
Question Answering Passage Retrieval
Using Dependency Relations

Hang Cui Renxu Sun Keya Li Min-Yen Kan Tat-Seng Chua
Department of Computer Science

School of Computing
National University of Singapore

{cuihang, sunrenxu, likeya, kanmy, chuats}@comp.nus.edu.sg

ABSTRACT
State-of-the-art question answering (QA) systems employ term-
density ranking to retrieve answer passages. Such methods often
retrieve incorrect passages as relationships among question terms
are not considered. Previous studies attempted to address this
problem by matching dependency relations between questions and
answers. They used strict matching, which fails when
semantically equivalent relationships are phrased differently. We
propose fuzzy relation matching based on statistical models. We
present two methods for learning relation mapping scores from
past QA pairs: one based on mutual information and the other on
expectation maximization. Experimental results show that our
method significantly outperforms state-of-the-art density-based
passage retrieval methods by up to 78% in mean reciprocal rank.
Relation matching also brings about a 50% improvement in a
system enhanced by query expansion.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval - Retrieval Models; I.2.7 [Artificial Intelligence]:
Natural Language Processing; I.7.1 [Document and Text
Processing]

General Terms
Algorithms, Measurement, Experimentation

Keywords
Question Answering, Dependency Parsing, Passage Retrieval

1. INTRODUCTION
Passage retrieval has long been studied in information retrieval
[11]. It aims to search for more precise and compact text excerpts
in response to users’ queries, rather than providing whole
documents. Recently, passage retrieval has become a crucial
component in question answering (QA) systems. Most current QA
systems employ a pipeline structure that consists of several
modules to get short and precise answers to users’ questions. A
typical QA system searches for answers at increasingly finer-

grained units: (1) locating the relevant documents, (2) retrieving
passages that may contain the answer, and (3) pinpointing the
exact answer from candidate passages.

Passage retrieval (Step 2) greatly affects the performance of a QA
system. If a passage retrieval module returns too many irrelevant
passages, the answer extraction module is likely to fail to pinpoint
the correct answer due to too much noise. Also, a passage can
sufficiently answer a question. Lin et al. [16] showed that users
prefer passages to phrase-long answers because passages provide
sufficient context for them to understand the answer.

Tellex et al. [19] conducted a thorough quantitative component
evaluation for passage retrieval algorithms employed by state-of-
the-art QA systems. The authors concluded that neglecting crucial
relations between words is a major source of false positives for
current lexical matching based retrieval techniques. The reason is
that many irrelevant passages share the same question terms with
correct ones, but the relations between these terms are different
from those in the question. We illustrate this by a sample
question and some candidate sentences in Figure 1, where only
sentence S1 contains the correct answer. The other three
sentences share many question terms (in italics) but are incorrect.

Figure 1. Sample question and candidate passages illustrating
that lexical matching does not lead to the correct answer.

To address this problem, we propose a novel fuzzy relation
matching method which examines grammatical dependency
relations between question terms to improve current passage
retrieval techniques for question answering. We employ Minipar
[15], a fast and robust dependency parser, to accomplish
dependency parsing. While previous work [2, 12] attempted to
match dependency relations to extract answers, we present a
statistical technique for measuring the degree of match of
pertinent relations in candidate sentences with their corresponding
relations in the question. Sentences that have similar relations
between question terms are preferred. We perform fuzzy matching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGIR’05, August 15–19, 2005, Salvador, Brazil.

Copyright 2005 ACM 1-59593-034-5/05/0008...$5.00.

<Question> What percent of the nation's cheese does Wisconsin produce?

Correct: <S1> In Wisconsin, where farmers produce roughly 28 percent of the
nation's cheese, the outrage is palpable.

Incorrect: <S2> … the number of consumers who mention California when
asked about cheese has risen by 14 percent, while the number specifying
Wisconsin has dropped 16 percent.

Incorrect: <S3> The wry “It's the Cheese” ads, which attribute California's
allure to its cheese _ and indulge in an occasional dig at the Wisconsin stuff''
… sales of cheese in California grew three times as fast as sales in the nation
as a whole 3.7 percent compared to 1.2 percent, …

Incorrect: <S4> Awareness of the Real California Cheese logo, which appears
on about 95 percent of California cheeses, has also made strides.

instead of strict matching because the same relationship is often
phrased differently in the parse trees of the question and the
answer. For instance, appositive relations can be rephrased using
other dependency relations – such as the whn (nominal wh-
phrase) relation – in the question. As such, strict matching of
relations may fare poorly in recall, which is an important
consideration in passage retrieval. Specifically, for non-trivial
question terms, we represent all single relations between any two
terms (or nodes) in the parse tree as a relation path. The overall
likelihood of a candidate sentence in terms of dependency
relations is the combination of the matching scores of all relation
paths between matched question terms. We employ a variation of
the statistical translation model to calculate the matching score of
a relation path given another. In order to learn the mapping scores
between relations in questions and potential answer sentences, we
collect past question-answer pairs and train the mapping scores
using two training methods: one based on mutual information and
the other on expectation maximization.

