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ABSTRACT 
State-of-the-art question answering (QA) systems employ term-
density ranking to retrieve answer passages. Such methods often 
retrieve incorrect passages as relationships among question terms 
are not considered. Previous studies attempted to address this 
problem by matching dependency relations between questions and 
answers.  They used strict matching, which fails when 
semantically equivalent relationships are phrased differently. We 
propose fuzzy relation matching based on statistical models. We 
present two methods for learning relation mapping scores from 
past QA pairs: one based on mutual information and the other on 
expectation maximization. Experimental results show that our 
method significantly outperforms state-of-the-art density-based 
passage retrieval methods by up to 78% in mean reciprocal rank. 
Relation matching also brings about a 50% improvement in a 
system enhanced by query expansion. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval - Retrieval Models; I.2.7 [Artificial Intelligence]: 
Natural Language Processing; I.7.1 [Document and Text 
Processing] 

General Terms 
Algorithms, Measurement, Experimentation 

Keywords 
Question Answering, Dependency Parsing, Passage Retrieval 

1. INTRODUCTION 
Passage retrieval has long been studied in information retrieval 
[11]. It aims to search for more precise and compact text excerpts 
in response to users’ queries, rather than providing whole 
documents. Recently, passage retrieval has become a crucial 
component in question answering (QA) systems. Most current QA 
systems employ a pipeline structure that consists of several 
modules to get short and precise answers to users’ questions. A 
typical QA system searches for answers at increasingly finer-

grained units: (1) locating the relevant documents, (2) retrieving 
passages that may contain the answer, and (3) pinpointing the 
exact answer from candidate passages.  

Passage retrieval (Step 2) greatly affects the performance of a QA 
system. If a passage retrieval module returns too many irrelevant 
passages, the answer extraction module is likely to fail to pinpoint 
the correct answer due to too much noise. Also, a passage can 
sufficiently answer a question. Lin et al. [16] showed that users 
prefer passages to phrase-long answers because passages provide 
sufficient context for them to understand the answer.  

Tellex et al. [19] conducted a thorough quantitative component 
evaluation for passage retrieval algorithms employed by state-of-
the-art QA systems. The authors concluded that neglecting crucial 
relations between words is a major source of false positives for 
current lexical matching based retrieval techniques. The reason is 
that many irrelevant passages share the same question terms with 
correct ones, but the relations between these terms are different 
from those in the question.  We illustrate this by a sample 
question and some candidate sentences in Figure 1, where only 
sentence S1 contains the correct answer.  The other three 
sentences share many question terms (in italics) but are incorrect. 

 

Figure 1. Sample question and candidate passages illustrating 
that lexical matching does not lead to the correct answer.  

To address this problem, we propose a novel fuzzy relation 
matching method which examines grammatical dependency 
relations between question terms to improve current passage 
retrieval techniques for question answering. We employ Minipar 
[15], a fast and robust dependency parser, to accomplish 
dependency parsing. While previous work [2, 12] attempted to 
match dependency relations to extract answers, we present a 
statistical technique for measuring the degree of match of 
pertinent relations in candidate sentences with their corresponding 
relations in the question. Sentences that have similar relations 
between question terms are preferred. We perform fuzzy matching 
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<Question> What percent of the nation's cheese does Wisconsin produce? 

Correct: <S1> In Wisconsin, where farmers produce roughly 28 percent of the 
nation's cheese, the outrage is palpable. 

Incorrect: <S2> … the number of consumers who mention California when 
asked about cheese has risen by 14 percent, while the number specifying 
Wisconsin has dropped 16 percent. 

Incorrect: <S3> The wry “It's the Cheese” ads, which attribute California's 
allure to its cheese _ and indulge in an occasional dig at the Wisconsin stuff''  
… sales of cheese in California grew three times as fast as sales in the nation 
as a whole 3.7 percent compared to 1.2 percent, … 

Incorrect: <S4> Awareness of the Real California Cheese logo, which appears 
on about 95 percent of California cheeses, has also made strides. 



instead of strict matching because the same relationship is often 
phrased differently in the parse trees of the question and the 
answer. For instance, appositive relations can be rephrased using 
other dependency relations – such as the whn (nominal wh-
phrase) relation – in the question. As such, strict matching of 
relations may fare poorly in recall, which is an important 
consideration in passage retrieval. Specifically, for non-trivial 
question terms, we represent all single relations between any two 
terms (or nodes) in the parse tree as a relation path. The overall 
likelihood of a candidate sentence in terms of dependency 
relations is the combination of the matching scores of all relation 
paths between matched question terms. We employ a variation of 
the statistical translation model to calculate the matching score of 
a relation path given another. In order to learn the mapping scores 
between relations in questions and potential answer sentences, we 
collect past question-answer pairs and train the mapping scores 
using two training methods: one based on mutual information and 
the other on expectation maximization. 

