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ABSTRACT
Existing recommender systems usually model items as static — un-
changing in attributes, description, and features. However, in do-
mains such as mobile apps, a version update may provide substan-
tial changes to an app as updates, reflected by an increment in its
version number, may attract a consumer’s interest for a previously
unappealing version. Version descriptions constitute an important
recommendation evidence source as well as a basis for understand-
ing the rationale for a recommendation. We present a novel frame-
work that incorporates features distilled from version descriptions
into app recommendation. We use a semi-supervised topic model
to construct a representation of an app’s version as a set of latent
topics from version metadata and textual descriptions. We then dis-
criminate the topics based on genre information and weight them
on a per-user basis to generate a version-sensitive ranked list of
apps for a target user. Incorporating our version features with state-
of-the-art individual and hybrid recommendation techniques signif-
icantly improves recommendation quality. An important advantage
of our method is that it targets particular versions of apps, allowing
previously disfavored apps to be recommended when user-relevant
features are added.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering,
Search process
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Version sensitive, Recommender systems, Mobile apps, App store

1. INTRODUCTION
Mobile applications (apps) are now a part of our daily life, cre-

ating economic opportunities for companies, developers, and mar-
keters. While the growing app market1 has provided users with a

1https://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-
Billion-in-2013.html
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motley collection of apps, their sheer number leads to information
overload, making it difficult for users to find relevant apps.

Recommender systems have been deployed to alleviate the over-
load of information in app stores by helping users find relevant
apps [30, 31, 6, 15, 32]. Existing recommender systems typically
apply one of two methods: collaborative filtering (CF), which rec-
ommends items to target users based on other similar users’ prefer-
ences, or content-based filtering (CBF), which recommends based
on the similarity of an item’s content and the target user’s interests.
However, unlike conventional items that are static, apps change and
evolve with every revision. Thus, an app that was unfavorable in
the past may become favorable after a version update. For exam-
ple, Version 1.0 of App X did not interest a user at first, but a recent
update to Version 2.0 — which promises to provide the function-
ality of high definition (HD) video capture — may arouse his in-
terest in the revised app. A conventional recommender system that
regards an app as a static item would fail to capture this impor-
tant detail. This is why it is vital for app recommender systems to
process nascent signals in version descriptions to identify desired
functionalities that users are looking for.

We focus on the uniqueness of the app domain and propose a
framework that leverages on version features; i.e., textual descrip-
tions of the changes in a version, as well as version metadata. First,
with the help of semi-supervised topic models that utilize these fea-
tures, we generate latent topics from version features. Next, we
discriminate the topics based on genre information and use a cus-
tomized popularity score to weight every unique genre-topic pair.
We then construct a profile of each user based on the topics, and
finally compute a personalized score of recommending the latest
version of an app to a target user. Furthermore, we show how to
integrate this framework with existing recommendation techniques
that treat apps as static items.

Figure 1 provides an overview of our approach. App X has five
different versions (1.0, 1.1, 1.2, 2.0, and 3.0). Each version is
characterized by a set of latent topics that represents its contents,
whereby a topic is associated with a functionality, such as the abil-
ity to capture HD videos. For instance, Version 1.0 has Topics 1,
2, and 4; whereas Version 3.0 only has Topic 5. At the same time,
based on a user’s app consumption history, we can model which
topics they are interested in. Therefore, if Bob has a keen interest
in Topic 5, the chance that he adopts App X at Version 3.0 would
be higher because Topic 5 attracts Bob’s interest. Likewise, there
is a higher chance of both Alex and Clark adopting App X at Ver-
sion 1.2 because Topics 1 and 3 attract their interests.

We show that the incorporation of version features complements
other standard recommendation techniques that treat apps as static
items, and this significantly outperforms state-of-the-art baselines.

https://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-Billion-in-2013.html
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Figure 1: App X has five versions (red circles, on the left). The contents of each version is represented by a set of topics (green
squares) in which each version consists of at least one topic. At the same time, based on the consumption history of users, we model
them by identifying which topics they are interested in (on the right).

Our experiments identify which topic model best utilizes the avail-
able version features to provide the best recommendation, and ex-
amine the correlation between various version metadata and recom-
mendation accuracy. Furthermore, we provide an in-depth micro-
analysis that investigates: (i) whether our approach recommends
relevant apps at the most suitable version, (ii) what information can
we gather by scrutinizing the latent topics, and (iii) which is the
most influential version-category. To the best of our knowledge,
this is the first work that investigates version features in recom-
mender systems. Our contributions are summarized as follows:
• We show that version features are important in app recom-

mendation, as apps change with each version update, un-
like conventional static items. This ultimately influences the
needs of users and the recommended apps.

• We show how to synergistically combine our version-sensitive
method with existing recommendation techniques.

2. RELATED WORK
Collaborative filtering (CF) has been widely studied. This tech-

nique can be classified into neighborhood models [5, 8, 23] and
latent factor models [10, 12, 9]. Matrix factorization (MF) is one
of the most successful realizations of latent factor models and is
superior to the neighborhood models [25, 13]. MF associates users
and items with several latent factors where observed user-item rat-
ings matrix is their product [32].