We conduct a series of extrinsic experiments to demonstrate the
effectiveness of fuzzy relation matching for passage retrieval on
the TREC-12 QA task data. When applied on top of standard
density-based lexical matching systems, our relation matching
method significantly improves these systems by 50 to 78 percent
in mean reciprocal rank (MRR). We also examine how two other
QA parameters interact with relation matching in passage
retrieval: query length and query expansion. A key finding is that
longer queries benefit more from utilizing relations. To show
state-of-the-art performance, we apply fuzzy relation matching to
a QA system that is reinforced by query expansion and obtain a
further 50% enhancement. We also show that a full QA system
employing relationship matching reaches the top performance in
TREC, without parameter tuning.

This paper is organized as follows. In the next section, we review
related work. Section 3 presents the details of our fuzzy relation
matching method. We show our detailed experimental results
next, and conclude the paper with directions for future work.

2. RELATED WORK
Research in question answering (QA) has been catalyzed by the
Text Retrieval Conference (TREC) series since 1999. Almost all
QA systems fielded at TREC employ some passage retrieval
technique to reduce the size of the relevant document set to a
manageable number of passages. The simplest passage retrieval
method, employed by MITRE [14], counts the number of matched
question terms in a passage. Other passage retrieval systems, such
as those employed in SiteQ [13] and IBM [10], are density-based
as they take into account the distances between question terms in
the candidate passages.

The goal of passage retrieval is to identify passages similar to the
question in semantic content. While differing in specifics, all
existing passage retrieval algorithms rely only on lexical level
matching to rank passages. The underlying assumption is that
each question term is considered an independent token. However,
this simplification does not hold in many cases because
dependency relations exist between words. Some work has been
done to address this problem. To extract precise answers,
Harabagiu et al. [8] applied a theorem prover that conducts
abductive reasoning over WordNet to derive semantic relationship
between words. However, their method may not be applicable to

information retrieval due to its high computational cost. Other
techniques attempt to approximate such relations between words
statistically. For instance, some language modeling approaches
capture simple dependency relations by using bigrams (e.g., [18]).
However, these models only capture dependency relations
between adjacent words. Recently, Gao et al. [7] proposed a
language model that captures dependency relations that are
learned from training data. They proposed a statistical parsing
model that captures dependency relations between words based on
co-occurrences of words in the training data.

While existing methods model dependency relations statistically
at the surface level, we adopt Minipar to extract dependency
relations. The reason is three-fold: (1) Different from information
retrieval, we do not have a large amount of QA data for training.
Using relation matching based entirely on statistics could be
problematic due to the sparse data. (2) QA questions are
sentences, which enable us to adopt a dependency parser to
extract various types of dependency relations. Such typed
relations, which have more accurate meanings in expressing
dependency relationships, tend to be of higher differentiating
capability in filtering out irrelevant relations. (3) Unlike Gao et
al., we seek to build a system with an off-the-shelf parser so that
the system and its results are easier to reproduce. Minipar is a free
research dependency parser that fulfills this requirement.

Minipar has been used in question answering in the past.
PiQASso [2] employed Minipar as its dependency parser and
extracts the answer from a candidate sentence if the relations
reflected in the question are matched in that sentence. However,
that system does not perform well due to low recall resulting from
matching relations in only the top ranked sentences. To overcome
the recall problem, Katz and Lin [12] indexed and matched
specific relations (e.g., subject-verb-object) over an entire QA
corpus. However, they performed their evaluation on only a
handful of manually constructed questions instead of community-
standard TREC data.

Both the above systems select answers based on strict matching of
dependency relations. Strict matching is problematic when
conducted on a large corpus because relations between the same
pair of words often differ between question and answer sentences.
To overcome this problem, Cui et al. [5] recently proposed a
statistical method of measuring the similarity of the relations to
rank exact answer candidates.

The above work focuses on utilizing relations in the answer
extraction task by filtering out unsuitable answer candidates.
Such a task requires stricter matching because only relations
related to the question target should be examined. In contrast,
utilizing relations in passage retrieval adds another criterion for
ranking, and benefits from examining relations between all
question terms. As such, we feel that relation matching can
achieve more effective results in passage retrieval than in answer
extraction. Our hypothesis is that relation matching can boost
precision while maintaining high recall in passage retrieval.

3. FUZZY RELATION MATCHING FOR
PASSAGE RETRIEVAL

In this section, we discuss how fuzzy relation matching is
performed in detail. We first present how relation paths are
extracted and paired from parse trees. We then adopt a variation

of IBM translation model 1 [4] to calculate the matching score of
a relation path given another, which combines the mapping scores
of single relations in both paths.

We present two methods to learn a pairwise relation mapping
model from training data: one is based on a variation of mutual
information (MI) that captures the bipartite co-occurrences of two
relations in the training data, and the other is based on the
iterative training process presented in [4] using expectation
maximization (EM).

3.1 Extracting and Pairing Relation Paths
We first extract relation paths between words from dependency
trees for sentences generated by Minipar. In Figure 2, we illustrate
the dependency trees for the sample question and the answer
sentence S1 presented in Figure 1.