We conduct a series of extrinsic experiments to demonstrate the 
effectiveness of fuzzy relation matching for passage retrieval on 
the TREC-12 QA task data. When applied on top of standard 
density-based lexical matching systems, our relation matching 
method significantly improves these systems by 50 to 78 percent 
in mean reciprocal rank (MRR). We also examine how two other 
QA parameters interact with relation matching in passage 
retrieval: query length and query expansion.  A key finding is that 
longer queries benefit more from utilizing relations. To show 
state-of-the-art performance, we apply fuzzy relation matching to 
a QA system that is reinforced by query expansion and obtain a 
further 50% enhancement.  We also show that a full QA system 
employing relationship matching reaches the top performance in 
TREC, without parameter tuning. 

This paper is organized as follows. In the next section, we review 
related work. Section 3 presents the details of our fuzzy relation 
matching method. We show our detailed experimental results 
next, and conclude the paper with directions for future work. 

2. RELATED WORK 
Research in question answering (QA) has been catalyzed by the 
Text Retrieval Conference (TREC) series since 1999. Almost all 
QA systems fielded at TREC employ some passage retrieval 
technique to reduce the size of the relevant document set to a 
manageable number of passages. The simplest passage retrieval 
method, employed by MITRE [14], counts the number of matched 
question terms in a passage. Other passage retrieval systems, such 
as those employed in SiteQ [13] and IBM [10], are density-based 
as they take into account the distances between question terms in 
the candidate passages.  

The goal of passage retrieval is to identify passages similar to the 
question in semantic content.  While differing in specifics, all 
existing passage retrieval algorithms rely only on lexical level 
matching to rank passages. The underlying assumption is that 
each question term is considered an independent token.  However, 
this simplification does not hold in many cases because 
dependency relations exist between words. Some work has been 
done to address this problem. To extract precise answers, 
Harabagiu et al. [8] applied a theorem prover that conducts 
abductive reasoning over WordNet to derive semantic relationship 
between words. However, their method may not be applicable to 

information retrieval due to its high computational cost. Other 
techniques attempt to approximate such relations between words 
statistically. For instance, some language modeling approaches 
capture simple dependency relations by using bigrams (e.g., [18]). 
However, these models only capture dependency relations 
between adjacent words. Recently, Gao et al. [7] proposed a 
language model that captures dependency relations that are 
learned from training data. They proposed a statistical parsing 
model that captures dependency relations between words based on 
co-occurrences of words in the training data.    

While existing methods model dependency relations statistically 
at the surface level, we adopt Minipar to extract dependency 
relations. The reason is three-fold: (1) Different from information 
retrieval, we do not have a large amount of QA data for training. 
Using relation matching based entirely on statistics could be 
problematic due to the sparse data. (2) QA questions are 
sentences, which enable us to adopt a dependency parser to 
extract various types of dependency relations. Such typed 
relations, which have more accurate meanings in expressing 
dependency relationships, tend to be of higher differentiating 
capability in filtering out irrelevant relations.  (3) Unlike Gao et 
al., we seek to build a system with an off-the-shelf parser so that 
the system and its results are easier to reproduce. Minipar is a free 
research dependency parser that fulfills this requirement. 

Minipar has been used in question answering in the past. 
PiQASso [2] employed Minipar as its dependency parser and 
extracts the answer from a candidate sentence if the relations 
reflected in the question are matched in that sentence. However, 
that system does not perform well due to low recall resulting from 
matching relations in only the top ranked sentences. To overcome 
the recall problem, Katz and Lin [12] indexed and matched 
specific relations (e.g., subject-verb-object) over an entire QA 
corpus. However, they performed their evaluation on only a 
handful of manually constructed questions instead of community-
standard TREC data.  

Both the above systems select answers based on strict matching of 
dependency relations. Strict matching is problematic when 
conducted on a large corpus because relations between the same 
pair of words often differ between question and answer sentences. 
To overcome this problem, Cui et al. [5] recently proposed a 
statistical method of measuring the similarity of the relations to 
rank exact answer candidates.  

