.

4) Time Complexity: We analyze the time complexity for
each algorithm in this section. Note that we denote n as the
number of steps and L is the beam size. For greedy-based
method, we iteratively read in the new step for n times, and
each time we perform one testing operation which requires
constant time O(1). Therefore, the overall time complexity for
greedy-based method is O(n). For maximum-weight method,
as discussed in Section III-C2, we need to find the node
SPi

= arg maxS∈Λi
P (Si, S) for each step Si, which requires

Fig. 3. An example illustrating the beam-PTC algorithm.

n2 times of operations in total. Therefore, the overall time
complexity for maximum-weight method is O(n2).

For our proposed beam search-based algorithm, there are n
iterations in total. For each iteration, L number of states are
expanded. In the extreme case, there are at most 2n number of
possible derived states for a state in the n-th iteration, which is
computationally expensive when the number of step n is large.
To avoid this, we employ an approximation strategy which
randomly select M derived states when the number of possible
derived states is larger than M . The overall time complexity
is therefore O(nLM). In experiments, we set M = 512.

IV. EXPERIMENTS

We separately evaluate the pairwise prerequisite relation
detection and the prerequisite tree construction. We aim to
explore the following questions: 1) What is the advantage
of considering multi-modal information in detecting pair-
wise prerequisite relations, and 2) What are the effects when
considering different tree construction strategies.

A. Dataset

The evaluation is based on the Multi-modal Recipe Struc-
ture (MM-ReS) [15] dataset, consisting of 9,850 real food
recipes with labeled prerequisite trees. Each recipe contains
an average of 11.26 cooking steps, where each step comprises
of both textual instructions and multiple cooking images. As
mentioned in the introduction, we want to explore whether our
method works well with only limited amount of training data.
If so, our method can quickly adapt to other food domains
with only small efforts of gathering new training data. To
this end, we randomly sampled 400 recipes from MM-ReS
to obtain the Mini-MM-ReS dataset to train and evaluate our
method. The key data statistics of MM-ReS and Mini-MM-
ReS are summarized in Table I. The dataset has been released
at https://github.com/teacherpeterpan/The-MRePT-Dataset/.

B. Pairwise Prerequisite Relation Detection

We first evaluate our method for pairwise prerequisite rela-
tion detection. The 400 recipes in the Mini-MM-ReS dataset

https://github.com/teacherpeterpan/The-MRePT-Dataset/

IEEE TRANSACTIONS ON MULTIMEDIA 7

TABLE I
DATA STATISTICS OF MM-RES AND MINI-MM-RES.

Features MM-ReS Mini-MM-ReS
Recipes 9,850 400

Cooking steps 110,878 3,625
Cooking images 227,082 8,314

Sentences 143,580 15,418
Avg. steps / recipe 11.26 9.77

Avg. images / recipe 23.05 22.41
Avg. images / step 2.05 2.29

are randomly split into training (80%), validation (10%), and
testing set (10%). For each set, we obtain the labeled step
pairs with the method described in Section III-B1. In total, we
obtain 6,447 step pairs for training, 718 pairs for validation,
and 1,000 pairs for testing. Among the total 8,165 step pairs,
3,201 are positive samples and 4,964 are negative samples. We
use precision (P), recall (R), and F1-score (F1) as evaluation
metrics.

1) Baselines: We perform a performance comparison
among the following 7 methods, which can be categorized
into 3 groups based on the use of information.

Text-Only. We first choose two baselines that only utilize
instruction texts. Most related works for prerequisite detection
can hardly be applied in our task, such as [22] and [34],
as their features are highly domain-dependent. The only
comparable work is Jermsurawong et al., 2015 [14],
in which several text-based features are proposed to detect
prerequisite relations between recipe instructions, and an SVM
classifier is trained for relation classification. To evaluate the
effectiveness of deep features, we further apply BERT in the
way as described in the late fusion method in Section III-B4.
We name this baseline as BERT Classification.