On the other hand, content-based filtering (CBF) has been ap-
plied mostly in textual domains such as news recommendation [28]
and scholarly paper recommendation [18, 26, 24]. In recent years,
topic models such as latent Dirichlet allocation (LDA) [4] have
been used to provide an interpretable and low-dimensional repre-
sentation of textual documents for recommender systems. For ex-
ample, Ramage et al. [19] used a variant of LDA to characterize
microblogs in order to recommend which users to follow, while
Moshfeghi et al. [17] also employed LDA to combine content fea-
tures and emotion information for movie recommendation.

2.1 Recommendation for Mobile Apps
In order to deal with the recent rise in the number of apps, works

on mobile app recommendation are emerging. Some of these works
focus on collecting additional information from the mobile device
to improve recommendation accuracy. Xu et al. [30] investigated

the diverse usage behaviors of individual apps by using anonymized
network data from a tier-1 cellular carrier in the United States. Yan
and Chen [31] and Costa-Montenegro et al. [6] constructed app
recommender systems by analyzing the usage patterns of users.
Other works utilize external information to improve recommenda-
tion quality. Zheng et al. [34] made use of GPS sensor information
to provide context-aware app recommendation. Lin et al. [15] uti-
lized app-related information on Twitter to improve app recommen-
dation in cold-start situations. Yin et al. [32] considered behavioral
factors that invoke a user to replace an old app with a new one,
and introduced the notion of “actual value” (satisfactory value of
the app after the user used it) and “tempting value” (the estimated
satisfactory value that the app may have), thereby regarding app
recommendation as a result of the contest between these two val-
ues. While the above works recommend apps that are similar to a
user’s interests, Bhandari et al. [2] proposed a graph-based method
for recommending serendipitous apps.

2.2 Time-Sensitive Recommendation
Works in information retrieval (IR) have also handled items that

change and evolve. For example, past works have also viewed
Web pages as entities that evolve over time. Keyaki et al. [11]
explored XML Web documents (e.g., Wikipedia articles) that are
frequently updated, and proposed a method for fast incremental
updates for efficient querying of XML element retrieval. This is
different from our work as they dealt with items only, whereas our
method also generates personalized recommendation of items for
users, i.e., our work also considers the users. Furthermore, our
work focuses on a secondary item unit — version updates, which is
a separate entity from primary item (i.e., the app). Liang et al. [14]
proposed a method to capture the temporal dynamics of relevant
topics in micro-blogs (e.g., Twitter) where a topic centers around a
certain theme such as the U.S. presidential election or Kate Middle-
ton’s baby which, in the micro-blogging community, may change
quickly with time. Our work differs from theirs as the “items” in
their system are the topics, which is an indefinite discourse. Apps,
on the other hand, are definite items that users download and use.
Wang and Zhang [27] explored the problem of recommending the
right product at the right time, which uses a proposed opportu-
nity model to explicitly incorporate time in an e-commerce rec-
ommender system. Their work explores the time of purchase, and
does not focus on items that change with time.



Figure 2: An app’s changelog chronicles the details of every
version update; shown here is an excerpt of the Tumblr app
changelog. Version updates typically include new features, en-
hancements, and/or bug fixes.

The works mentioned at the outset (Sections 2 and 2.1) can be
characterized as static item recommendation, as the items do not
undergo any change or evolution. In contrast, our work focuses on
items that evolve. Furthermore, as shown later in Section 5, our
work complements these techniques that treat items as static. In
addition, our work differs from the previous works in time-sensitive
recommendation (Section 2.2) in that the nature and requirements
of app recommendation differs from the retrieval of Web articles
and topic recommendation in micro-blogs.

3. OUR APPROACH
Our framework processes the version texts and metadata to de-

cide whether a particular version of an app entices a target user.
We first generate latent topics from version features using semi-
supervised topic models in order to characterize each version. Next,
we discriminate the topics based on genre metadata and identify
important topics based on a customized popularity score. Follow-
ing that, we incorporate user personalization, and then compute a
personalized score for a target user with respect to an app and its
version. Our system then recommends the top k target apps:

A : a ∈ argmax k(score(d(a, v), u)), (1)

where an app a and its specific version v are treated as a tuple that
characterizes a document d, and is scored with respect to a target
user u. Lastly, we explain how to integrate this framework with
existing recommendation techniques.

3.1 Version Features
App versioning is the process of assigning unique version num-

bers to unique states of the app. Within a given version number cat-
egory (e.g., major, minor), these numbers are generally assigned in
increasing order and correspond to new developments in the app.
Figure 2 shows an example of an app’s changelog that consists of
four different version updates (or version-snippets) in reverse or-
der: Versions 2.0, 1.2.1, 1.2, and 1.1. Hereafter, we will use the
terms “version-snippet” and “document” interchangeably to refer
to the textual description of each version update.

Versions are identified using a conventional numbering structure
of “X.Y.Z” where X, Y, and Z represent major, minor, and mainte-
nance categories, respectively:

1. Major — Major versions indicate significant changes to the
app and is incremented when new major releases are made.

Figure 3: The 40 pre-defined genre labels on Apple’s iOS app
store (as of January 2014). The bottom set are gaming sub-
genres and only appear on gaming apps.

