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Abstract—A photo stream is a chronological sequence of
photos. Most existing photo stream segmentation methods
assume that a photo stream comprises of photos from multiple
events and their goal is to produce groups of photos, each cor-
responding to an event, i.e. they perform automatic albuming.
Even if these photos are grouped by event, sifting through the
abundance of photos in each event is cumbersome. To help
make photos of each event more manageable, we propose a
photo stream segmentation method for an event photo stream
— the chronological sequence of photos of a single event — to
produce groups of photos, each corresponding to a photo-worthy
moment in the event.
Our method is based on a hidden Markov model with

parameters learned from time, EXIF metadata, and visual
information from 1) training data of unlabelled, unsegmented
event photo streams and 2) the event photo stream we want
to segment. In an experiment with over 5000 photos from 28
personal photo sets, our method outperformed all six baselines
with statistical significance (p < 0.10 with the best baseline
and p < 0.005 with the others).

Keywords-Event photo stream segmentation; hidden Markov
model; digital photo library

I. INTRODUCTION

The advent of inexpensive, easy-to-use and portable photo
capture devices with large memory stores have changed
people’s photo taking habits – people now are more liberal
with their photo taking, as compared to the previous era of
film rolls and analog cameras [1]. Most personal photos are
commonly associated with an event: a holiday trip, picnic,
dinner or walk in the park. Many academic and commercial
photo browsers, like iPhoto and Picasa, advocate event-based
photo organization. Even so, sifting through the hundreds of
photos associated with an event is still cumbersome.
To complement event-based photo organization and help

make photos of each event more manageable, we propose a
method to segment an event photo stream — the chrono-
logical sequence of photos of a single event — to produce
groups of photos, each of which corresponds to a photo-
worthy moment in the event. For example, Figure 1 shows
how an event photo stream segmentation can reveal different
photo-worthy moments in the event.
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Event photo stream segmentation is the process of
finding contiguous groups of photos from an event photo
stream, each corresponding to a photo-worthy moment in
the event.
We distinguish between an event photo stream and a

photo stream, which is a more general term that refers to a
chronological sequence of photos that may consist of many
days or even months of photos. Many segmentation methods
have been proposed for such photo streams to produce
groups of photos where each group corresponds to an event.
To distinguish between their task and ours, we shall refer to
their task as automatic albuming.
While both tasks segment photo streams, automatic al-

buming methods may not be suitable for event photo stream
segmentation due to issues of data sparsity, indistinct time
gaps, and visual similarities:
Data sparsity – Each group of photos produced through

event photo stream segmentation has only a handful of
photos as each corresponds to a photo-worthy moment
in the event. In contrast, each group produced through
automatic albuming corresponds to an event and has many
more photos. A photo stream of multiple events also has
many more photos than an event photo stream, which is
of just one event. The increased sparsity associated with
event photo stream segmentation makes it harder to develop
computational models.
Indistinct time gaps – In a photo stream, time gap is the

time difference between the capture times of two consecutive
photos. While the time gap between two photos of different
events is in hours or even days, the time gap between photos
of the same event is typically in seconds or minutes. This
time scale difference is useful to identify event boundaries
for automatic albuming. In contrast for event photo stream
segmentation, the time gap between two consecutive photos
belonging to different photo-worthy moments in the event is
also in seconds or minutes. Indistinct time gaps at segment
boundaries in an event photo stream makes the segment
boundaries difficult to identify using simple heuristics.
Visual similarities – Photos in an event are often visually

similar because they share aspects such as participants,
location, and scene. With photos of other events, however,
they are often visually distinct because these aspects are
different. The visual difference between photos of different



Figure 1. A part of an event photo stream shown with segmentation and semantic labels.

events is useful for automatic albuming, but the visual
similarities among photos of an event make event photo
stream segmentation more difficult.
To address these challenges, we propose a hidden Markov

model (HMM) -based approach that uses a combination of
time, EXIF1 metadata, and visual information to determine
the segment boundaries in an event photo stream. Parameters
of the HMM are learned from 1) a set of unlabelled,
unsegmented event photo streams and 2) the event photo
stream we want to segment. Our model supposes that an
event photo stream is the result of a stochastic process
that generates feature vectors from a set of foreground
and background models. The foreground models generate
feature vectors corresponding to segment boundaries while
the background models generate feature vectors that do not.
This generative model follows from our observation that
photos taken in events are often the result of several photo
taking sessions — each session corresponds to a photo-
worthy moment. At such a moment, we take several photos.
Then, our camera idles until the next moment arises and
invites us for another photo taking session. In each session,
photos would likely be similar in terms of visual appearance,
photo metadata and timing. The photographer, for example,
could choose to adjust the focal length and aperture settings
to suit the scene of the moment. These camera parameter
values would be similar for photos within the same session.
If we look at photo timestamps, each session would appear
to be a burst of photo activity [2].