Image-Only. To the best of our knowledge, there is no
existing work that uses process images to predict prerequisite
relation. Therefore, we propose the following two baselines
that only utilize process images. The first weak baseline
simply judge the prerequisite relation based on image
similarity. After extracting image features using ResNet-50
described in Section III-B2, the image similarity between
any two process images is then defined as the normalized
cosine distance between their feature vectors. As one step is
often associated with multiple cooking images, we propose
the following three features. The average image similarity is
the normalized cosine distance between the average image
vector from step Si and step Sj . We also incorporate the
maximum / minimum image similarity, which is defined
as the maximum/minimum similarity between the process
images from Si and Sj . These three features are then linearly
combined to train an SVM classifier for relation detection.
The second baseline applies the Siamese network as the
prerequisite relation classifier, as described in Section III-B4.

Multi-Modal. We compare the following three methods that
utilize both image and text information. We employ a baseline
that enriches the feature set of [14] by adding the three image

similarity features as proposed above. We name this method
as [14] + Image Similarity. The other two methods are the
Early Fusion and the Late Fusion method that we proposed
in Section III-B4.

2) Performance Comparison: We first report the
performance of all the methods, and then investigate
how multi-modality, neural features, and early/late fusion
affects the results. The performance comparison results
are presented in Table II. We discuss the results from the
following three aspects.

Effects of extracting neural features. Within all three
groups of methods (text-only, image-only, and multi-modal),
the neural network-based model performs better than the
method using hand-crafted features in prerequisite detection.
For text-only models, when applying pre-trained BERT, it
outperforms the hand-crafted features in [14] by a large
margin. This is because BERT has been found to be able
to capture high-level linguistic features such as sentence
composition and semantic dependency, which are very
important for this task. For image-only models, Siamese
Network outperforms image similarity by 8.6 in F1 score.
The improvement is less significant as compared with text
features. There are two potential reasons: (1) image similarity
already serves as a strong clue in determining prerequisite
relations, and (2) instructional texts are more informative
than process images although they play a complementary role.

Effects of considering multi-modality. When adding the
three image similarity features to [14], it achieves an F1 score
of 70.0, outperforming the original model by 5.4 in F1. This
demonstrates the effectiveness of utilizing process images
beyond text descriptions. Similar results are also observed
when using deep neural features. BERT Classification
and Siamese Network achieve F1 score of 80.1 and 78.6,
respectively. However, the performance improves to 82.2
in F1 when using late fusion to combine the predictions
from both sides. This further indicates that instructional texts
and process images complement each other in detecting
prerequisite relations. This point will be demonstrated more
intuitively in IV-B3.

Early fusion and late fusion. For multi-modal feature fusion,
early fusion and late fusion achieve comparable results of 81.4
and 82.2 in F1 score. Late fusion slightly outperforms early
fusion, which can be explained by the parameter size. For
early fusion, as we combine image feature and text feature
before classification, the number of parameters of early fusion
is much larger than that of late fusion. This makes the model
easy to overfit in training.

3) Result Visualization and Error Analysis: In Table III,
we show some typical examples of predictions made by the
best model (Late Fusion) in test set. The first two examples
show that our model can make correct predictions based on
both text and image clues. However, there are some typical
mistakes that the model tends to make. We identify two major
error types by analyzing the mis-classified samples.

From visual aspect, the error comes from i.e., the lack of

IEEE TRANSACTIONS ON MULTIMEDIA 8

TABLE II
THE PERFORMANCE COMPARISON ON THE TASK OF PAIRWISE

PREREQUISITE RELATION DETECTION IN THE MINI-MM-RES DATASET.
THE BEST PERFORMANCE FOR EACH VARIANT OF METHODS IS IN BOLD.

Models P R F1

Text-Only
Jermsurawong et al., 2015 [14] 68.5 68.4 68.4

BERT Classification 79.8 80.4 80.1

Image-Only
Image Similarity 69.6 70.4 70.0
Siamese Network 79.2 78.1 78.6

Multi-Modal
[14] + Image Similarity 73.8 74.6 74.0

Early Fusion 82.4 80.8 81.4
Late Fusion 82.1 82.3 82.2

fine-grained ingredient recognition. Sometimes, prerequisite
relation is inferred from overlapping ingredients or tools
in the image; however, this is hard to be captured by the
overall image similarity. For example, in sample 3, despite
that the sausage appears in both steps, their cooking images
look visually different. This problem may be overcome by
endowing the feature extractor with the ability to recognize
ingredients. One potential way is to perform multi-task training
of both image classification and ingredient recognition to fine-
tune the image feature extractor.