The above work focuses on utilizing relations in the answer 
extraction task by filtering out unsuitable answer candidates.  
Such a task requires stricter matching because only relations 
related to the question target should be examined. In contrast, 
utilizing relations in passage retrieval adds another criterion for 
ranking, and benefits from examining relations between all 
question terms. As such, we feel that relation matching can 
achieve more effective results in passage retrieval than in answer 
extraction. Our hypothesis is that relation matching can boost 
precision while maintaining high recall in passage retrieval. 

3. FUZZY RELATION MATCHING FOR 
PASSAGE RETRIEVAL 

In this section, we discuss how fuzzy relation matching is 
performed in detail. We first present how relation paths are 
extracted and paired from parse trees. We then adopt a variation 



of IBM translation model 1 [4] to calculate the matching score of 
a relation path given another, which combines the mapping scores 
of single relations in both paths.  

We present two methods to learn a pairwise relation mapping 
model from training data: one is based on a variation of mutual 
information (MI) that captures the bipartite co-occurrences of two 
relations in the training data, and the other is based on the 
iterative training process presented in [4] using expectation 
maximization (EM). 

3.1 Extracting and Pairing Relation Paths 
We first extract relation paths between words from dependency 
trees for sentences generated by Minipar. In Figure 2, we illustrate 
the dependency trees for the sample question and the answer 
sentence S1 presented in Figure 1.  

Figure 2. Dependency trees for the sample question and 
sentence S1 in Figure 1 generated by Minipar. Some nodes are 
omitted due to lack of space. 

 

 

 

 

 

 

 

 

In a dependency tree, each node represents a word or a chunked 
phrase, and is attached with a link representing the relation 
pointing from this node (the governor) to its modifier node. 
Although dependency relations are directed links, we ignore the 
directions of relations. This is because the roles of terms as 
governor and modifier often change in questions and answers. 
The label associated with the link is the type of dependency 
relation between two nodes. Examples of relation labels (or 
relations for short) are subj (subjective), mod (modifying) and 
pcomp-n (nominal complement of a preposition). There are 42 
such relation labels defined in Minipar. 

We further define a relationship path (or simply path) between 
nodes n1 and n2 as the series of edges that traverse from n1 to n2, 
as in [17]. In this way, our system is able to capture long 
dependency relations. For simplicity, we consider a path a vector 
P <Rel�>, where Rel� denotes single relations.  In Figure 3, we 
illustrate several paths extracted from two parse trees. 

We impose two constraints when extracting paths: 

(1) The path length cannot exceed a pre-defined threshold. The 
length of a path is defined as the number of relations in the 
path. In our configuration, the threshold is set to 7 based on 
our experiments on a small validation dataset. The purpose is 
to exclude exceptionally long paths as Minipar only resolves 
nearby dependencies reliably. 

(2) We ignore relation paths between two words if they belong 
to the same chunk (which is usually a noun phrase or a verb 
phrase), as determined by Minipar. For instance, we ignore 

the relation between “28” and “percent” in “28 percent” 
because they belong to the same NP chunk as parsed by 
Minipar. A similar example is “New” and “York” in “New 
York”. 
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Figure 3. Illustration of relation paths extracted from the 
dependency trees in Figure 2.  

To determine the relevance of a sentence given another sentence 
in terms of dependency relations, we need to examine how similar 
all the corresponding paths embedded in these two sentences are. 
We determine such paired corresponding paths from both 
sentences by matching their nodes at both ends. For instance, P�� 
and P�� are paired corresponding paths with the matched nodes 
“Wisconsin” and “produce”. Note that we match only the root 
forms of open class words (or phrases), such as nouns, verbs and 
adjectives, when pairing corresponding paths. 

3.2 Measuring Path Matching Score 
After extracting and pairing relation paths from both a question 
and a candidate sentence, we need to measure the matching score 
of the paths extracted from the sentence according to those from 
the question. For instance, in Figure 3, we calculate and combine 
the matching scores of the paths <pcomp-n, mod, i>, <obj, mod, 
pcomp-n> and <gen> based on their corresponding counterparts 
from the question: <subj>, <head, whn, prep, pcomp-n> and 
<gen> respectively. This example also illustrates that in real 
corpora, the same relationship between two words is often 
represented by different combinations of relations. We conjecture 
that such variations in relations hinder existing techniques (e.g., 
[2, 12]) that attempt to use strict matching to achieve significant 
improvements over lexical matching methods. In contrast, we 
approach this problem by employing a fuzzy method to achieve 
approximate relation matching. 