Figure 2. Dependency trees for the sample question and
sentence S1 in Figure 1 generated by Minipar. Some nodes are
omitted due to lack of space.

In a dependency tree, each node represents a word or a chunked
phrase, and is attached with a link representing the relation
pointing from this node (the governor) to its modifier node.
Although dependency relations are directed links, we ignore the
directions of relations. This is because the roles of terms as
governor and modifier often change in questions and answers.
The label associated with the link is the type of dependency
relation between two nodes. Examples of relation labels (or
relations for short) are subj (subjective), mod (modifying) and
pcomp-n (nominal complement of a preposition). There are 42
such relation labels defined in Minipar.

We further define a relationship path (or simply path) between
nodes n1 and n2 as the series of edges that traverse from n1 to n2,
as in [17]. In this way, our system is able to capture long
dependency relations. For simplicity, we consider a path a vector
P <Rel�>, where Rel� denotes single relations. In Figure 3, we
illustrate several paths extracted from two parse trees.

We impose two constraints when extracting paths:

(1) The path length cannot exceed a pre-defined threshold. The
length of a path is defined as the number of relations in the
path. In our configuration, the threshold is set to 7 based on
our experiments on a small validation dataset. The purpose is
to exclude exceptionally long paths as Minipar only resolves
nearby dependencies reliably.

(2) We ignore relation paths between two words if they belong
to the same chunk (which is usually a noun phrase or a verb
phrase), as determined by Minipar. For instance, we ignore

the relation between “28” and “percent” in “28 percent”
because they belong to the same NP chunk as parsed by
Minipar. A similar example is “New” and “York” in “New
York”.

Root

percent

what
of

cheese

nation

produce

Wisconsin

w
hn

head

de
t prep subj

pcom
p-n

gen

<Question> <S1>

Root

in

Wisconsin

produce

28 percent

m
od i

pc
om

p-
n

obj

of

cheese

nation

pcom
p-n

gen

m
od

Figure 3. Illustration of relation paths extracted from the
dependency trees in Figure 2.

To determine the relevance of a sentence given another sentence
in terms of dependency relations, we need to examine how similar
all the corresponding paths embedded in these two sentences are.
We determine such paired corresponding paths from both
sentences by matching their nodes at both ends. For instance, P��
and P�� are paired corresponding paths with the matched nodes
“Wisconsin” and “produce”. Note that we match only the root
forms of open class words (or phrases), such as nouns, verbs and
adjectives, when pairing corresponding paths.

3.2 Measuring Path Matching Score
After extracting and pairing relation paths from both a question
and a candidate sentence, we need to measure the matching score
of the paths extracted from the sentence according to those from
the question. For instance, in Figure 3, we calculate and combine
the matching scores of the paths <pcomp-n, mod, i>, <obj, mod,
pcomp-n> and <gen> based on their corresponding counterparts
from the question: <subj>, <head, whn, prep, pcomp-n> and
<gen> respectively. This example also illustrates that in real
corpora, the same relationship between two words is often
represented by different combinations of relations. We conjecture
that such variations in relations hinder existing techniques (e.g.,
[2, 12]) that attempt to use strict matching to achieve significant
improvements over lexical matching methods. In contrast, we
approach this problem by employing a fuzzy method to achieve
approximate relation matching.

We derive the matching score between paths by extending IBM
statistical translation model 1. While statistical translation model
has been applied in information retrieval [3] and answer
extraction [6], our use of it for the task of matching dependency
relation paths is new. We treat the matching score of a relation
path from a candidate sentence as the probability of translating to
it from its corresponding path in the question. Let us denote two
paired corresponding paths from question Q and sentence S
respectively as PQ and PS, whose lengths are represented as m and
n. The translation probability Prob(PS| PQ) is the sum over all
possible alignments:

Question:

Path_ID Node1 Path Node2

<P��> Wisconsin <subj> produce

<P��> produce <head, whn, prep, pcomp-n> cheese

<P��> nation <gen> cheese

S1:

<P��> Wisconsin <pcomp-n, mod, i> produce

<P��> produce <obj, mod, pcomp-n> cheese

<P��> nation <gen> cheese

∑ ∏∑
= ==

=
m

n

n

i

Q

i

S
it

m

nQS llP
m

PPob
1 1

)()(

11

)Re|(Re)|(Pr
α

α
α

ε
� (1)

where)(Re S
il stands for the ith relation in path PS and)(Re Q

i
lα is the

corresponding relation in path PQ. The alignments of relations are
given by the values of iα which indicates the corresponding

relation in the question given relation)(Re S
il . � stands for a small

constant.)Re|(Re)()(Q
j

S
it llP denotes the relation translation

probability, i.e., relation mapping scores, which are given by a
translation model learned during training and will be described in
the next subsection. Unlike in the original application of machine
translation, we assume that every relation can be translated to
another; thus, we do not include a NULL relation in position 0.
Note that)Re|(Re)()(Q

j
S

it llP is 1 when Reli and Relj are identical

because the translation probability is maximized when a relation
is translated to itself.