For textual aspect, the error mainly comes from the lack
of context understanding. For example, in the first step of
sample 4, the burner actually contains rice, making this step
relevant to the second step; however, we can tell the rice
neither from the picture nor from the text. Therefore, context
information is required in this case, as we can know from
previous steps that the rice has already been put into the burner.
To address this problem, prerequisite relation detection beyond
pairwise comparison is required, which will be left to future
exploration.

C. Prerequisite Tree Construction

We now investigate how different strategies proposed in
Section III-C impacts the prerequisite tree construction.

1) Experimental Settings: Given a recipe
R = (S1, · · · , Sn), the task of constructing prerequisite
tree is to find the prerequisite tree TR from all possible
dependency trees of R, denoted as ΩR. Formally, a valid
dependency tree T ∈ ΩR can be represented by the n−1 child-
to-parent edges of the tree, i.e., {〈S1, SP1〉, 〈Sn−1, SPn−1〉},
where i < Pi for all i from 1 to n − 1. Therefore, building
the prerequisite tree is essentially determining the parents
SP1

, · · · , SPn−1
for each step from S1 to Sn−1, where

Pi ∈ {i+ 1, · · · , n− 1}. Both the pairwise relation classifier
and the tree construction strategy contribute to the output
prerequisite tree. To investigate how they individually affect
the result, we introduce two baselines as follows.
• Random-PTC: This is a weak baseline that employs a

completely random strategy to build the tree without the
help of classifier, i.e., we randomly select each Pi from
its value range {i+ 1, · · · , n− 1}.

• Cls-Random-PTC: Instead of employing a certain strat-
egy proposed in Section III-C, we apply a random strat-
egy with the guidance of the pairwise relation classifier. In
determining Pi, we first extract all j ∈ {i+1, · · · , n−1}

TABLE III
TYPICAL EXAMPLES OF MODEL PREDICTIONS. (G.T.) REFERS TO THE

GROUND-TRUTH LABEL, AND (PRED.) REFERS TO THE MODEL
PREDICTION. + AND − DENOTE THE SEQUENTIAL RELATION AND THE

PARALLEL RELATION, RESPECTIVELY.

Step Pair Labels

1 (G.T.) +
(Pred.) +

2 (G.T.) −
(Pred.) −

3 (G.T.) +
(Pred.) −

4 (G.T.) +
(Pred.) −

that satisfies P (Si, Sj) > θ to form a new candidate set
Ci. Then, Pi is randomly selected from Ci. When Ci = ∅,
we select Pi completely randomly from {i+1, · · · , n−1}.
By comparing the performance of our tree construction
strategies with Cls-Random-PTC, we can qualitatively
evaluate the additional benefit brought by the strategy
without the interference of the pairwise classifier.

To evaluate the output prerequisite tree, we adopt the same
metric as in [14], using the accuracy of predicting edges in the
prerequisite tree. The overall accuracy of the task is computed
at the edge level (counting all edges in the data set), and at
the recipe level (average accuracy over all recipes).

2) Performance of Different Strategies: We evaluate the
performance of our proposed strategies on the Mini-MM-ReS
dataset. The 400 annotated recipes are randomly split into
training, development, and test sets with the ratios of 70%,
10%, and 20%, respectively. The training set is used to train
the pairwise relation classifier based on the late fusion model.
The development set is used for tuning parameters. We report
here the edge-level and recipe-level accuracy for each strategy
on the test set as summarized in Table IV.

We have four observations. First, for random strategies,
Cls-Random-PTC outperforms Random-PTC by 14.35% in
edge-level accuracy. This demonstrates the effectiveness of

IEEE TRANSACTIONS ON MULTIMEDIA 9

TABLE IV
PERFORMANCE OF PREREQUISITE TREE CONSTRUCTION (%).