We derive the matching score between paths by extending IBM 
statistical translation model 1. While statistical translation model 
has been applied in information retrieval [3] and answer 
extraction [6], our use of it for the task of matching dependency 
relation paths is new. We treat the matching score of a relation 
path from a candidate sentence as the probability of translating to 
it from its corresponding path in the question. Let us denote two 
paired corresponding paths from question Q and sentence S 
respectively as PQ and PS, whose lengths are represented as m and 
n. The translation probability Prob(PS| PQ) is the sum over all 
possible alignments: 

Question: 

Path_ID       Node1 Path   Node2 

<P��>      Wisconsin             <subj>  produce 

<P��>      produce    <head, whn, prep, pcomp-n>   cheese 

<P��>           nation                 <gen>  cheese 

S1: 

<P��>      Wisconsin       <pcomp-n, mod, i> produce 

<P��>      produce          <obj, mod, pcomp-n>   cheese 

<P��>         nation  <gen>  cheese 
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probability, i.e., relation mapping scores, which are given by a 
translation model learned during training and will be described in 
the next subsection. Unlike in the original application of machine 
translation, we assume that every relation can be translated to 
another; thus, we do not include a NULL relation in position 0. 
Note that )Re|(Re )()( Q

j
S

it llP  is 1 when Reli and Relj are identical 

because the translation probability is maximized when a relation 
is translated to itself.  

While IBM model 1 considers all alignments equally likely, we 
consider only the most probable alignment. The reason is that, 
unlike text translation that works with long sentences, relation 
paths are short. Most often, the most probable alignment gives 
much higher probability than any other alignments. We calculate 
the alignment by finding the most probable mapped relation in the 
path from the question for each relation in the path from the 
sentence based on relation translation probability. As such, the 
path translation probability is simplified as: 
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where A� denotes the most probable alignment. Moreover, we can 
use only the length n of the path PS in normalizing Equation (2). 
Since we rank all candidate sentences according to the same 
question, the length of each path extracted from the question is 
constant, and does not affect the calculation of the translation 
probability. We take the log-likelihood of Equation (2) and 
remove all constants. The matching score of PS is as follows: 
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where n is used as a normalization factor and ��� is a small 
constant. 

Finally, we sum up the matching scores of each path from the 
sentence which has a corresponding path in the question to be the 
relation matching score of the candidate sentence given the 
question. This score reflects how well the candidate sentence’s 
relations match those of the question: a high score indicates that 
the question terms are likely to be used with the same semantics 
as in the question, and that the sentence is more likely to contain a 
correct answer. 

3.3 Model Training 
We have described in the above section how to obtain a relation 
matching score between a sentence and the question, and that this 
process requires a relation mapping model as input, i.e., 

)Re|(Re )()( Q
j

S
it llP  in Equation (3). In this subsection, we show 

how the mapping model can be acquired by two statistical 

methods from training question-answer pairs: one based on 
mutual information (MI) and the other based on expectation 
maximization (EM). 

The assumption is that paired corresponding paths extracted from 
training QA pairs are semantically equivalent. Thus, the relation 
mapping between such training answer sentences and questions 
can be used as a model for unseen questions and potential answers 
as well. We use Minipar to parse all the training questions and 
corresponding answer sentences. Relation paths extracted from 
the question are paired with those from answer sentences, as 
described in Section 3.1.  

We first employ a variation of mutual information1 to calculate 
relation mapping scores. The relatedness of two relations is 
measured by their bipartite co-occurrences in the training path 
pairs. Different from standard mutual information, we account for 
path length in our calculation. Specifically, we discount the co-
occurrence of two relations in long paths. The mutual information 
based score of mapping relation )(Re Q

jl to relation )(Re S
il is 

calculated as: 
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where )Re,(Re )()( S
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Q
j llδ is an indicator function which returns 1 

when )(Re Q
jl and )(Re S

il appear together in a training path pair, and 

0 otherwise. γ is the inverse proportion of the sum of the lengths 
of the two paths. |Rel���| stands for the number of paths extracted 
from all questions in which relation Rel occurs. Likewise, |Rel���| 
gives the number of paths extracted from all answer sentences that 
contain relation Rel. 

In the second configuration, we employ GIZA [1], a publicly 
available statistical translation package, to implement IBM 
translation model 1 training over the paired training paths. Each 
relation is considered a word and each corresponding path pair is 
treated as a translation sentence pair, in which the path from a 
question is the source sentence and the path from the answer 
sentence is the destination sentence. The resulting word 
translation probability table is used to define relation mapping 
score )Re|(Re )()( Q

j
S

it llP . GIZA performs an iterative training 

process using EM to learn pairwise translation probabilities. In 
every iteration, the model automatically improves the probabilities 
by aligning relations based on current parameters. We initialize 
the training process by setting translation probability between 
identical relations to 1 and a small uniform value for all other 
cases, and then run EM to convergence.  