II. RELATED WORK

To our knowledge, the closest work to ours is by Graham
et al. [2]. They posit that people tend to take photos in bursts
and these bursts can be identified by looking at time gaps
that are statistical outliers and not part of any burst. Their
event photo stream segmentation method finds segments
corresponding to bursts of photo taking activity.
Other photo stream segmentation methods were devised

for automatic albuming. Most of these methods rely on
time information. The simplest method to find segment
boundaries is to check for time gaps that are greater than a
fixed threshold (e.g. average time gap). Loui et al. [3] used
a time scaling function and K-means clustering with K=2
to determine this fixed threshold. Platt et al. [4] proposed
a method where the threshold becomes adaptive, computed
over a sliding window. Some methods are similarly adaptive,
although based on keen observations instead of thresholding;
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Figure 2. An event photo stream with 26 photos, captured over 5 photo
taking sessions.

Zhao et al. [5] observed that the probability of an event
ending increases as more photos are taken and as the time
span increases; Gargi [6] observed that a long interval with
no photo taking usually marks the end of an event and that
a sharp upward change in the frequency of capture usually
marks the start of a new event. Pigeau and Gelgon [7] pro-
posed a model-based incremental unsupervised classification
where distinct classifications are built from both temporal
and location information.
Few methods have utilized EXIF metadata. Gong and

Jain [8] proposed a segmentation method based on changes
in scene brightness. Mei et al. [9] proposed a clustering
approach using EXIF metadata like aperture diameter, ex-
posure time, and focal length. Their method also used time,
location and visual features such as color histogram, and
Tamura descriptor (texture). There are only few others that
have utilized visual information. Platt et al. [4] proposed a
best-first model merging method based on color histograms.
Cooper et al. [10] proposed an approach based on scale-
space analysis of both color and time information.
Most automatic albuming methods utilize time gap in-

formation. Because the time gaps at event boundaries are
typically much larger than the time gaps between photos
in an event, these methods work effectively to segment a
photo stream by event. For event photo stream segmentation
however, the segment boundaries may not be distinguishable
from time information alone and other information based on
EXIF metadata and visual information should be utilized.
This is the path we took for our approach.

III. EVENT PHOTO STREAM SEGMENTATION

When we view photos from an event (e.g. in Figure 1), we
often make inferences about how each photo relates to its
surrounding photos and how different groups of photos in the
stream fit together to capture different moments in the event.
Without semantic knowledge of the event, we make such
inferences based on the visual appearance and timestamp of
the photos. Our algorithm embodies this inference process.
Given an event photo stream, we want to find groups of

photos in the stream such that each group corresponds to a
photo taking session. The groups should also form a partition



Figure 3. Extracted photo and photo gap features from the event photo
stream form a sequence of alternating feature types. Symbols adi, lli, and
chi denote aperture diameter, LogLight, and color histogram feature values
of photo i; tgi denotes the time gap between photos i and i+ 1.

over all the event photos (see Figure 2). By photo taking
session, we mean a period of time devoted to photo taking,
producing photos with similarities in visual appearance,
EXIF metadata, and timing. We assume that photo taking
sessions are correlated with photo-worthy moments in the
event.