Strategy Edge-level Recipe-level
Accuracy Accuracy

Baseline Random-PTC 33.09 35.87
Cls-Random-PTC 47.44 49.80

Proposed

Greedy-PTC (θ = 0.5) 75.77 77.01
Max-PTC 64.06 66.22

Beam-PTC (L = 2) 79.84 80.21
Beam-PTC (L = 3) 80.07 80.39

utilizing pairwise prerequisite relation classifier. Second, all of
the proposed strategies outperform the Cls-Random-PTC by a
large margin, ranging from 16.62% to 32.63% in edge-level
accuracy. This reveals that employing appropriate strategies is
vital to building the prerequisite tree from a noisy pairwise
classifier with erroneous and contradictory predictions. Third,
among the three strategies, greedy-PTC outperforms max-PTC
by 11.71% in edge-level accuracy, showing that when finding
the parent of Si, it is better to give priority to closer subsequent
steps rather than the highly-scored subsequent steps of Si.
Lastly, beam-PTC (L = 3) further improves the performance
over greedy-PTC by 4.3% in edge-level accuracy. This is as
expected because beam-PTC overcomes the “short-sighted”
problem of greedy-PTC, by considering closer subsequent
steps in priority while keeping track of the overall score at
the same time.

(a) θ

(b) L

Fig. 4. The accuracy with the change of hyper-parameters θ and L.

3) Parameter Analysis: We further investigate how hyper-
parameters affect the performance including: (1) the threshold
θ in the greedy-PTC, and (2) the number of intermediate states
L in the beam-PTC. Figure 4(a) shows the performance of the
greedy-PTC in the validation set for each θ ranging from 0.05
to 1.0. The performance is consistently good when θ ranges
from 0.05 to 0.5 until a significant drop after θ > 0.8. This
reveals that a prerequisite relation is more common than an
independent relation between two steps, as 1 − θ essentially
functions as the prior probability of a prerequisite relation
existing between steps. Figure 4(b) shows the accuracy of the
beam-PTC when L ranges from 1 to 10. The performance
consistently increases when L ≤ 3 but starts to drop after-
wards. This shows that beam-PTC makes a balance between
distance-centric strategy and score-centric strategy.

V. CONCLUSIONS

We have presented a two-step framework for automatically
building prerequisite tree for cooking recipes, leveraging both
text procedures and process images for pairwise prerequisite
relation detection, and applying three tree construction strate-
gies for prerequisite tree construction. Experimental results on
a challenging dataset (MM-ReS) show that considering multi-
modal features enables better performance for prerequisite tree
construction, and the process images are highly complemen-
tary to procedure text.

While encouraging, the current work requires further inves-
tigation in at least two directions. First, user-posted cooking
steps are often noisy and coarse-grained, e.g., many parallel
processes are written within a single step. Therefore, con-
structing fine-grained prerequisite tree via automatic cooking
step segmentation is an important direction. Second, applying
multi-modal prerequisite tree to downstream applications such
as cross-modal retrieval is also useful. For example, represen-
tation learning on prerequisite tree should benefit applications
such as recipe classification and recipe retrieval.

ACKNOWLEDGMENT

This research is supported by the National Research Foun-
dation, Singapore under its International Research Centres
in Singapore Funding Initiative. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National
Research Foundation, Singapore.

REFERENCES

[1] W. Min, B. Bao, S. Mei, Y. Zhu, Y. Rui, and S. Jiang, “You are what you
eat: Exploring rich recipe information for cross-region food analysis,”
IEEE Transactions on Multimedia (TMM), vol. 20, no. 4, pp. 950–964,
2018.

[2] R. Xu, L. Herranz, S. Jiang, S. Wang, X. Song, and R. Jain, “Geolocal-
ized modeling for dish recognition,” IEEE Transactions on Multimedia
(TMM), vol. 17, no. 8, pp. 1187–1199, 2015.

[3] L. Herranz, S. Jiang, and R. Xu, “Modeling restaurant context for food
recognition,” IEEE Transactions on Multimedia (TMM), vol. 19, no. 2,
pp. 430–440, 2017.

[4] T. Maruyama, Y. Kawano, and K. Yanai, “Real-time mobile recipe rec-
ommendation system using food ingredient recognition,” in Proceedings
of IMMPD, 2012, pp. 27–34.

IEEE TRANSACTIONS ON MULTIMEDIA 10

[5] S. Horiguchi, S. Amano, M. Ogawa, and K. Aizawa, “Personalized
classifier for food image recognition,” IEEE Transactions on Multimedia
(TMM), vol. 20, no. 10, pp. 2836–2848, 2018.