4. EVALUATIONS 
In this section, we present empirical evaluation results to assess 
our relation matching technique for passage retrieval systems. We 
have two hypotheses to test in our experiments:  

1) The relation matching technique improves the precision of 
current lexical matching methods. Moreover, the proposed 

                                                                 
1 We use frequencies instead of probabilities in Equation 4 to 

approximate mutual information and use the logarithm to scale 
the result. 



fuzzy relation matching method outperforms the strict 
matching methods proposed in previous work. 

2) Long questions are more suitable for relation matching. We 
hypothesize that the effectiveness of relation matching is 
affected by question length. Long questions, with more 
question terms, have more relation paths than short questions, 
and benefit more from relation matching. 

3) Relation matching also brings further improvement to a 
system that is already enhanced with query expansion because 
of the high precision it allows. We test whether the fuzzy 
relation matching technique brings further improvement to a 
passage retrieval system that uses query expansion. 

4.1 Experiment Setup 
We use the factoid questions from the TREC-12 QA task [20] as 
test data and the AQUAINT corpus to search for answers. We use 
TREC-12 test data because the questions are long enough to 
obtain corresponding relation paths to perform relation matching. 
We accumulate 10,255 factoid question-answer pairs from the 
TREC-8 and 9 QA tasks for use as training data, which results in 
3,026 unique corresponding path pairs for model construction 
using both MI and EM based training methods. 

There are 413 factoid questions in the TREC-12 task, from which  
30 NIL-answer questions are excluded because they do not have 
answers in the corpus. TREC-12 had a passage retrieval task 
which used the same factoid questions as the main task except it 
accepted longer answers (250 bytes). Since we intend to evaluate 
passage retrieval techniques, we create the gold standard based on 
the official judgment list for the passage retrieval task provided by 
TREC. For each question, we generate a list of passages that are 
judged to be correct and supported by the corpus in the judgment 
list as standard answer passages. We cannot create the gold 
standard for 59 of the questions because no correct passages for 
them were judged by TREC evaluators. This leaves us with a final 
test set of 324 QA pairs, on which all evaluations in this paper are 
based. While Tellex et al. [19] made use of TREC-supplied exact 
answer patterns to assess returned passages, we observe that 
common answer patterns can be matched in incorrect passages as 
answer patterns are usually very short. We therefore use a stricter 
criterion when judging whether a passage is correct: it must be 
matched by the exact answer pattern, and additionally, it must 
have a cosine similarity equal to or above 0.75 with any standard 
answer passage.  

Similar to the configuration used by Tellex et al. [19], we use the 
top 200 documents for each question according to the relevant 
document list provided by TREC as the basis to construct the 
relevant document set for the questions. If the 200 documents do 
not contain the correct answer, we add the supporting documents 
that have the answer into the document set. We conduct different 
passage retrieval algorithms on the document set to return the top 
20 ranked passages. Note that the optimal passage length varies 
across different retrieval algorithms. For instance, SiteQ is 
optimized to use a passage length of three sentences [19]. In our 
evaluations for relation matching techniques, we take one 
sentence as a passage, as Minipar can only resolve intrasentential 
dependency relations. But for SiteQ, we still use the three-
sentence window to define a passage.  

We use four systems for comparison: 

1) MITRE (baseline): This approach simply matches stemmed 
words between question and answer. 

2) Strict Matching of Relations: A system that uses strict 
matching of relations to rank sentences. It employs the same 
technique as fuzzy matching to extract and pair relation 
paths, but it counts the number of exact path matches as its 
ranking score. 

3) SiteQ: One of the top performing density-based systems in 
previous work. We follow the adaptation described in [19] in 
our implementation. 

4) NUS [5]: Another top-performing factoid question answering 
system. We utilize its passage retrieval module, which is 
similar to SiteQ except that it uses single sentences as 
passages and calculates sentence ranking scores by iteratively 
boosting a sentence’s score with adjacent sentence scores. 

We employ three performance metrics: mean reciprocal rank 
(MRR), percentage of questions that have no correct answers, and 
precision at the top one passage. The former two metrics are 
calculated on the returned 20 passages by each system. 

4.2 Performance Evaluation 
In the first experiment, we evaluate the overall performance of our 
relation matching technique compared to other passage retrieval 
systems.  