A. Features

Similar to the manual inference process we described
above, our algorithm also relies on visual and time informa-
tion from the photos. Additionally, it also uses information
from camera parameters, i.e. how the photos were captured
using the camera, as encoded in the photos’ EXIF meta-
data. We extract features from the event photo stream and
distinguish between two feature types: 1) photo feature,
i.e. feature about the photo, and 2) photo gap feature, i.e.
feature about the gap between consecutive photos.
We experimented with various photo features, e.g. fo-

cal length, gradient direction autocorrelogram and features
based on SIFT. We also experimented with various photo
gap features by taking the difference between consecutive
photo feature values. The best feature combination we found
for our approach consists of simple features that work
best under our task constraint of data sparsity: 1) Aperture
Diameter – a photo feature measuring the size of the opening
through which light enters the camera, 2) LogLight [11] –
a photo feature measuring the ambient light in an image,
3) Color Histogram – a photo feature measuring the color
distribution in an image, and 4) Time gap – a photo gap
feature measuring the time difference between capture times
of consecutive photos.
Most photo stream segmentation methods rely on just time

gaps. Some incorporate visual features and very few use
features derived from EXIF metadata. In our work, we use
all these features in a generative model. Additionally, our
observation that these features belong to two types — photo
feature and photo gap feature — is novel and forms the
basis of how we formally define the problem and our model
structure.

B. Problem Definition

With the features we extract from the event photo stream,
we end up with a sequence of vectors with alternating types

Figure 4. Our model views an event photo stream as the result of a
stochastic process consisting of a set of foreground and background models.
In the above, the first photo taking session consists of two photos. The
time gap, tg2, corresponding to the segment boundary between photo 2
and photo 3, is generated by the foreground model, F1, of the stochastic
process. The remaining models shown are the background models, Bi.

(see Figure 3). From an event photo stream of N photos,
we get a sequence of 2N − 1 vectors, of which N − 1 are
photo gap features whose locations correspond to potential
segment boundaries in the photo stream segmentation.
We define an event photo stream segmentation X as a

sequence of Boolean variables 〈X1, X2, ..., XN−1〉 corre-
sponding to these potential segment boundaries, such that
Xk = 1 if there is a segment boundary between photos
k and k + 1, and 0 otherwise. Given a sequence of feature
vectors S, our task is to find which gaps between consecutive
photos correspond to segment boundaries and which do not:

f(Xk|S) =
⎧⎨
⎩

1 if the gap between photos k and
k + 1 is a segment boundary,

0 otherwise.
(1)

C. Hidden Markov Model with Alternating Observation
Types

To find which gaps between consecutive photos corre-
spond to segment boundaries, our approach takes the view
that an event photo stream is the result of a stochastic process
that generates feature vectors. A key aspect of our modeling
is that we view the generation process as consisting of a
set of foreground and background models. The foreground
models generate the feature vectors that we want to find,
i.e. the photo gap feature vectors corresponding to segment
boundaries. The remaining models are background models
that generate the surrounding feature vectors, i.e. photo
feature vectors or photo gap feature vectors that do not
correspond to segment boundaries.
To generate the event photo stream, the process emits

alternating photo feature and photo gap feature vectors
from the background models. At some point, the process
switches to a foreground model at a segment boundary
before switching back to a background model. This process
continues until the end of the event photo stream (see
Figure 4).



In this process, feature vectors in each photo taking
session is generated by a pair of background models: one
background model for photo features and another for photo
gap features. For example in Figure 4, feature vectors in the
photo taking session consisting of photos 1–2 are generated
by the pair B1 and B3. This pair could generate feature
vectors for other photo taking sessions in the stream. Sup-
pose feature vectors in the photo taking session consisting
of photos 6–10 are also generated by B1 and B3. The
feature vectors in the two photo taking sessions, i.e. photos
1–2 and photos 6–10, would then follow the generated
feature distributions of B1 and B3. For example, the feature
distributions can be indicative of photos that are taken a few
seconds apart, under good lighting conditions, at a medium
distance from the subjects, with a similar background view,
etc. Similarly, other photo taking sessions are generated by
other pairs of background models with their own feature
distributions.
The stochastic process of the foreground and background

models can be described by a hidden Markov model (HMM).
An HMM is a finite state automaton with stochastic state
transitions and observation emissions [12]. An HMM as-
sumes the process to be Markovian and as such, computa-
tions with HMMs are very efficient. Even though a simple
probabilistic model, the HMM is a well-developed tool for
modeling observation sequences and have been successfully
applied to tasks in domains such as speech recognition [12],
text segmentation and topic detection [13], and information
extraction [14].
An HMM generates a sequence of observations, e.g.