[6] A. Salvador, N. Hynes, Y. Aytar, J. Marin, F. Ofli, I. Weber, and
A. Torralba, “Learning cross-modal embeddings for cooking recipes and
food images,” in Proceedings of CVPR, 2017, pp. 3020–3028.

[7] J.-j. Chen, C.-W. Ngo, and T.-S. Chua, “Cross-modal recipe retrieval
with rich food attributes,” in Proceedings of ACM-MM, 2017, pp. 1771–
1779.

[8] W. Min, S. Jiang, J. Sang, H. Wang, X. Liu, and L. Herranz, “Being
a supercook: Joint food attributes and multimodal content modeling
for recipe retrieval and exploration,” IEEE Transactions on Multimedia
(TMM), vol. 19, no. 5, pp. 1100–1113, 2017.

[9] M. Carvalho, R. Cadène, D. Picard, L. Soulier, N. Thome, and M. Cord,
“Cross-modal retrieval in the cooking context: Learning semantic text-
image embeddings,” in Proceedings of SIGIR, 2018, pp. 35–44.

[10] C. Kiddon, G. T. Ponnuraj, L. Zettlemoyer, and Y. Choi, “Mise en place:
Unsupervised interpretation of instructional recipes,” in Proceedings of
EMNLP, 2015, pp. 982–992.

[11] Y. Yamakata, S. Imahori, H. Maeta, and S. Mori, “A method for
extracting major workflow composed of ingredients, tools, and actions
from cooking procedural text,” in Proceedings of ICMEW, 2016, pp.
1–6.

[12] Y. Yamakata, H. Maeta, T. Kadowaki, T. Sasada, S. Imahori, and
S. Mori, “Cooking recipe search by pairs of ingredient and action—word
sequence vs flow-graph representation—,” Transactions of the Japanese
Society for Artificial Intelligence, vol. 32, no. 1, pp. WII–F 1, 2017.

[13] J. Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recurrent
neural networks,” in Proceedings of ICLR, 2017.

[14] J. Jermsurawong and N. Habash, “Predicting the structure of cooking
recipes,” in Proceedings of EMNLP, 2015, pp. 781–786.

[15] L. Pan, J. Chen, J. Wu, S. Liu, C. Ngo, M. Kan, Y. Jiang, and
T. Chua, “Multi-modal cooking workflow construction for food recipes,”
in Proceedings of ACMMM, 2020, pp. 1132–1141.

[16] D. Kiela, S. Bhooshan, H. Firooz, and D. Testuggine, “Supervised mul-
timodal bitransformers for classifying images and text,” in Proceedings
of NeurIPS 2019 Workshop, 2019.

[17] L. Wang, Q. Li, N. Li, G. Dong, and Y. Yang, “Substructure similarity
measurement in chinese recipes,” in Proceedings of WWW, 2008, pp.
979–988.

[18] Y. Yamakata, S. Imahori, Y. Sugiyama, S. Mori, and K. Tanaka,
“Feature extraction and summarization of recipes using flow graph,”
in Proceedings of SocInfo, 2013, pp. 241–254.

[19] R. Hamada, J. Okabe, I. Ide, S. Satoh, S. Sakai, and H. Tanaka, “Cooking
navi: assistant for daily cooking in kitchen,” in Proceedings of ACM-
MM, 2005, pp. 371–374.

[20] S. Karikome and A. Fujii, “Improving structural analysis of cooking
recipe text,” IEICE technical report. Data engineering, vol. 112, no. 75,
pp. 43–48, 2012.

[21] K. Walter, M. Minor, and R. Bergmann, “Workflow extraction from
cooking recipes,” in Proceedings of the ICCBR 2011 Workshops, 2011,
pp. 207–216.

[22] L. Pan, C. Li, J. Li, and J. Tang, “Prerequisite relation learning for
concepts in moocs,” in Proceedings of ACL, vol. 1, 2017, pp. 1447–
1456.

[23] C. Liang, J. Ye, Z. Wu, B. Pursel, and C. L. Giles, “Recovering
concept prerequisite relations from university course dependencies,” in
Proceedings of AAAI, 2017, pp. 4786–4791.