While IBM model 1 considers all alignments equally likely, we
consider only the most probable alignment. The reason is that,
unlike text translation that works with long sentences, relation
paths are short. Most often, the most probable alignment gives
much higher probability than any other alignments. We calculate
the alignment by finding the most probable mapped relation in the
path from the question for each relation in the path from the
sentence based on relation translation probability. As such, the
path translation probability is simplified as:

∏
=

=
n

i

Q

iA
S

itnQS llP
m

PPob
1

)()()Re|(Re)|(Pr
ε (2)

where A� denotes the most probable alignment. Moreover, we can
use only the length n of the path PS in normalizing Equation (2).
Since we rank all candidate sentences according to the same
question, the length of each path extracted from the question is
constant, and does not affect the calculation of the translation
probability. We take the log-likelihood of Equation (2) and
remove all constants. The matching score of PS is as follows:

∑
=

=

=
n

i

Q

iA
S

it

QSS

llP
n

PPobPMatchScore

1

)()()Re|(Relog
'

)|(Pr)(

ε (3)

where n is used as a normalization factor and ��� is a small
constant.

Finally, we sum up the matching scores of each path from the
sentence which has a corresponding path in the question to be the
relation matching score of the candidate sentence given the
question. This score reflects how well the candidate sentence’s
relations match those of the question: a high score indicates that
the question terms are likely to be used with the same semantics
as in the question, and that the sentence is more likely to contain a
correct answer.

3.3 Model Training
We have described in the above section how to obtain a relation
matching score between a sentence and the question, and that this
process requires a relation mapping model as input, i.e.,

)Re|(Re)()(Q
j

S
it llP in Equation (3). In this subsection, we show

how the mapping model can be acquired by two statistical

methods from training question-answer pairs: one based on
mutual information (MI) and the other based on expectation
maximization (EM).

The assumption is that paired corresponding paths extracted from
training QA pairs are semantically equivalent. Thus, the relation
mapping between such training answer sentences and questions
can be used as a model for unseen questions and potential answers
as well. We use Minipar to parse all the training questions and
corresponding answer sentences. Relation paths extracted from
the question are paired with those from answer sentences, as
described in Section 3.1.

We first employ a variation of mutual information1 to calculate
relation mapping scores. The relatedness of two relations is
measured by their bipartite co-occurrences in the training path
pairs. Different from standard mutual information, we account for
path length in our calculation. Specifically, we discount the co-
occurrence of two relations in long paths. The mutual information
based score of mapping relation)(Re Q

jl to relation)(Re S
il is

calculated as:

|Re||Re|

)Re,(Re
log)Re|(Re

)()(

)()(

)()()(

S
i

Q
j

S
i

Q
jQ

j
S

i
MI

t
ll

ll
llP

×
×

=
∑ δγ

 (4)

where)Re,(Re)()(S
i

Q
j llδ is an indicator function which returns 1

when)(Re Q
jl and)(Re S

il appear together in a training path pair, and

0 otherwise. γ is the inverse proportion of the sum of the lengths
of the two paths. |Rel���| stands for the number of paths extracted
from all questions in which relation Rel occurs. Likewise, |Rel���|
gives the number of paths extracted from all answer sentences that
contain relation Rel.

In the second configuration, we employ GIZA [1], a publicly
available statistical translation package, to implement IBM
translation model 1 training over the paired training paths. Each
relation is considered a word and each corresponding path pair is
treated as a translation sentence pair, in which the path from a
question is the source sentence and the path from the answer
sentence is the destination sentence. The resulting word
translation probability table is used to define relation mapping
score)Re|(Re)()(Q

j
S

it llP . GIZA performs an iterative training

process using EM to learn pairwise translation probabilities. In
every iteration, the model automatically improves the probabilities
by aligning relations based on current parameters. We initialize
the training process by setting translation probability between
identical relations to 1 and a small uniform value for all other
cases, and then run EM to convergence.

4. EVALUATIONS
In this section, we present empirical evaluation results to assess
our relation matching technique for passage retrieval systems. We
have two hypotheses to test in our experiments:

1) The relation matching technique improves the precision of
current lexical matching methods. Moreover, the proposed

1 We use frequencies instead of probabilities in Equation 4 to

approximate mutual information and use the logarithm to scale
the result.

fuzzy relation matching method outperforms the strict
matching methods proposed in previous work.

2) Long questions are more suitable for relation matching. We
hypothesize that the effectiveness of relation matching is
affected by question length. Long questions, with more
question terms, have more relation paths than short questions,
and benefit more from relation matching.

3) Relation matching also brings further improvement to a
system that is already enhanced with query expansion because
of the high precision it allows. We test whether the fuzzy
relation matching technique brings further improvement to a
passage retrieval system that uses query expansion.