This usually denotes that substantial architectural changes
have taken place. For example, in Figure 2, Version 2.0 is
a major version-category.

2. Minor — The minor version category is often applied when
new functionality is introduced or important bug fixes are
introduced. The dependant maintenance number (covered
next) is reset to zero. For example, in Figure 2, Versions 1.1
and 1.2 are minor version-categories.

3. Maintenance — The maintenance version category is asso-
ciated with non-breaking bug fixes. For example, in Figure 2,
Version 1.2.1 is a maintenance version-category.

Hereafter, we will use “version-category” as shorthand for version
number category.

Besides textual descriptions and version-categories, each version-
snippet is also associated with the following information:

1. Genre Mixture — Every app is assigned to a subset of pre-
defined genres by the developer. For example, the app “Insta-
gram2” is assigned to the genres “photo & video” and “social
networking.” As a version is essentially one of many unique
states of an app, the genre mixture in which an app is as-
signed to is also inherited by its versions. Additionally, as
the aforementioned “Instagram” example shows, each app or
version is typically assigned to multiple genres3. Figure 3
shows all of the 40 pre-defined genre labels in the case of
Apple’s iOS app store (our focus in this study).

2. Ratings — It is commonly known that user ratings are di-
rectly paired to apps, i.e., user u gives app a a numerical rat-
ing r. However, to be strictly pedantic, the app stores of Ap-
ple and Google pair ratings to a particular version of an app:
user u gives version v of app a a numerical rating r. There-
fore, every version — even if it is the same app — receives
a different set of ratings from different users. A version that
was rated poorly in the past may receive more favorable rat-
ings for later versions.

3.2 Generating Latent Topics
In order to find an interpretable and low-dimensional representa-

tion of the text in the version-snippets (or documents), we focus on
the use of topic modeling algorithms (topic models). A topic model
2http://itunes.apple.com/lookup?id=389801252
3This information (of having more than one genre) is only displayed
through the API calls to the app store, and is not displayed in the regular
app store that consumers use; instead, only one (primary) genre is shown to
the consumer.

http://itunes.apple.com/lookup?id=389801252


takes a collection of texts as input and discovers a set of “topics”
— recurring themes that are discussed in the collection — and the
degree to which each document exhibits those topics.

We first explore the use of two different topic models: (i) latent
Dirichlet allocation (LDA) [4] and (ii) Labeled-LDA (LLDA) [20],
which are unsupervised and semi-supervised topic models, respec-
tively. We also investigate a corpus-enhancing strategy of incorpo-
rating version metadata directly into the corpus prior to the appli-
cation of topic models. This is to improve the quality of the topic
distribution discovered by the topic models.

3.2.1 Modeling Version-snippets with Topic Models
LDA is a well-known generative probabilistic model of a cor-

pus; it generates automatic summaries of latent topics in terms of:
(i) a discrete probability distribution over words for each topic, and
further infers (ii) per-document discrete distributions over topics,
which are respectively defined as:

p(w|z), (2)
p(z|d), (3)

where z, d, and w denote the latent topic, the document, and a
word, respectively.

However, a limitation of LDA is that it cannot incorporate “ob-
served” information as LDA can only model the text in version de-
scriptions, i.e., LDA is an unsupervised model. In the context of our
work, this means that we cannot incorporate the observed version
metadata (e.g., version-category and genre mixture) into the latent
topics. This leads us to Labeled-LDA (or LLDA), an extension to
LDA that allows the modeling of a collection of documents as a
mixture of some observed, “labeled” dimensions [20], representing
supervision.

LLDA is a supervised model that assumes that each document is
annotated with a set of observed labels. It is adapted to account for
multi-labeled corpora by putting “topics” in one-to-one correspon-
dence with “labels”, and then restricting the sampling of topics for
each document to the set of labels that were assigned to the docu-
ment. In other words, these labels — instead of topics — play a di-
rect role in generating the document’s words from per-label distri-
butions over terms. However, LLDA does not assume the existence
of any global latent topics, only the document’s distributions over
the observed labels and those labels’ distributions over words are
inferred [21]. This makes LLDA a purely supervised topic model.

Although LLDA appears to be a supervised topic model ini-
tially, depending on the assignment of the set of labels to the doc-
uments, it can actually function either as an unsupervised or semi-
supervised topic model. To achieve an unsupervised topic model
like LDA, we first disregard all the observed labels (if any) in the
corpus, and then model K latent topics as labels named “Topic 1”
through “Topic K” and assign them to every document in the col-
lection. This makes LLDA mathematically identical to traditional
LDA with K latent topics [19]. On the other hand, to achieve a
semi-supervised topic model, we first assign every document with
labels named “Topic 1” through “Topic K” for the unsupervised
portion, and then use the observed labels4 (that are unique to each
document) for the supervised portion.

The semi-supervised method of implementing LLDA allows us
to quantify broad trends via the latent topics (as in LDA) while
at the same time uncover specific trends through labels associated
with document metadata. In our work, we treat the version cat-
egories and genre mixture as observed labels, and rely on semi-
supervised LLDA to discover the words that are best associated
with the different version-categories and genres, respectively.
4Note that the number of observed labels varies with every document.

Algorithm 1 How to create “pseudo-terms” from metadata and in-
corporate them into the corpus (in pseudocode).