vectors of feature values, by starting at one of its states
according to its prior probability. In this state, an observation
is generated according to the emission probabilities of the
state. The HMM then transitions to one of its states accord-
ing to its state transition probabilities, which depends only
on the current state. After the transition, another observation
is generated according to the emission probabilities of the
new state. The process continues until all observations have
been generated.
With our concept of foreground and background models,

the simplest HMM structure consists of three states: two
states for the pair of background models and one state
for the foreground model. This 3-state HMM is shown in
Figure 5a. For two or more pairs of background models, we
can use the 3-state HMM as a basic building block to form
larger HMMs. Figure 5b shows an HMM with two pairs of
background models: (B1, B3) and (B2, B4).
Since the event photo stream consists of alternating fea-

ture types, our HMM has two types of states to generate
each of the feature types. In Figures 5a and b, only states B1

and B2 generate photo features. The remaining four states
generate photo gap features. Of these four states, F1 and F2

are the foreground models that generate photo gap features
corresponding to segment boundaries. All states model their

Figure 5. Grey HMM states generate photo features, while white HMM
states generate photo gap features. States F1 and F2 represent foreground
models that generate feature vectors corresponding to segment boundaries.
States Bi represent background models that generate the surrounding
feature vectors. The HMM in (a) has one pair of background models while
the HMM in (b) has two pairs.

emissions with a single Gaussian distribution per dimension
to simplify parameter estimation. With the state transitions
in this structure, the HMM will alternatingly transition from
a photo feature state to a photo gap feature state, thus
generating alternating photo and photo gap feature vectors.
In our early experiments, we evaluated many HMM

structures, from standard left-right and ergodic HMMs to
a more sophisticated structure involving two HMMs, one
for each feature type. We also explored HMMs that use
a single observation type by concatenating adjacent photo
feature and photo gap feature vectors into a single vector.
Of them all, we found the HMM in Figure 5b with two pairs
of background models to work best for our approach.
Note that more than two pairs of background models is

possible with our approach. Ideally, the pairs of background
models need to be trained with many labelled photo taking
sessions from segmented event photo streams. This is similar
to how phone models in automatic speech recognition is
trained from thousands of labelled audio recordings [15].
Unfortunately, our task is not as mature as automatic speech
recognition and so, there is no such segmented or labelled
training data. As such, instead of training each 3-state
separately — i.e. training 〈B1, B3, F1〉 separately from
〈B2, B4, F2〉 — we train the entire HMM with unlabelled,
unsegmented event photo streams and rely on smoothing
with deleted interpolation [16] to alleviate issues with data
sparsity and parameter initialization. We describe this train-
ing process as follows.

D. HMM Training and Application for Task

To facilitate further discussion, let us refer to the given
event photo stream we want to segment as the TARGET
photo stream. This photo stream is unlabelled and unseg-
mented. Let us then refer to the training data of unlabelled,
unsegmented event photo streams as the DATASET photo
streams.
First (see Figure 6), an HMM is trained using the

DATASET photo streams. We call this the DATASET HMM.
Parameters from this HMM is then used to initialize the
parameters of a second HMM, the TARGET HMM, which
is trained with the TARGET photo stream. In its training,
the TARGET HMM parameters converge when they max-
imize the TARGET HMM’s probability of generating the



Figure 6. We use a separate set of event photo streams (DATASET) to alleviate data sparsity in the event photo stream we want to segment (TARGET).
All photo streams are unlabelled and unsegmented. The four inputs are needed to perform the Viterbi algorithm with deleted interpolation [15], [16].

TARGET photo stream feature vectors. To determine the
TARGET HMM’s state sequence in generating the given
feature vectors with maximum probability, we use the Viterbi
algorithm [12] with deleted interpolation, a smoothing tech-
nique that finds the smoothing parameters between two dis-
tributions depending on how well-trained each distribution
is. We use deleted interpolation, as is typical in speech
recognition [15], to alleviate data sparsity by smoothing the
parameters of the TARGET HMM with parameters from the
DATASET HMM, which was trained with much more data.
Finally, with the state sequence we can determine which
photo gap feature vectors were generated by the foreground
models, and hence correspond to segment boundaries.
In the next section, we will show that our method, while

trained suboptimally without labelled, segmented event
photo streams, outperforms existing methods including the
state-of-the-art cluster tree algorithm by Graham et al. [2].