4.1 Experiment Setup
We use the factoid questions from the TREC-12 QA task [20] as
test data and the AQUAINT corpus to search for answers. We use
TREC-12 test data because the questions are long enough to
obtain corresponding relation paths to perform relation matching.
We accumulate 10,255 factoid question-answer pairs from the
TREC-8 and 9 QA tasks for use as training data, which results in
3,026 unique corresponding path pairs for model construction
using both MI and EM based training methods.

There are 413 factoid questions in the TREC-12 task, from which
30 NIL-answer questions are excluded because they do not have
answers in the corpus. TREC-12 had a passage retrieval task
which used the same factoid questions as the main task except it
accepted longer answers (250 bytes). Since we intend to evaluate
passage retrieval techniques, we create the gold standard based on
the official judgment list for the passage retrieval task provided by
TREC. For each question, we generate a list of passages that are
judged to be correct and supported by the corpus in the judgment
list as standard answer passages. We cannot create the gold
standard for 59 of the questions because no correct passages for
them were judged by TREC evaluators. This leaves us with a final
test set of 324 QA pairs, on which all evaluations in this paper are
based. While Tellex et al. [19] made use of TREC-supplied exact
answer patterns to assess returned passages, we observe that
common answer patterns can be matched in incorrect passages as
answer patterns are usually very short. We therefore use a stricter
criterion when judging whether a passage is correct: it must be
matched by the exact answer pattern, and additionally, it must
have a cosine similarity equal to or above 0.75 with any standard
answer passage.

Similar to the configuration used by Tellex et al. [19], we use the
top 200 documents for each question according to the relevant
document list provided by TREC as the basis to construct the
relevant document set for the questions. If the 200 documents do
not contain the correct answer, we add the supporting documents
that have the answer into the document set. We conduct different
passage retrieval algorithms on the document set to return the top
20 ranked passages. Note that the optimal passage length varies
across different retrieval algorithms. For instance, SiteQ is
optimized to use a passage length of three sentences [19]. In our
evaluations for relation matching techniques, we take one
sentence as a passage, as Minipar can only resolve intrasentential
dependency relations. But for SiteQ, we still use the three-
sentence window to define a passage.

We use four systems for comparison:

1) MITRE (baseline): This approach simply matches stemmed
words between question and answer.

2) Strict Matching of Relations: A system that uses strict
matching of relations to rank sentences. It employs the same
technique as fuzzy matching to extract and pair relation
paths, but it counts the number of exact path matches as its
ranking score.

3) SiteQ: One of the top performing density-based systems in
previous work. We follow the adaptation described in [19] in
our implementation.

4) NUS [5]: Another top-performing factoid question answering
system. We utilize its passage retrieval module, which is
similar to SiteQ except that it uses single sentences as
passages and calculates sentence ranking scores by iteratively
boosting a sentence’s score with adjacent sentence scores.

We employ three performance metrics: mean reciprocal rank
(MRR), percentage of questions that have no correct answers, and
precision at the top one passage. The former two metrics are
calculated on the returned 20 passages by each system.

4.2 Performance Evaluation
In the first experiment, we evaluate the overall performance of our
relation matching technique compared to other passage retrieval
systems.

We apply both strict and fuzzy matching of relations in our
experiments. We perform relation matching on the MITRE and
NUS systems but not on SiteQ as it retrieves multiple-sentence
passages, in which cross-sentence dependencies cannot be
modeled by our system. For simplicity, we linearly combine the
normalized lexical matching score obtained by MITRE or NUS
and the relation matching score to obtain the overall ranking score
of a sentence. In calculating fuzzy relation matching scores, we
utilize the two relation mapping score models generated by both
the MI-based and EM-based training methods. We illustrate the
evaluation results in Table 1. From the table, we draw the
following observations:

1) Applying relation matching over lexical matching methods
boosts system performance dramatically. Applied on top of
the MITRE and NUS systems, both strict and fuzzy relation
matchings augment performance in all metrics significantly.
When integrating strict relation matching with the NUS
system, MRR improves by 35% and 31% over the results
obtained by the standard NUS and SiteQ systems
respectively. Relation matching also yields better precision in
the top one passage task. When fuzzy relation matching is
applied on top of NUS, the system achieves even better
results. Here, all improvements obtained by relation
matching are statistically significant as judged by using
paired t-test [9] (p < 0.001). We believe that the
improvement stems from the ability of the relation matching
technique to model dependency relationships between
matched question terms. Thus, many false positive sentences
that would be favored by normal bag-of-word approaches are
subsequently eliminated as they often do not contain the
correct relations between question terms.

Interestingly, even strict matching of relations significantly
improves the performance of a passage retrieval system while

Table 1. Overall performance comparison of MRR, percentage of incorrectly answered questions (% Incorrect) and precision at top
one passage. Strict relation matching is denoted by Rel_Strict, with the base system in parentheses. Fuzzy relation matching is
denoted by Rel_MI or Rel_EM for both training methods. All improvements obtained by relation matching techniques are
statistically significant (p<0.001).