1: For each doc “d” in corpus:
2: // Note that each doc is a version-snippet.
3: verText = d.getText();
4: verCategory = d.getVersionCategory();
5: // We assume verCategory already has the
6: // hash-prefix (i.e., “#”-prefix).
7: appId = d.getAppId();
8: genres = getGenres(appId);
9: // We assume genres are comma separated values

10: // and already have the hash-prefix.
11: verText += genres + “,” + verCategory;
12: d.setText(verText);

Similar to LDA, LLDA generates the topic-word and document-
topic distributions in Equations (2) and (3), respectively, allow-
ing us to obtain the mixture weights of topics for every document.
Hereafter, semi-supervised LLDA will be the default LLDA model,
and we will also use the terms “topic” and “label” interchangeably.

3.2.2 Corpus-enhancement with Pseudo-terms
Aside from employing topic models, we identify another way

of incorporating metadata into the latent topics. Inspired by how
hashtags are used in Twitter to add content to Twitter messages,
we create “pseudo-terms” from the metadata and incorporate them
into the set of documents before performing topic modeling. These
pseudo-terms can be identified by their “#” prefix. Algorithm 1
shows how metadata in the form of pseudo-terms are automatically
“injected” into the corpus of version-snippets, as we want to asso-
ciate these pseudo-terms with the latent topics.

Because LDA and LLDA generate automatic summaries of top-
ics in terms of a discrete probability distribution over words for
each topic [20], incorporating pseudo-terms into the corpus allows
the topic models to learn the posterior distribution of each pseudo-
term (in addition to the natural words) in a document conditioned
on the document’s set of latent topics. Incorporating these unique
pseudo-terms will help in getting topic distributions that are more
consistent with the nature of version-snippets. Note that the differ-
ence between using the enhanced-corpus and the normal corpus is
that the former allows both the words and pseudo-terms to be as-
sociated with the latent topics, while the latter only allows (natural
language) words to be associated with the latent topics. To differen-
tiate between the normal corpus and the enhanced-corpus, we add
the prefix “inj”ection to LDA and LLDA; in shorthand, “inj+LDA”
and “inj+LLDA,” respectively, to denote these approaches.

3.3 Identifying Important Latent Topics
We can now model each version-snippet (or document) as a dis-

tribution of topics. However, we do not know which topics are
important for recommendation. For example, if we knew that users
prefer a topic that is related to the promise of high-definition (HD)
display support, we would rather recommend an app that includes
HD display support in its latest version update over similar apps
that do not. Therefore, the importance of each topic differs from
app to app, and this is a key contribution of our work.

Furthermore, apps are classified into various genres; each genre
works differently to the same type of version update. For example,
a version update that offers HD display support would be more en-
ticing and relevant on a game app instead of a music app. Later,
in Section 5.2, we will show how the inclusion of genre informa-
tion significantly improves the recommendation accuracy. Because
of this, our method includes genre information by default. Table 1



Table 1: Genre-topic weighting matrix, where g and z denote
a genre and a latent topic, respectively. Every genre-topic pair
has a unique weight from weighting scheme. Also, x ∈ {LDA,
inj+LDA, LLDA, and inj+LLDA}.

Genre Latent Topic
z1 z2 . . . zj . . . zK−1 zK

g1 wx1,1 wx1,2 . . . wx1,j
. . . wx1,K−1

wx1,K

g2 wx2,1 wx2,2 . . . wx2,j
. . . wx2,K−1

wx2,K

...
...

...
...

...
...

...
...

gi wxi,1
wxi,2

. . . wxi,j
. . . wxi,K−1

wxi,K

...
...

...
...

...
...

...
...

gG wxG,1
wxG,2

. . . wxG,j
. . . wxG,K−1

wxG,K

shows how we uniquely weight every genre-topic pair with mul-
tiplicative weight wx, where x ∈ {LDA, inj+LDA, LLDA, and
inj+LLDA}. Note that each genre has a different distribution of
importance weights with respect to the set of latent topics.

To compute the weight w, we first introduce a measurement for
“popularity” for a document. We use a variant of the popularity
measurement detailed in [33] whereby the popularity is reflected
by the votes it receives; as intuitively, the more positive votes it re-
ceives, the more popular it is and vice versa. While one may argue
that an item receiving a large number of votes (whether they are
positive or not) is popular, in this work, we define popular items as
those that are “liked” by the majority of the service users, whereby
a “like” translates to a rating of 3 and above on the 5-point Likert
scale, whereas a “dislike” is a rating of 2 and below.

We formally define the popularity score π(d) that outputs a value
between 0 and 1, which factors user ratings into account:

π(d) =

{
pvd−nvd

pvd+nvd+1
if pvd − nvd > 0

0 otherwise,
(4)

where pvd and nvd denote the number of positive and negative
ratings of document d, respectively.

We use this popularity score to define the importance weight of
a genre-topic pair, wx:

wx(g, z) =

∑
d∈D(g) p(z|d) · π(d)∑

z′∈Z
∑

d∈D(g) p(z
′|d) · π(d) , (5)

where Z is the set of all K topics, D(g) is the set of all documents
that belongs to genre g, π(d) is the popularity score of document
d, p(z|d) is the document-to-topic distribution in Equation (3), and
x ∈ {LDA, inj+LDA, LLDA, and inj+LLDA}. The denominator
is used solely for normalization. In other words, wx is discrimi-
nated by the genre, and information from the ratings, along with
the distribution of topics, are used to identify its weights.