We apply both strict and fuzzy matching of relations in our 
experiments. We perform relation matching on the MITRE and 
NUS systems but not on SiteQ as it retrieves multiple-sentence 
passages, in which cross-sentence dependencies cannot be 
modeled by our system. For simplicity, we linearly combine the 
normalized lexical matching score obtained by MITRE or NUS 
and the relation matching score to obtain the overall ranking score 
of a sentence. In calculating fuzzy relation matching scores, we 
utilize the two relation mapping score models generated by both 
the MI-based and EM-based training methods. We illustrate the 
evaluation results in Table 1. From the table, we draw the 
following observations: 

1) Applying relation matching over lexical matching methods 
boosts system performance dramatically. Applied on top of 
the MITRE and NUS systems, both strict and fuzzy relation 
matchings augment performance in all metrics significantly. 
When integrating strict relation matching with the NUS 
system, MRR improves by 35% and 31% over the results 
obtained by the standard NUS and SiteQ systems 
respectively. Relation matching also yields better precision in 
the top one passage task. When fuzzy relation matching is 
applied on top of NUS, the system achieves even better 
results. Here, all improvements obtained by relation 
matching are statistically significant as judged by using 
paired t-test [9] (p < 0.001). We believe that the 
improvement stems from the ability of the relation matching 
technique to model dependency relationships between 
matched question terms.  Thus, many false positive sentences 
that would be favored by normal bag-of-word approaches are 
subsequently eliminated as they often do not contain the 
correct relations between question terms. 

Interestingly, even strict matching of relations significantly 
improves the performance of a passage retrieval system while  



Table 1. Overall performance comparison of MRR, percentage of incorrectly answered questions (% Incorrect) and precision at top 
one passage. Strict relation matching is denoted by Rel_Strict, with the base system in parentheses. Fuzzy relation matching is 
denoted by Rel_MI or Rel_EM for both training methods. All improvements obtained by relation matching techniques are 
statistically significant (p<0.001).  

Passage retrieval systems MITRE SiteQ NUS 
Rel_Strict 
(MITRE) 

Rel_Strict 
(NUS) 

Rel_MI 
(MITRE) 

Rel_EM 
(MITRE) 

Rel_MI 
(NUS) 

Rel_EM 
(NUS) 

MRR 
 

0.2000 0.2765 0.2677 0.2990 0.3625 0.4161 0.4218 0.4756 0.4761 

% MRR improvement over 

MITRE 
SiteQ 
NUS 

N/A 
N/A 
N/A 

+38.26 
N/A 
N/A 

+33.88 
N/A 
N/A 

+49.50 
+8.14 
+11.69 

+81.25 
+31.10 
+35.41 

+108.09 
+50.50 
+55.43 

+110.94 
+52.57 
+57.56 

+137.85 
+72.03 
+77.66 

+138.08 
+72.19 
+77.83 

% Incorrect 45.68% 37.65% 33.02% 41.96% 32.41% 29.63% 29.32% 24.69% 24.07% 

Precision at top one 
passage 

0.1235 0.1975 0.1759 0.2253 0.2716 0.3364 0.3457 0.3889 0.3889 

work in answer extraction (e.g., [2]) seems to be hindered by 
strict matching. We conjecture that the passage retrieval task 
is less constraining than answer extraction as the latter has to 
match relations of the identified target for the question. As 
such, we feel passage retrieval is more likely to benefit from 
relation matching.   

2) Fuzzy relation matching outperforms strict matching 
significantly. When integrated with the NUS system, it gains 
a statistically significant improvement of 31% in MRR and 
43% in precision at top one passage when using fuzzy 
matching of relations over strict matching. Note that while 
strict matching does not bring large improvements in terms 
of percentage of incorrect questions compared to lexical 
matching methods, the fuzzy relation matching method 
decreases such errors by 34% in comparison to NUS and by 
56% compared to MITRE. Strict matching often fails due to 
variations in representing the same relationship because of 
parsing inconsistency and the flexibility exhibited in natural 
language. Such interchangeability between relations is 
captured by fuzzy matching methods. In this way, our 
statistical model is able to accommodate the variation in 
natural language texts. 

3)   Using MI and iterative EM to train relation mapping scores 
does not make any obvious difference in our tests. However, 
we present both training methods because they differ in 
complexity and scalability. The MI method has lower 
complexity compared to the EM method because it does not 
perform any alignment of relations during training, as it uses 
relation co-occurrences as approximations to relation 
mapping. The EM training process does alignment by 
improving the probability of alignment iteratively. We 
conjecture that the EM training method could outperform the 
MI method if a larger amount of training data is available. 
MI-based mapping scores are likely to be more susceptible to 
noise when scaling up. The EM training method is unlikely 
to suffer due to its gradual improvement mechanism. 
However, we cannot show the scalability of the two training 
methods given our limited test and training data. 