Passage retrieval systems MITRE SiteQ NUS
Rel_Strict
(MITRE)

Rel_Strict
(NUS)

Rel_MI
(MITRE)

Rel_EM
(MITRE)

Rel_MI
(NUS)

Rel_EM
(NUS)

MRR

0.2000 0.2765 0.2677 0.2990 0.3625 0.4161 0.4218 0.4756 0.4761

% MRR improvement over

MITRE
SiteQ
NUS

N/A
N/A
N/A

+38.26
N/A
N/A

+33.88
N/A
N/A

+49.50
+8.14
+11.69

+81.25
+31.10
+35.41

+108.09
+50.50
+55.43

+110.94
+52.57
+57.56

+137.85
+72.03
+77.66

+138.08
+72.19
+77.83

% Incorrect 45.68% 37.65% 33.02% 41.96% 32.41% 29.63% 29.32% 24.69% 24.07%

Precision at top one
passage

0.1235 0.1975 0.1759 0.2253 0.2716 0.3364 0.3457 0.3889 0.3889

work in answer extraction (e.g., [2]) seems to be hindered by
strict matching. We conjecture that the passage retrieval task
is less constraining than answer extraction as the latter has to
match relations of the identified target for the question. As
such, we feel passage retrieval is more likely to benefit from
relation matching.

2) Fuzzy relation matching outperforms strict matching
significantly. When integrated with the NUS system, it gains
a statistically significant improvement of 31% in MRR and
43% in precision at top one passage when using fuzzy
matching of relations over strict matching. Note that while
strict matching does not bring large improvements in terms
of percentage of incorrect questions compared to lexical
matching methods, the fuzzy relation matching method
decreases such errors by 34% in comparison to NUS and by
56% compared to MITRE. Strict matching often fails due to
variations in representing the same relationship because of
parsing inconsistency and the flexibility exhibited in natural
language. Such interchangeability between relations is
captured by fuzzy matching methods. In this way, our
statistical model is able to accommodate the variation in
natural language texts.

3) Using MI and iterative EM to train relation mapping scores
does not make any obvious difference in our tests. However,
we present both training methods because they differ in
complexity and scalability. The MI method has lower
complexity compared to the EM method because it does not
perform any alignment of relations during training, as it uses
relation co-occurrences as approximations to relation
mapping. The EM training process does alignment by
improving the probability of alignment iteratively. We
conjecture that the EM training method could outperform the
MI method if a larger amount of training data is available.
MI-based mapping scores are likely to be more susceptible to
noise when scaling up. The EM training method is unlikely
to suffer due to its gradual improvement mechanism.
However, we cannot show the scalability of the two training
methods given our limited test and training data.

4.3 Performance Variation to Question
Length

It seems intuitive that longer questions are likely to benefit more
from relation matching than shorter questions. The rationale is

that more relation paths in longer sentences lead to more reliable
relation ranking scores. In this experiment, we examine the effect
of varying the number of non-trivial question terms on MRR.

Among the 324 questions in our test set, the number of question
terms varies from one to 13, after removing trivial stop words
such as “what”. In Figure 4, we plot the MRR values along with
95% error bars of the systems that apply fuzzy relation matching
with EM training on top of the MITRE and NUS systems when
question length is varied. We consider only questions with two to
six non-trivial question terms because there are less than 10% of
questions with fewer than two or more than six question terms in
our test set.

From Figure 4, we can see that as indicated by little overlap of the
error bars, MRR nearly monotonically increases when more terms
are present in the question. This is evidence that longer questions
are more likely to improve with relation matching. We surmise
that with more paired corresponding paths, relation matching
based ranking would be of higher precision.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 2 4 6 8

Question Terms

M
R

R Rel_NUS_EM

Rel_MITRE_EM

Figure 4. Illustration of MRR variation to change in number
of question terms.

Note that number of question terms is only an approximation of
number of actual paired corresponding relation paths. However,
as the number of relation paths extracted for each question varies
more than the number of question terms does, our small test data
prevents us from conducting thorough experiments to examine the
effect of number of relation paths on matching. Future work on a
larger dataset can be done to reinforce the results shown here.

4.4 Error Analysis for Relation Matching
Although we have shown that relation matching greatly improves
passage retrieval, there is still plenty of room for improvement. A
key question is whether we can further characterize the types of

questions that are adversely affected by relationship matching.
Based on the above two experiments, we perform micro-level
error analysis on those questions for which relation matching
degrades performance. We find that fuzzy relation matching
sometimes fails with incorrectly paired relation paths mainly for
the following two reasons:

1) Mismatch of question terms: In some cases, the paths are
incorrectly paired due to the mismatch of question terms. For
instance, given the question #1912 “In which city is the River
Seine?”, the correct answer should be “Paris”. Without
question analysis and typing, the relation matching algorithm
mistakenly takes “city” as a question term, instead of
recognizing it as the question target. Thus, sentences
containing all three question terms, i.e., “city”, “river” and
“Seine”, are ranked high while the correct answer does not
contain “city”. To overcome this problem, we need to
incorporate question analysis in the passage retrieval system
such that the question target and the answer candidate of the
expected type can be matched when corresponding relation
paths are paired.