IV. EVALUATION

We collected 28 event photo streams of various event
types, e.g. wedding, travel, cruise, concert, etc. Four event
photo streams are from publicly available Flickr photo sets2.
The remaining 24 were obtained from seven volunteers. In
total, our evaluation data set consists of 5188 photos, with
an average and median of 185 and 168 photos respectively.
For the four streams from Flickr, the photo owners were

not available to annotate the sets. As such, the first author
manually segmented the photos to provide ground truth. For
the remaining 24, we asked the contributors — as photo
owners — to provide the ground truth. This practice is
in line with many photo stream segmentation works we
reviewed in Section II, which also require ground truth for
their evaluation.
As baselines, we have implemented the cluster tree event

photo stream segmentation algorithm [2] and five automatic
albuming algorithms from Section II: fixed threshold, best-
first model merging [4], adaptive threshold [4], K-means [3],
and event ending probability [5].
To evaluate the segmentation results of our method and the

baselines against the ground truth segmentations, we used
the error rate metric, Prerror, proposed by Georgescul et
al. [17]. This metric improves on WindowDiff, previously

2Flickr photo set ID: 847825, 1068265, 72157601961445922, and
72157603826353321.

Figure 7. Comparison between our method and the baselines, averaged
over all event photo streams, in terms of error rate against ground truth
segmentations (smaller number is better).

used by Naaman et al. [18] to evaluate their automatic al-
buming method. A lower Prerror indicates better agreement
with the manually segmented ground truth; a score of 0
indicates perfect agreement. Prerror is an average of the
miss and false alarm rates. As such, a method that proposes
no segment boundaries or proposes segment boundaries
everywhere will have an error rate of about 0.5.
Results are shown in Figure 7. We can derive several

salient points from the results. The best-first model merging
method which utilizes visual information alone did not
perform well and ranked fourth place. This was caused by a
relatively high miss rate, suggesting that visual similarities
amongst the photos hinder the method from finding any
segment boundaries. The adaptive threshold method which
is a simple and well-known automatic albuming method,
performed worse than the simplest baseline — the fixed
threshold method — when used to segment event photo
streams. Methods that rely on heuristics such as the K-
means and the event ending probability methods performed
the worst, finding very few segment boundaries, resulting in
very high miss rates and correspondingly high error rates.
The best baseline is the state-of-the-art cluster tree event

photo stream segmentation algorithm. Our method however,
had the lowest error rate overall. Our method is statistically
significantly better than the cluster tree method (p < 0.10)
and even more statistically significant compared to the other
baselines (p < 0.005).
Our method has the lowest miss rate among all methods

we studied, but the highest rate of false alarms. We believe



that for end users, having a low miss rate is more valuable
than having a low false alarm rate. To correct a false alarm
is a one-step process of removing the incorrect segment
boundary. But to correct a miss, the user must first realize
that there is a miss, then figure out the position of the
segment boundary.
Why does our method produce more false alarms? We

believe it is produced during the Viterbi algorithm when the
HMM — with its trained parameters — incorrectly finds
that transitioning to a foreground model (e.g. transitioning
from B1 to F1 in Figure 5b) has a higher probability than
transitioning to a background model (e.g. B3). One possible
reason for the lower probability is the lack of training data
for the feature vectors corresponding to the false alarms. A
more likely reason is however, the lower accuracy associated
with training the HMM without labelled data.
Nonetheless, the error rate was computed by penaliz-

ing misses and false alarms equally. Overall, our method
outperformed all the baselines despite training our HMM
suboptimally without labelled, segmented training data. We
expect to achieve even better results with access to such
data.

V. CONCLUSION

To help make large event photo streams more manageable,
we proposed a method for event photo stream segmentation,
i.e. the process of finding contiguous groups of photos from
an event photo stream, each of which corresponds to a
photo-worthy moment in the event. Our model leverages our
observation that photo streams exhibit alternating photo and
photo gap feature types. We use it to formulate the problem
and the structure of our proposed HMM. We then described
how the HMM can be trained without labelled data and
how we addressed the issue of data sparsity and parameter
initialization with deleted interpolation smoothing. In the
evaluation, we showed that many existing photo stream
segmentation methods are unsuitable for our task. Overall,
our method performed better than all baselines, including
the state-of-the-art cluster tree algorithm.
Our next step is to collect labelled training data. This will

allow us to train each 3-state as a separate HMM and obtain
more accurate HMM parameters. Obtaining significantly
more training data would also allow us to re-evaluate other
photo and photo gap features that may not have worked well
due to data sparsity issues.
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