3.4 User Personalization
To incorporate personalization, we need to know each user’s

preference with respect to the set of latent topics. We determine
this importance by analyzing the topics present in the apps that a
user u has previously consumed. To compute this factor with re-
spect to a latent topic z, we define the following equation:

p(z|u) =
∑

d∈D(u) p(z|d)∑
z′∈Z

∑
d∈D(u) p(z

′|d) , (6)

where p(z|d) is the document-to-topic distribution defined in Equa-
tion (3) and D(u) is the set of documents consumed by user u. As
in Equation (5), the denominator is solely for normalization.

3.5 Calculation of the Version-snippet Score
Finally, we calculate the score defined by Equation (1). We com-

bine the document-to-topic distribution defined in Equation (3), the
weighting schemes defined by Equation (5), the user-personalization
factor defined by Equation (6), and compute the score as follows:

scorex(d, u) =
∑
z∈Z

p(z|d) · wx(genre(d), z) · p(z|u), (7)

where d, u, and z are the document, target user, and latent topic, re-
spectively,wx(·) denotes the weighting schemes (where x ∈{LDA,
inj+LDA, LLDA, and inj+LLDA}), genre(d) is the genre of docu-
ment d, p(z|d) is the document-to-topic distribution in Equation (3),
and p(z|u) is the probability that the target user u prefers topic z.
Thus, for each app, we calculate its score based on its latest version
to see if it should be recommended.

3.6 Combining Version Features with Other
Recommendation Techniques

Our work aims at exploring how version features can improve the
recommendation accuracy of existing recommendation techniques
such as CF and CBF. A simple way to integrate version features
with the other recommendation techniques is to use a weighted
combination scheme, but we also explore a more advanced ap-
proach, Gradient Tree Boosting (GTB) [7], which is a machine
learning technique for regression problems that produces a predic-
tion model in the form of an ensemble of prediction models. We
show the results of GTB in our work as it is more superior.

For each of the users, we fit a GTB model to their training data
(for each app in the training data that a user has consumed). Each
training sample contains the prediction scores of the various recom-
mendation techniques and the actual rating value of the user for the
particular app. Note that for our version-sensitive recommendation
(VSR) score, we map the score of the version-snippet to the app.
We assume a recommendation technique — such as CF and CBF
or any other — provides a probability of the likelihood of user u
consuming or downloading app a. The features given to GTB are a
set of probability scores of each of the recommendation techniques,
VSR, CF, and CBF; the output of GTB is a predicted score between
0 and 5. The predicted ratings are then ranked in reverse order for
recommendation.

4. EVALUATION
We preface our evaluation proper by detailing: 1) how we con-

structed our dataset, 2) how we chose our evaluation metric, 3) our
setting for the dataset, and 4) the baselines that we compare our
approach against.

4.1 Dataset
We constructed our dataset by culling from the iTunes App Store5

and AppAnnie6. The dataset consists of the following elements:

1. App Metadata. App metadata consists of an app ID, title,
description, and genre. The metadata is collected by first get-
ting all the app IDs from the App Store, and then retrieving
the metadata for each app via the iTunes Search API7.

2. Version Information. For each app, we utilize a separate
crawler to retrieve all its version information from AppAn-
nie, which resembles the changelog in Figure 2. We treat
each app’s version as a document.

5https://itunes.apple.com/us/genre/ios/id36?mt=8
6http://appannie.com
7https://www.apple.com/itunes/affiliates/resources/documentation/

https://itunes.apple.com/us/genre/ios/id36?mt=8
http://appannie.com
https://www.apple.com/itunes/affiliates/resources/documentation/itunes-store-web-service-search-api.html


3. Ratings. For each version, we utilize yet another crawler
to collect its reviews from the iTunes App Store. A review
contains an app’s ID, its version number, its rating, the re-
viewer’s ID, the subject, and the review comments. This is
the source of the rating feature. Note that a rating here is
associated to a particular version of an app.

We further process the dataset by selecting apps with at least 5
versions, documents (i.e., version-snippets) with at least 10 ratings,
and users who rated at least 20 apps. With these criteria enforced,
our dataset consists of 9,797 users, 6,524 apps, 109,338 versions,
and 1,000,809 ratings. We then perform a 5-fold cross validation,
where in each fold, we randomly select 20% of the users as tar-
get users to receive recommendations. For each target user, we
first remove 25% of their most recent downloaded apps, by de-
fault. Additionally, among the training data, 70% is used for train-
ing the latent topics while the remaining 30% is used for the train-
ing of GTB. Recommendation is evaluated by observing how many
masked apps are recovered in the recommendation list.

4.2 Evaluation Metric
Our system ranks the recommended apps based on the ranking

score. This methodology leads to two possible evaluation metrics:
precision and recall. However, a missing rating in the training set is
ambiguous as it may either mean that the user is not interested in the
app, or that the user does not know about the app (i.e., truly miss-
ing). This makes it difficult to accurately compute precision [26].
But since the known ratings are true positives, we believe that re-
call is a more pertinent measure as it only considers the positively
rated apps within the top M , namely, a high recall with a lower M
will be a better system.