[24] Y. Yang, H. Liu, J. Carbonell, and W. Ma, “Concept graph learning from
educational data,” in Proceedings of WSDM, 2015, pp. 159–168.

[25] J. Liu, L. Jiang, Z. Wu, Q. Zheng, and Y. Qian, “Mining learning-
dependency between knowledge units from text,” The VLDB Journal,
vol. 20, no. 3, pp. 335–345, 2011.

[26] A. Vuong, T. Nixon, and B. Towle, “A method for finding prerequisites
within a curriculum,” in Proceedings of EDM, 2011, pp. 211–216.

[27] R. Scheines, E. Silver, and I. M. Goldin, “Discovering prerequisite
relationships among knowledge components,” in Proceedings of EDM,
2014, pp. 355–356.

[28] X. Huang, K. Yang, and V. B. Lawrence, “An efficient data mining ap-
proach to concept map generation for adaptive learning,” in Proceedings
of ICDM, 2015, pp. 247–260.

[29] L. Pan, X. Wang, C. Li, J. Li, and J. Tang, “Course concept extraction
in moocs via embedding-based graph propagation,” in Proceedings of
IJCNLP, 2017, pp. 875–884.

[30] C. Liang, Z. Wu, W. Huang, and C. L. Giles, “Measuring prerequisite
relations among concepts,” in Proceedings of EMNLP, 2015, pp. 1668–
1674.

[31] P. P. Talukdar and W. W. Cohen, “Crowdsourced comprehension: pre-
dicting prerequisite structure in wikipedia,” in Workshop on Building
Educational Applications Using NLP, 2012, pp. 307–315.

[32] S. Wang, A. Ororbia, Z. Wu, K. Williams, C. Liang, B. Pursel, and C. L.
Giles, “Using prerequisites to extract concept maps fromtextbooks,” in
Proceedings of CIKM, 2016, pp. 317–326.

[33] J. Gordon, L. Zhu, A. Galstyan, P. Natarajan, and G. Burns, “Modeling
concept dependencies in a scientific corpus,” in Proceedings of ACL,
vol. 1, 2016, pp. 866–875.

[34] C. Liang, J. Ye, Z. Wu, B. Pursel, and C. L. Giles, “Recovering
concept prerequisite relations from university course dependencies,” in
Proceedings of AAAI, 2017, pp. 4786–4791.

[35] J. Chen, L. Pan, Z. Wei, X. Wang, C. Ngo, and T. Chua, “Zero-shot
ingredient recognition by multi-relational graph convolutional network,”
in Proceedings of AAAI, 2020, pp. 10 542–10 550.

[36] M. Carvalho, R. Cadène, D. Picard, L. Soulier, N. Thome, and M. Cord,
“Cross-modal retrieval in the cooking context: Learning semantic text-
image embeddings,” in Proceedings of SIGIR, 2018, pp. 35–44.

[37] B. Zhu, C. Ngo, J. Chen, and Y. Hao, “R2GAN: cross-modal recipe
retrieval with generative adversarial network,” in Proceedings of CVPR,
2019, pp. 11 477–11 486.

[38] H. Wang, D. Sahoo, C. Liu, E. Lim, and S. C. H. Hoi, “Learning cross-
modal embeddings with adversarial networks for cooking recipes and
food images,” in Proceedings of CVPR, 2019, pp. 11 572–11 581.

[39] A. Salvador, M. Drozdzal, X. Giró-i-Nieto, and A. Romero, “Inverse
cooking: Recipe generation from food images,” in Proceedings of CVPR,
2019, pp. 10 453–10 462.

[40] Z. Ming, J. Chen, Y. Cao, C. Forde, C. Ngo, and T. Chua, “Food photo
recognition for dietary tracking: System and experiment,” in Proceedings
of MMM, vol. 10705, 2018, pp. 129–141.

[41] L. Deng, J. Chen, Q. Sun, X. He, S. Tang, Z. Ming, Y. Zhang, and
T. Chua, “Mixed-dish recognition with contextual relation networks,” in
Proceedings of ACMMM, 2019, pp. 112–120.