2) Paraphrasing between question and answer sentences: Some
correct sentences are paraphrases of the given question. In this
case, both lexical matching and relation matching are likely to
fail. Consider the question: “What company manufactures X?”
The correct sentence is: “… C, the manufacturer of X …”. The
system needs to resolve such a paraphrase as “C is the
manufacturer of X � C manufactures X” to answer this kind
of questions. Lin and Pantel [17] attempted to find
paraphrases (also by examining paths in Minipar’s output
parse trees) by looking at common content between the two
nodes at both ends of relations. However, their method is
limited as it relies on abundant training data to find inference
rules between specific relations.

4.5 Performance with Query Expansion
As discussed above, short questions and paraphrases are obstacles
in enhancing performance using relation matching. State-of-the-
art QA systems adopt query expansion (QE) to alleviate such
problems [5, 10, 8]. Here, we show how performance varies when
the relation matching technique is reinforced by query expansion.

We conduct simple query expansion as described in [5], which
submits the question to Google and selects expansion terms based
on their co-occurrences with question terms in result snippets. We
use the same method as described in the first two experiments to
linearly combine the lexical matching score with query expansion
and the relation matching score. We list the evaluation results in
Table 2.

With query expansion, the performance of NUS (the lexical
matching based system) again improves greatly. Specifically,
query expansion reduces the percentage of incorrect answers from
33% to 28.4%. This is close to the figures obtained by relation
matching methods without query expansion as listed in Table 1.
This shows that query expansion boosts recall using expansion
terms, allowing the system to answer more questions correctly.

When relation matching is incorporated into the NUS system
along with query expansion, MRR values are boosted by 49%,
which is statistically significant. This demonstrates that our
relation matching technique can help re-rank passages to allow

higher precision when the system is equipped with query
expansion.

Table 2. Comparison of performance with query expansion.
All showed improvements are statistically significant (p-
value<0.001).

Passage
Retrieval
Systems

NUS
(baseline)

NUS+QE
Rel_MI
(NUS+QE)

Rel_EM
(NUS+QE)

MRR
(% improvement
over baseline)

0.2677
0.3293
(+23.00%)

0.4924
(+83.94%)

0.4935
(+84.35%)

% MRR
improvement
over NUS+QE

N/A N/A +49.54% +49.86%

% Incorrect 33.02% 28.40% 22.22% 22.22%

Precision at top
one passage

0.1759 0.2315 0.4074 0.4074

However, query expansion does not boost the performance of
systems with relation matching as significantly as compared to the
improvement over the baseline lexical based system without query
expansion. Comparing Tables 1 and 2, the improvement in
performance for a system with query expansion is about 2% in
MRR (from 0.4756 to 0.4924 when using MI training and from
0.4761 to 0.4935 when using EM training). We believe that this is
caused by the simple policy we use to integrate lexical matching
with relation matching. Since we just sum up matching scores, our
relation matching model does not take full advantage of query
expansion because external expansion terms do not have relation
paths with the original question terms in the question. As such,
expansion terms do not improve the relation path pairing process
in our current system.

5. Case Study: Constructing a Simple System
for TREC QA Passage Task
In the above experiments, we conducted component evaluations
for passage retrieval for factoid questions. A natural question is
whether the incorporation of relation matching into a standard QA
system can yield good performance. Such a fully-fledged QA
system adds query expansion, question typing and named entity
extraction on top of simple passage similarity. In this case study,
we construct a simple QA system on top of the NUS passage
retrieval module reinforced by fuzzy relation matching and query
expansion. Both question typing and NE extraction modules are
rule-based, as employed in a TREC QA system [5]. We return the
first top-ranked sentence that contains the expected named entity
as the answer passage. The average length of the returned
passages is 181 bytes.

We evaluate the QA system in the context of the QA passage task
of TREC-12 [20]. Our system answers 175 questions correctly out
of the total 324 questions, resulting in an accuracy of 0.540.
When averaging over all 383 questions that do not have NIL
answers, the accuracy is 0.457, which is still better than the
second ranked system in the official TREC evaluations [20].

6. Conclusions
In this paper, we have presented a novel fuzzy relation matching
technique for factoid QA passage retrieval. Our evaluation results
show that our technique produces significant improvements in
retrieval performance in current systems: a vast 50~138%

improvement in MRR, and over 95% in precision at top one
passage. Fuzzy matching of dependency relations is calculated
based on the degree of match between relation paths in candidate
sentences and the question. For learning a model of relationship
matching from training data, we have presented two methods
based on mutual information and iterative EM. While these two
methods do not make an obvious difference given our test data,
we believe that EM scales better and may improve when given a
larger amount of training data. Furthermore, our relation matching
technique has shown itself capable of bringing significant
improvement in retrieval performance across all the architectures
we have tested, regardless of whether or not query expansion is
used. As such, we recommend that future passage retrieval
systems should incorporate approximate relation matching to
achieve state-of-the-art performance.