As previously done in [26, 15], we chose Recall@M as our pri-
mary evaluation metric. Let nu and Nu be the number of apps the
user likes in the top M and the total number of apps the user likes,
respectively. Recall@M is then defined as their ratio: nu/Nu. We
compare systems using average recall, where the average is com-
puted over all test users.

4.3 Optimization of Parameters
For the number of topicsK of LDA and LLDA, we experimented

on a series of K values between 100 to 1200 for each topic model,
and selected the K that maximizes the recall in each model. For
the α and β hyperparameters of LDA and LLDA, we used a low
α-value of 0.01 as we want to constrain a document to contain
only a mixture of a few topics; likewise, we used a low β-value
of 0.01 to constrain a topic to contain a mixture of a few words.
For the parameters of GTB, we used the default values in scikit-
learn8, whereby we employed 500 trees, a depth level of 3, and the
least square for the loss function.

4.4 Baselines
We considered two state-of-the-art recommendation techniques

as baselines: (i) probabilistic matrix factorization (PMF) [22] which
represents collaborative filtering (CF); and (ii) latent Dirichlet allo-
cation (LDA) [3] which represents content-based filtering (CBF).

PMF has been widely used in previous works [22, 1, 16] as an
implementation of CF as it is highly flexible and easy to extend. On
the other hand, LDA has been used in previous works [3, 17, 26,
15] as an implementation of CBF as it effectively provides an inter-
pretable and low-dimensional representation of the items. Note that
in the context of our experiments, LDA’s implementation of CBF

8http://scikit-learn.org/

Figure 4: For each of the four topic models, we experimented
with various K between K=100 and K=1200, and show a sub-
sampled chart of K intervals that are fixated at Recall@100.

uses the apps’ descriptions as documents — not the version fea-
tures. Besides pure CF and CBF, we also show the recommendation
accuracy obtained by hybrid of individual techniques, namely, (i)
CF+CBF, (ii) CF+VSR, (iii) CBF+VSR, and (iv) CF+CBF+VSR,
where VSR represents our version-sensitive recommendation ap-
proach proposed in Section 3.

5. EXPERIMENTS
We first show the recommendation accuracy evaluated with re-

call by varying the number of latent topics K, and then show how
recall is affected when we exclude an app’s genre information. Af-
ter which, we show the performance of the four topic models pro-
posed in Section 3.2. Finally, we compare our approach with other
recommendation techniques, including hybrid methods described
in Section 4.4.

5.1 Recommendation Accuracy Obtained by
Different Number of Latent Topics

We optimize the number of topics, K, for our VSR approach
with respect to our four new topic models. Figure 4 shows the re-
call when varying K for LDA, inj+LDA, LLDA, and inj+LLDA,
respectively. We observe that K=1000 gives the best recall scores
for all four models, and that the recall scores generally show a steep
increase towards the optimum (i.e., betweenK=600 andK=1000),
and then gradually decline once K exceeds this optimum (i.e., be-
tween K=1000 and K=1200). K=1000 may be seen as a large
number of topics, but as observed by [29], larger datasets like ours
(we have 109,338 documents) may necessitate a larger number of
topics to be modeled well. Additionally, as we had previously con-
strained both hyperparameters of the topic models to be small (re-
sulting in low topic-mixture per document), more topics are needed
to represent the set of documents.

5.2 Importance of Genre Information
Our framework allows each genre to assign different weights

to identical latent topics. In order to determine the importance
of genre information, we compare the recommendation accuracies
between models with and without genre information. Both vari-
ants are based on the best-performing model (inj+LLDA). Figure 5
shows that the variant incorporating genre outperforms the plain
model with a statistical significance at p < 0.01. We conclude that
genre information is an important discriminatory factor, as each
genre weights the same type of version update differently. For ex-
ample, a version update that offers the support for HD displays
would be more attractive and relevant to a game app instead of
a music app. Therefore, by discriminating the genres, we assign

http://scikit-learn.org/stable/


Figure 5: Recall scores between the inj+LLDA model that uses
genre information and another that does not.

Figure 6: Recall scores of different topic modeling schemes
with K=1000 as the optimal number of topics.

more relevant weights, which results in better recall. As such, we
use genre information in all of the subsequent experiments.

5.3 Comparison of Different Topic Models
Figure 6 shows the performance of the five different topic model

variants: (i) supervised-LLDA (i.e., without K latent topics), (ii)
LDA, (iii) inj+LDA, (iv) LLDA, and (v) inj+LLDA. So that we
can compare unsupervised, supervised, and semi-supervised mod-
els, we added supervised-LLDA for the purpose of completeness.

We see that recall is consistently improved as the basic LDA
model is incrementally enhanced through inj+LDA, LLDA, and
inj+LLDA. Between the inj+LDA and inj+LLDA models that use
the enhanced-corpus (cf. Section 3.2.2) and the LDA and LLDA
models that do not, we observe that the enhanced-corpus generally
provides better recall, with inj+LLDA showing more significant
performance against LLDA. Furthermore, both models of LLDA
(i.e., LLDA and inj+LLDA) consistently outperform the pure LDA
models, which shows that semi-supervised LLDA models are su-
perior to LDA, which is due to LLDA’s ability to quantify broad
trends via latent topics while at the same time uncovering specific
trends through observed metadata.