4.3 Performance Variation to Question 
Length 

It seems intuitive that longer questions are likely to benefit more 
from relation matching than shorter questions. The rationale is 

that more relation paths in longer sentences lead to more reliable 
relation ranking scores. In this experiment, we examine the effect 
of varying the number of non-trivial question terms on MRR.   

Among the 324 questions in our test set, the number of question 
terms varies from one to 13, after removing trivial stop words 
such as “what”. In Figure 4, we plot the MRR values along with 
95% error bars of the systems that apply fuzzy relation matching 
with EM training on top of the MITRE and NUS systems when 
question length is varied. We consider only questions with two to 
six non-trivial question terms because there are less than 10% of 
questions with fewer than two or more than six question terms in 
our test set. 

From Figure 4, we can see that as indicated by little overlap of the 
error bars, MRR nearly monotonically increases when more terms 
are present in the question. This is evidence that longer questions 
are more likely to improve with relation matching. We surmise 
that with more paired corresponding paths, relation matching 
based ranking would be of higher precision. 
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Figure 4. Illustration of MRR variation to change in number 
of question terms. 

Note that number of question terms is only an approximation of 
number of actual paired corresponding relation paths. However, 
as the number of relation paths extracted for each question varies 
more than the number of question terms does, our small test data 
prevents us from conducting thorough experiments to examine the 
effect of number of relation paths on matching. Future work on a 
larger dataset can be done to reinforce the results shown here. 

4.4 Error Analysis for Relation Matching 
Although we have shown that relation matching greatly improves 
passage retrieval, there is still plenty of room for improvement.  A 
key question is whether we can further characterize the types of 



questions that are adversely affected by relationship matching. 
Based on the above two experiments, we perform micro-level 
error analysis on those questions for which relation matching 
degrades performance.  We find that fuzzy relation matching 
sometimes fails with incorrectly paired relation paths mainly for 
the following two reasons: 

1) Mismatch of question terms: In some cases, the paths are 
incorrectly paired due to the mismatch of question terms. For 
instance, given the question #1912 “In which city is the River 
Seine?”, the correct answer should be “Paris”. Without 
question analysis and typing, the relation matching algorithm 
mistakenly takes “city” as a question term, instead of 
recognizing it as the question target. Thus, sentences 
containing all three question terms, i.e., “city”, “river” and 
“Seine”, are ranked high while the correct answer does not 
contain “city”. To overcome this problem, we need to 
incorporate question analysis in the passage retrieval system 
such that the question target and the answer candidate of the 
expected type can be matched when corresponding relation 
paths are paired.  

2) Paraphrasing between question and answer sentences: Some 
correct sentences are paraphrases of the given question. In this 
case, both lexical matching and relation matching are likely to 
fail. Consider the question: “What company manufactures X?” 
The correct sentence is: “… C, the manufacturer of X …”. The 
system needs to resolve such a paraphrase as “C is the 
manufacturer of X � C manufactures X” to answer this kind 
of questions. Lin and Pantel [17] attempted to find 
paraphrases (also by examining paths in Minipar’s output 
parse trees) by looking at common content between the two 
nodes at both ends of relations. However, their method is 
limited as it relies on abundant training data to find inference 
rules between specific relations.  

4.5 Performance with Query Expansion 
As discussed above, short questions and paraphrases are obstacles 
in enhancing performance using relation matching. State-of-the-
art QA systems adopt query expansion (QE) to alleviate such 
problems [5, 10, 8]. Here, we show how performance varies when 
the relation matching technique is reinforced by query expansion.  

We conduct simple query expansion as described in [5], which 
submits the question to Google and selects expansion terms based 
on their co-occurrences with question terms in result snippets. We 
use the same method as described in the first two experiments to 
linearly combine the lexical matching score with query expansion 
and the relation matching score. We list the evaluation results in 
Table 2.  

With query expansion, the performance of NUS (the lexical 
matching based system) again improves greatly. Specifically, 
query expansion reduces the percentage of incorrect answers from 
33% to 28.4%. This is close to the figures obtained by relation 
matching methods without query expansion as listed in Table 1. 
This shows that query expansion boosts recall using expansion 
terms, allowing the system to answer more questions correctly. 