[42] J. Chen and C. Ngo, “Deep-based ingredient recognition for cooking
recipe retrieval,” in Proceedings of ACMMM, 2016, pp. 32–41.

[43] L. Pan, S. Pouyanfar, H. Chen, J. Qin, and S. Chen, “Deepfood:
Automatic multi-class classification of food ingredients using deep
learning,” in Proceedings of CIC, 2017, pp. 181–189.

[44] J.-J. Chen, L. Pan, Z. Wei, X. Wang, C.-W. Ngo, and T.-S. Chua, “Zero-
shot ingredient recognition by multi-relational graph convolutional net-
work,” in Proceedings of AAAI, 2020, pp. 10 542–10 550.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of NeurIPS,
2012, pp. 1106–1114.

[46] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet: A large-
scale hierarchical image database,” in Proceedings of CVPR, 2009, pp.
248–255.

[47] A. Myers, N. Johnston, V. Rathod, A. Korattikara, A. N. Gorban,
N. Silberman, S. Guadarrama, G. Papandreou, J. Huang, and K. Murphy,
“Im2calories: Towards an automated mobile vision food diary,” in
Proceedings of ICCV, 2015, pp. 1233–1241.

[48] X. Wang, D. Kumar, N. Thome, M. Cord, and F. Precioso, “Recipe
recognition with large multimodal food dataset,” in Proceedings of ICME
Workshops, 2015, pp. 1–6.

[49] J. Harashima, Y. Someya, and Y. Kikuta, “Cookpad image dataset: An
image collection as infrastructure for food research,” in Proceedings of
SIGIR, 2017, pp. 1229–1232.

[50] J. Marin, A. Biswas, F. Ofli, N. Hynes, A. Salvador, Y. Aytar, I. Weber,
and A. Torralba, “Recipe1m+: A dataset for learning cross-modal
embeddings for cooking recipes and food images,” IEEE transactions
on pattern analysis and machine intelligence, 2019.

[51] A. Salvador, N. Hynes, Y. Aytar, J. Marı́n, F. Ofli, I. Weber, and
A. Torralba, “Learning cross-modal embeddings for cooking recipes and
food images,” in Proceedings of CVPR, 2017, pp. 3068–3076.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of CVPR, 2016, pp. 770–778.

[53] J. Chen and C.-W. Ngo, “Deep-based ingredient recognition for cooking
recipe retrieval,” in Proceedings of ACM-MM, 2016, pp. 32–41.

[54] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of NAACL-HLT, 2018, pp. 2227–2237.

[55] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” in Proceedings of ACL, 2018, pp. 328–339.

[56] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Pro-
ceedings of NAACL-HLT, 2019, pp. 4171–4186.

IEEE TRANSACTIONS ON MULTIMEDIA 11

[57] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding,” in Proceedings of NeurIPS, 2019, pp. 5754–5764.

[58] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou,
and H. Hon, “Unified language model pre-training for natural language
understanding and generation,” in Proceedings of NeurIPS, 2019, pp.
13 042–13 054.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of NIPS, 2017, pp. 6000–6010.

[60] Y. Zhu, R. Kiros, R. S. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba,
and S. Fidler, “Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books,” in Proceedings of
ICCV, 2015, pp. 19–27.

[61] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in ICML deep learning workshop, vol. 2,
2015.

Liangming Pan is a third year Computer Science
Ph.D. student at National University of Singapore,
jointly advised by Prof. Min-Yen Kan and Prof.
Tat-Seng Chua. He received a Master degree from
School of Computer Science at Tsinghua University
in June, 2017 and obtained the Bachelor degree
in Beihang University (2010 - 2014). His board
research interests include knowledge base, natural
language processing, and data mining. His Ph.D.
research topics include neural question generation,
text style transfer, and multi-modal recipe structure

prediction. He has published several research papers in top-ranked conferences
such as ACL, AAAI, ACM MM, and CVPR. He served as the Senior Program
Committee (SPC) member in IJCAI 2021. He is also a 2019/2020 Research
Achievement Award winner of NUS School of Computing.

Jingjing Chen is now a pre-tenured associate pro-
fessor at the School of Computer Science, Fudan
University. Before joining Fudan University, she
was a postdoc research fellow at the School of
Computing in the National University of Singapore.
She received her Ph.D. degree in Computer Science
from the City University of Hong Kong in 2018.
Her research interest lies in diet tracking and nu-
trition estimation based on multi-modal processing
of food images, including food recognition, cross-
modal recipe retrieval.