We added supervised-LLDA as a baseline for this specific eval-
uation, but we see that it performs worst among all the baselines.
The reason why supervised-LLDA is the worst model despite hav-
ing “supervision” is that it does not have sufficient topics to prop-
erly capture the essence of the corpus.

As inj+LLDA is the best-performing model among the topic mod-
els we have tested, we use it in subsequent comparisons. We see
that use of version metadata improves recall, as the three models

Figure 7: Recall scores of our version-sensitive model (VSR)
against other individual recommendation techniques.

Figure 8: Recall scores of various combinations of recommen-
dation techniques.

that utilize metadata (i.e., inj+LDA, LLDA, and inj+LLDA) con-
sistently outperform the LDA model that only utilizes the text from
version-snippets.

5.4 Comparison against Other Recommenda-
tion Techniques

Figure 7 shows the recall scores of the three individual tech-
niques — VSR, CF, and CBF — where the VSR approach uses
inj+LLDA at the optimal settings of K=1000. While VSR under-
performed against CF, it does outperform CBF. We believe this is
because the textual features in the app descriptions are noisy [15],
resulting in poor recommendation. Thus, among the content-based
recommendation approaches of the app domain, version features
are promising replacements for app descriptions.

Figure 8 shows the combination of individual techniques us-
ing GTB. We observe that combining VSR with CBF or CF (i.e.,
CBF+VSR or CF+VSR) improves both CF or CBF alone. This sug-
gests that version features are a good complement to the traditional
recommendation techniques that treat apps as static items. As ver-
sion features focus on the unique differences between various states
of an app, they play a natural complementary role for CF or CBF
alone. In addition, we have further confirmed that feature-wise,
version features are better content descriptions as CF+VSR outper-
forms CF+CBF. Furthermore, we note that the best performing hy-
brid is CF+CBF+VSR, though it is roughly on par with CF+VSR.
Finally, the hybrid methods CF+VSR and CF+CBF+VSR outper-
form the pure CF model with a statistical significance of p < 0.01
at Recall@50.



Figure 9: Comparison of normalized score among past (current
−1 to −7), current, and future (current +1 to +7) versions.

6. DISCUSSION
We examine the experimental results obtained by the use of ver-

sion features in detail. First, we perform an in-depth study that
compares a recommended version against previous and future ver-
sions of the same app. Next, we perform a micro-analysis on indi-
vidual latent topics and investigate the terms that are found in each
topic. Finally, we investigate the effect of injecting more complex
version-category information.

6.1 Comparison of Previous, Current,
and Future Versions of Apps

From our dataset, we only know which version of an app a tar-
get user has downloaded. However, we do not know whether the
user has or has not seen previous versions of the app before down-
loading the current version. For example, we only know that Bob
downloaded AngryBirds Version 2.1 but we do not know whether:

• Bob had seen previous versions of AngryBirds (e.g., Version
1.0) but was not interested in downloading it at that time, or

• Bob’s first encounter with the AngryBirds app was in fact at
Version 2.1 and that it was the version that he downloaded.

Hence, we need to consider the situation where a user did not
download a target app earlier even though it might be available for
download; and that it was only after a version-update did the app
attract him. For this reason, based on every app that each target
user in the training set downloaded, we input the current version
(i.e., the version which the target user downloaded) as well as the
previous and future versions of the same app, and find out whether
our system can recommend the exact version that the target user
downloaded.

In order to conduct a fair study, we have to take into account
the fact that every app has different number of version updates.
For example, some apps may only have 5 different version updates
while others may have as many as 20 version updates. To solve this
problem, we fit the versions of every app into three sets of bins: The
first set of bins denotes the previous versions (i.e., bins #1 to #7),
the second set of bins denotes the version of the app that a user has
downloaded (i.e., bin #8), the last set of bins represent the future
versions (i.e., bins #9 to #15). Then, for every app that a target user
has consumed, we calculate the score for each version (explained
in Section 3.5), and enter the score into the respective bins. Finally,
we normalize the score of every bin.

Figure 9 shows the normalized score of this analysis for all tar-
get users in the training set. We observe that our approach favors
the current version (i.e., the one that was downloaded by the target

users) the most, thereby indicating that our VSR model effectively
targets the version of an app that maximizes its chances of being
acquired by the target user. This also reflects that apps tend to go
through a series of revisions before being generally favorable; after
which the subsequent versions show a decline in general interest,
and this suggests the peripheral nature of the subsequent revisions.

6.2 Dissecting Specific LDA Topics
To further understand why injecting pseudo-terms into the cor-

pus improves recommendation accuracy, we perform a micro anal-
ysis by exploring the latent topics discovered by inj+LLDA. We
selected the three most important latent topics based on the expec-
tation of each latent topic over the set of training data. Note that
each latent topic contains a set of words as well as the injected
pseudo-terms.