When relation matching is incorporated into the NUS system 
along with query expansion, MRR values are boosted by 49%, 
which is statistically significant. This demonstrates that our 
relation matching technique can help re-rank passages to allow 

higher precision when the system is equipped with query 
expansion. 

Table 2. Comparison of performance with query expansion. 
All showed improvements are statistically significant (p-
value<0.001). 

Passage 
Retrieval 
Systems 

NUS 
(baseline) 

NUS+QE 
Rel_MI 
(NUS+QE) 

Rel_EM 
(NUS+QE) 

MRR 
(% improvement 
over baseline) 

0.2677 
0.3293 
(+23.00%) 

0.4924 
(+83.94%) 

0.4935 
(+84.35%) 

% MRR 
improvement 
over NUS+QE 

N/A N/A +49.54% +49.86% 

% Incorrect 33.02% 28.40% 22.22% 22.22% 

Precision at top 
one passage 

0.1759 0.2315 0.4074 0.4074 

However, query expansion does not boost the performance of 
systems with relation matching as significantly as compared to the 
improvement over the baseline lexical based system without query 
expansion. Comparing Tables 1 and 2, the improvement in 
performance for a system with query expansion is about 2% in 
MRR (from 0.4756 to 0.4924 when using MI training and from 
0.4761 to 0.4935 when using EM training). We believe that this is 
caused by the simple policy we use to integrate lexical matching 
with relation matching. Since we just sum up matching scores, our 
relation matching model does not take full advantage of query 
expansion because external expansion terms do not have relation 
paths with the original question terms in the question. As such, 
expansion terms do not improve the relation path pairing process 
in our current system.  

5. Case Study: Constructing a Simple System 
for TREC QA Passage Task 
In the above experiments, we conducted component evaluations 
for passage retrieval for factoid questions. A natural question is 
whether the incorporation of relation matching into a standard QA 
system can yield good performance.  Such a fully-fledged QA 
system adds query expansion, question typing and named entity 
extraction on top of simple passage similarity. In this case study, 
we construct a simple QA system on top of the NUS passage 
retrieval module reinforced by fuzzy relation matching and query 
expansion. Both question typing and NE extraction modules are 
rule-based, as employed in a TREC QA system [5]. We return the 
first top-ranked sentence that contains the expected named entity 
as the answer passage. The average length of the returned 
passages is 181 bytes.  

We evaluate the QA system in the context of the QA passage task 
of TREC-12 [20]. Our system answers 175 questions correctly out 
of the total 324 questions, resulting in an accuracy of 0.540. 
When averaging over all 383 questions that do not have NIL 
answers, the accuracy is 0.457, which is still better than the 
second ranked system in the official TREC evaluations [20].  

6. Conclusions 
In this paper, we have presented a novel fuzzy relation matching 
technique for factoid QA passage retrieval. Our evaluation results 
show that our technique produces significant improvements in 
retrieval performance in current systems: a vast 50~138% 



improvement in MRR, and over 95% in precision at top one 
passage.  Fuzzy matching of dependency relations is calculated 
based on the degree of match between relation paths in candidate 
sentences and the question. For learning a model of relationship 
matching from training data, we have presented two methods 
based on mutual information and iterative EM. While these two 
methods do not make an obvious difference given our test data, 
we believe that EM scales better and may improve when given a 
larger amount of training data. Furthermore, our relation matching 
technique has shown itself capable of bringing significant 
improvement in retrieval performance across all the architectures 
we have tested, regardless of whether or not query expansion is 
used. As such, we recommend that future passage retrieval 
systems should incorporate approximate relation matching to 
achieve state-of-the-art performance. 

Past work has shown that strict matching does not perform well in 
answer extraction. We have shown that this conclusion does not 
generalize to all QA modules. A contribution of this paper is the 
demonstration that even strict matching of relations significantly 
augments the performance of current passage retrieval modules. 
This may be explained by the fact that passage retrieval imposes 
less constraint in matching relations than answer extraction. 
Future work is expected to improve answer extraction by using 
relations effectively.  

Our empirical evaluation results and qualitative error analysis 
reveal that the relation matching method can be improved by 
better alignment of relation paths. Relation paths often cannot be 
paired due to few matched question terms or paraphrasing, both of 
which could be alleviated by query expansion. While we have 
benchmarked the performance of relation matching with query 
expansion, our experiment has not fully integrated the modules in 
the sense that we have not taken advantage of expanded terms in 
relation matching. Seamless integration of query expansion with 
relation matching is likely to produce further gains in 
performances and is a logical next step in future research. 
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