Shaoteng Liu is a 4th-year undergraduate student
major in Automation, at Xi’an Jiaotong University.
During 2019 Spring and Summer, He worked as a
research intern in NExT lab, National University of
Singapore.

Chong-Wah Ngo received the B.Sc. and M.Sc. de-
grees in computer engineering from Nanyang Tech-
nological University, Singapore, and the Ph.D. in
computer science from the Hong Kong University
of Science and Technology (HKUST), Hong Kong.
He is currently a Professor with the Department of
Computer Science, City University of Hong Kong,
Hong Kong. Before joining the City University of
Hong Kong, he was a Postdoctoral Scholar with
the Beckman Institute, the University of Illinois at
Urbana-Champaign (UIUC), Urbanna, IL, USA. He

was also a Visiting Researcher with Microsoft Research Asia, Beijing, China.
His research interests include large-scale multimedia information retrieval,
video computing, multimedia mining, and visualization. Prof. Ngo was the
Associate Editor of the IEEE TRANSACTIONS ON MULTIMEDIA (2011-
2014). He was the Conference Co-Chair of the ACM International Conference
on Multimedia Retrieval 2015 and the Pacific Rim Conference on Multimedia
2014. He also served as Program Co-Chair of ACM Multimedia Modeling
2012 and ICMR 2012. He was the Chairman of ACM (Hong Kong Chapter)
from 2008 to 2009.

Min-Yen Kan is an associate professor at the
National University of Singapore. He is a senior
member of the ACM and a member of the IEEE.
Currently, he is an associate editor for the journal
”Information Retrieval” and is the Editor for the
ACL Anthology, the computational linguistics com-
munity’s largest archive of published research. His
research interests include digital libraries and ap-
plied natural language processing. Specific projects
include work in the areas of scientific discourse anal-
ysis, full-text literature mining, machine translation

and applied text summarization.

Tat-Seng Chua is the KITHCT Chair Professor at
the School of Computing, National University of
Singapore. He was the Acting and Founding Dean of
the School from 1998-2000. Prof. Chua’s main re-
search interest is in multimedia information retrieval
and social media analytics. In particular, his research
focuses on the extraction, retrieval and question-
answering (QA) of text and rich media arising from
the Web and multiple social networks. He is the
co-Director of NExT, a joint Center between NUS
and Tsinghua University to develop technologies for

live social media search. Prof. Chua is the 2015 winner of the prestigious
ACM SIGMM Award for Outstanding Technical Contributions to Multimedia
Computing, Communications and Applications. He is the Chair of steering
committee of the ACM International Conference on Multimedia Retrieval
(ICMR) and Multimedia Modeling (MMM) conference series. Prof. Chua is
also the General Co-Chair of ACM Multimedia 2005, ACM CIVR (now ACM
ICMR) 2005, ACM SIGIR 2008, and ACMWeb Science 2015. He serves on
the editorial boards of four international journals. Dr. Chua is the co-Founder
of two technology startup companies in Singapore. He holds a Ph.D. from
the University of Leeds, UK.

	Introduction
	Related Work
	Recipe Structure Modeling
	Prerequisite Relation Detection
	Deep Learning for Food Analysis

	Methodology
	Problem Formulation
	Pairwise Prerequisite Relation Detection
	Training Data Acquisition
	Image Feature Extraction
	Text Feature Extraction
	Multi-modal Fusion

	Prerequisite Tree Construction
	Greedy-based Method
	Maximum-weight Method
	Beam Search-based Algorithm
	Time Complexity

	Experiments
	Dataset
	Pairwise Prerequisite Relation Detection
	Baselines
	Performance Comparison
	Result Visualization and Error Analysis

	Prerequisite Tree Construction
	Experimental Settings
	Performance of Different Strategies
	Parameter Analysis

	Conclusions
	References
	Biographies
	Liangming Pan
	Jingjing Chen
	Shaoteng Liu
	Chong-Wah Ngo
	Min-Yen Kan
	Tat-Seng Chua