Past work has shown that strict matching does not perform well in
answer extraction. We have shown that this conclusion does not
generalize to all QA modules. A contribution of this paper is the
demonstration that even strict matching of relations significantly
augments the performance of current passage retrieval modules.
This may be explained by the fact that passage retrieval imposes
less constraint in matching relations than answer extraction.
Future work is expected to improve answer extraction by using
relations effectively.

Our empirical evaluation results and qualitative error analysis
reveal that the relation matching method can be improved by
better alignment of relation paths. Relation paths often cannot be
paired due to few matched question terms or paraphrasing, both of
which could be alleviated by query expansion. While we have
benchmarked the performance of relation matching with query
expansion, our experiment has not fully integrated the modules in
the sense that we have not taken advantage of expanded terms in
relation matching. Seamless integration of query expansion with
relation matching is likely to produce further gains in
performances and is a logical next step in future research.

7. ACKNOWLEDGMENTS
The authors are grateful to Jimmy Lin for his excellent
suggestions on the draft of the paper. We also thank Alexia Leong
for proofreading the paper. Thanks also go to anonymous
reviewers whose valuable comments have helped improve this
paper. The first author is supported by the Singapore Millennium
Foundation Scholarship in his PhD studies.

8. REFERENCES
[1] Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. Lafferty, D.

Melamed, F. Och, D. Purdy, N. Smith, and D. Yarowsky,
Statistical machine translation, Final Report, JHU Summer
Workshop, 1999.

[2] G. Attardi, A. Cisternino, F. Formica, M. Simi and A.
Tommasi, PiQASso: Pisa Question Answering System, Proc.
of TREC-2001, 2001, pp. 599-607.

[3] A. Berger and J. Lafferty, Information retrieval as statistical
translation, Proc. of SIGIR ’99, 1999, pp. 222-229.

[4] P. Brown, S. Della, V. Della Pietra and R. Mercer, The
mathematics of statistical machine translation: Parameter
estimation, Computational Linguistics, 19(2), 1993, pp. 263-
311.

[5] H. Cui, K. Li, R. Sun, T.-S. Chua and M.-Y. Kan, National
University of Singapore at the TREC-13 Question Answering
Main Task, Proc. of TREC-13, 2004.

[6] A. Echihabi and D. Marcu, A noisy-channel approach for
question answering, Proc. of ACL ’03, 2003.

[7] J. Gao, J.-Y. Nie, G. Wu and G. Cao, Dependency language
model for information retrieval, Proc. of SIGIR ’04,
Sheffield, UK, 2004, pp. 170-177.

[8] S. Harabagiu, D. Moldovan, C. Clark, M. Bowden, J.
Williams and J. Bensley, Answer Mining by Combining
Extraction Techniques with Abductive Reasoning, Proc. of
TREC-12, 2003, pp. 375-382.

[9] D. Hull, Using statistical testing in the evaluation of
retrieval experiments, Proc. of SIGIR ’93, 1993.

[10] A. Ittycheriah, M. Franz, and S. Roukos, IBM’s statistical
question answering system - TREC-10, Proc. of TREC-10,
2001.

[11] M. Kaszkeil and J. Zobel, Passage retrieval revisited, Proc.
of SIGIR ’97, Philadelphia, PA, USA, 1997, pp. 178-185.

[12] B. Katz and J. Lin, Selectively Using Relations to Improve
Precision in Question Answering, Proc. of the EACL-2003
Workshop on Natural Language Processing for Question
Answering, April 2003.

[13] G. G. Lee, J. Seo, S. Lee, H. Jung, B.-H. Cho, C. Lee, B.-K.
Kwak, J. Cha, D. Kim, J. An, H. Kim, and K. Kim, SiteQ:
Engineering high performance QA system using lexico-
semantic pattern matching and shallow NLP, Proc. of
TREC-10, 2001, pp. 442-451.

[14] M. Light, G. S. Mann, E. Riloff, and E. Breck, Analyses for
elucidating current question answering technology, Journal
of Natural Language Engineering, Special Issue on Question
Answering, Fall–Winter, 2001.

[15] D. Lin, Dependency-based Evaluation of MINIPAR, Proc. of
Workshop on the Evaluation of Parsing Systems, Granada,
Spain, May, 1998.

[16] J. Lin, D. Quan, V. Sinha, K. Bakshi, D. Huynh, B. Katz and
D. R. Karger, What makes a good answer? The role of
context in question answering, Proc. of the ninth IFIP TC13
International Conference on Human-Computer Interaction,
2003.

[17] D. Lin and P. Pantel, Discovery of Inference Rules for
Question Answering, Natural Language Engineering, 2001,
7(4): pp. 343-360.

[18] F. Song and B. Croft, A general language model for
information retrieval, Proc. of CIKM’99, 1999, pp. 316-321.

[19] S.Tellex, B.Katz, J.Lin, A.Fernandes and G.Marton,
Quantitative evaluation of passage retrieval algorithms for
question answering, Proc. of SIGIR ’03, 2003, Toronto,
Canada, pp. 41-47.

[20] E.M. Voorhees, Overview of the TREC 2003 Question
Answering Track, Proc. of TREC-12, pp. 54-68.