Figure 10 shows the three topics. We observe that every topic
coincides with a certain theme. In addition, from the pseudo-terms
found in the topic, we can discern the kind of version-category
and genre mixture information the topic belongs to. For exam-
ple, Topic #385 contains words like “retina” and “resolution”, cor-
rectly suggesting that the update is display-related. In addition,
we observe what genres of apps most likely have such updates,
which are the Utilities and Productivity apps (in red). Furthermore,
we observe that updates in Topic #385 are strongly related to the
version-category minor (in blue). On the other hand, Topic #47
is associated with navigation and traveling, as the genre-related
pseudo-terms (in red) suggests. The top natural language words
found in Topic #47 also agree with the hashtags, in that the re-
lated updates include improvements in mapping and routing, and
that the updates also include alerts and notifications with regards
to traveling-related information, such as fuel, points of interests
(POIs), and accidents. Finally, as we recall that inj+LLDA allows
the incorporation of “observed” labels as topics, the third topic is
related to the “medical genre” label and it is closely associated with
apps in the neighboring “Health & Fitness” genre. This “observed”
label/topic mainly deals with providing users visual reports (such
as graphs and charts) about their personal health (such as periods
and pregnancy) as well as the provision of personal tracking and re-
minders. We observe that the injected pseudo-terms act as a guide
for inj+LLDA’s inferencing process, which contributes to better la-
tent topic generation. It also helps in understanding the topics fur-
ther as the metadata (i.e., version-categories and genre mixture) that
is imbued in the topics gives users a more comprehensible under-
standing of the topics.

6.3 Importance of Version Categories
To verify the importance of various version-categories (i.e., ma-

jor, minor, and maintenance), we calculate their respective scores
based on (i) the topic-word distribution from the topic model, and
(ii) the importance score of the latent topics (Section 3.3), which is
essentially:

∑
g∈G

∑
z∈Z winj+LLDA(g, z) · p(w = m|z), where

m represents one of the strings: “#major”, “#minor”, or “#main-
tenance.” Note that p(w|z) is the topic-word distribution in Equa-
tion (2). Also note that the equation must be normalized, which
results in the score being between 0 and 1.

The importance of each of the three version-categories are as fol-
lows: (i) “#major”: 0.128, (ii) “#minor”: 0.656, and (iii) “#mainte-
nance”: 0.216. It is evident that the “minor” version category is the
one that is generally more favorable. This is because major updates
tend to be buggy, while minor or maintenance updates after a major
update would likely fix the bugs that occurred in the major release,
leading to higher user satisfaction. The reason why minor performs
better than maintenance (i.e., 0.656 vs 0.216) is that a minor update



Figure 10: Three most important topics. Each topic shows the top terms, with the inclusive of hashtags. Terms in red are injected
terms from genre labels; those in blue, injected terms from version information. Not only does this identify latent topics associated
with app updates, it also gives a general overview of the kinds of features found in various version-categories.

Figure 11: List of standard and advanced hashtags for corpus-
injection.

Figure 12: Recall scores between the use of “standard” and
“advanced” version-categories.

typically introduces important bug fixes or functionalities, which is
more appreciable than a maintenance update that resolves trivial
issues of the app.

As version-categories are valuable features, we hypothesize that
the recommendation accuracy can be improved if we further aug-
ment the version-categories. More specifically, as we previously
only considered three standard version-categories: #major, #mi-
nor, and #maintenance, we consider improving the recommenda-
tion performance by injecting a more comprehensive list of version-

categories into the corpus (as in Figure 11). Figure 12 shows the
comparison between the standard and such an advanced set of version-
categories (both models using inj+LLDA). Incorporating the ad-
vanced version-categories improves recommendation accuracy, as
instead of identifying only 3 standard version-categories, we can
discriminate among 6 additional scenarios. The additional details
and specifications given by advanced version-categories effectively
improve recommendation accuracy. We observe that advanced version-
category model outperforms the standard model, particularly at the
lower (more important) app recommendation ranks (“M”), although
not statistically significantly so.

A more comprehensive modeling of version may be promising,
and as such, since there is evidence that the sequence of versions
would help, we plan to model the sequence of versions in future
work.

7. CONCLUSION
In this paper, we leverage the unique properties in the app do-

main and explored the effectiveness of using version features in
app recommendation. Our framework utilizes a semi-supervised
variant of LDA that accounts for both text and metadata to char-
acterize version features into a set of latent topics. We used genre
information to discriminate the topic distributions and obtained a
recommendation score for an app’s version for a target user. We
also showed how to combine our method with existing recommen-
dation techniques. Experimental results show that genre is a key
factor in discriminating the topic distribution while pseudo-terms
based on version metadata are supplementary. We observed that a
hybrid recommender system that incorporates our version-sensitive
model statistically outperforms a state-of-the-art collaborative fil-
tering system. This shows that the use of version features com-
plements conventional recommendation techniques that treat apps
as static items. We also performed a micro-analysis to show how
our method targets particular versions of apps, allowing previously
disfavored apps to be recommended.

In our future work, we plan to investigate the use of a vari-
ant of the tf-idf scheme to further vary the weights of the latent
topics, allowing us to reward less common topics. We also plan
to investigate more advanced techniques such as treating versions
as inter-dependent and using a decaying exponential approach to
model how versions are built upon one another in sequence.
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