Instructor-Centric Source Code Plagiarism Detection
and Plagiarism Corpus

Jonathan Y. H. Poon
National University of
Singapore
Computing 1,

13 Computing Drive
Singapore 117417

Kazunari Sugiyama
National University of
Singapore
Computing 1,

13 Computing Drive
Singapore 117417

poonyanh@comp.nus. sugiyama@comp.nus.

edu.sg edu.sg

ABSTRACT

Existing source code plagiarism systems focus on the problem of
identifying plagiarism between pairs of submissions. The task of
detection, while essential, is only a small part of managing plagia-
rism in an instructional setting. Holistic plagiarism detection and
management requires coordination and sharing of assignment sim-
ilarity — elevating plagiarism detection from pairwise similarity to
cluster-based similarity; from a single assignment to a sequence
of assignments in the same course, and even among instructors of
different courses.

To address these shortcomings, we have developed Student Sub-
missions Integrity Diagnosis (SSID), an open-source system that
provides holistic plagiarism detection in an instructor-centric way.
SSID’s visuals show overviews of plagiarism clusters throughout
all assignments in a course as well as highlighting most-similar
submissions on any specific student. SSID supports plagiarism de-
tection workflows; e.g., allowing student assistants to flag suspi-
cious assignments for later review and confirmation by an instruc-
tor with proper authority. Evidence is automatically entered into
SSID’s logs and shared among instructors.

We have additionally collected a source code plagiarism corpus,
which we employ to identify and correct shortcomings of previ-
ous plagiarism detection engines and to optimize parameter tun-
ing for SSID deployment. Since its deployment, SSID’s workflow
enhancements have made plagiarism detection in our faculty less
tedious and more successful.

Categories and Subject Descriptors

K.3.2 [Computer Science and Information Science Education]:
Computer science education; 1.2.7 [Natural Language Process-
ing]: Text analysis; H.5.2 [User Interfaces]: User-centered design

*This work was done while he was a doctoral student at the Na-
tional University of Singapore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITiCSE’12, July 3-5, 2012, Haifa, Israel.

Copyright 2012 ACM 978-1-4503-1246-2/12/07 ...$10.00.

*
Yee Fan Tan Min-Yen Kan
KAl Square National University of
Singapore
33 Ubi Avenue 3, Computing 1,

#07-58 Vertex Tower A 13 Computing Drive

Singapore 408868 Singapore 117417
yeefan@kaisquare. kanmy@comp.nus.
com edu.sg

General Terms

Algorithms, Experimentation, Languages, Performance

Keywords

Plagiarism assessment, Plagiarism detection, Programming, Simi-
larity, User interface, Corpus studies

1. INTRODUCTION

Plagiarism is a serious issue in undergraduate courses involving
programming assignments [20]. In 2004, 181 students at School
of Computing at the National University of Singapore admitted to
committing source code plagiarism [16]. In 2005, the Centre for
Academic Integrity (CAI) reported that almost 40% of 50,000 stu-
dents at more than 60 universities admitted in plagiarism [12].

Plagiarism detection and subsequent disciplinary actions are of
paramount importance in education. If students involved in pla-
giarism are not identified and proper action is not taken, it unfair
to their peers whom produced and submitted original works. Fur-
thermore, the students involved learn less than their hardworking
counterparts, tarnish the reputation of their own institutions, and
reduce the value of their own degrees.

Detecting plagiarism, however, is a time-consuming and tedious
process when performed manually. Inspecting n assignment sub-
missions for plagiarism could require instructors to access all n x
(n —1)/2 pairs of submissions. Furthermore, the process becomes
more difficult when students actively attempt to obfuscate the traces
of plagiarism by modifying the plagiarized copies. Thus, accord-
ing to [15], research on automated source code plagiarism detection
was started in the mid-1970s [17, 4, 9, 2, 6].

The basic task in (source code) plagiarism detection, to decide
whether one input is plagiarized from another input, has been stud-
ied extensively. However, a holistic plagiarism management sys-
tem requires expanding the basic task to a larger scope: allowing
instructors to zoom in on the suspicious code segments (rather than
at the assignment level), support detection on a set of inputs (rather
than single files; as code submissions often contain several files),
support the input of the instructor’s skeleton code (when the in-
structor provides some template code for students to start from).
Furthermore, an instructor-centric system needs to provide visual-
ization to see these suspected cases at a cluster level, across as-
signments and help fellow instructors pin down plagiarism across
courses. All of these issues are addressed in our implemented Stu-
dent Submissions Integrity Diagnosis (SSID), an open-source sys-
tem that provides holistic plagiarism detection reported here.

import java.util.*;

public class A{
public static void main(String[] args){
for(int i=0; i<100; i++){
System.out.println("Here”);

import java.util.*;

public class A{
public static void main(String[] args){
for(int i=0+0+0; i<100; i++){
System.out.println("Here”);

(a) Original submission (b) Plagiarised copy

Figure 1: Original and plagiarized code pair that goes unde-
tected by MOSS, where the bolded text indicates modification.
MOSS reports a similarity value of 97% when the original is
submitted against itself (i.e., (a) and (a) as the input pair), but
0% similarity when the (a) original submission and (b) plagia-
rized copy are input.

A key contribution of our work is our source code plagiarism
corpus. To gain insight on how source code plagiarism happens, we
asked volunteers to plagiarize sample input code. The subsequent
analysis of the plagiarized examples allows us to classify attacks
into two classes and identifies attack modes that current plagiarism
systems do not handle. This corpus is also publicly available, which
we hope will spur development in future plagiarism benchmarking
and studies.

2. RELATED WORK

Plagiarism detection systems typically perform pairwise com-
parison of submissions to detect plagiarism and do so in two ways,
using: (1) attribute-counting metrics, or (2) structure metrics.

In attribute-counting metric systems, code similarity is based
on counts of particular entities. In Ottenstein’s system [17], Hal-
stead’s software science metrics [10] are used with the number
of unique operators and operands. To improve upon this, subse-
quent attribute-counting systems have added metrics for counting
the number of loops [4], control statements [9], keywords [2], as
well as measuring the average length of the procedure or func-
tion [6].

Structure metrics compute similarities based on code structure.
An essential property in structure matching is that many spuri-
ous matches can involve small code fragments, thus the Minimum
Match Length (M M L) parameter is important to set correctly. As
it has been shown that structure metrics produces better plagiarism
detection results [21], many of the widely used plagiarism detection
systems, such as MOSS (Measure Of Software Similarity) [1], the
YAP (Yet Another Plague) family [22, 24], sim [8], and JPlag [18]
are based on structure metrics. From our understanding, MOSS
and JPlag are the current benchmark systems for code plagiarism
detection [3]. However, even these systems can be easily confused;
plagiarists can insert non-functional code to ensure that no plagia-
rised code segments are larger than the M M L. An example of this
problem is shown in Figure 1, in which a plagiarized copy goes
undetected by MOSS.

The aforementioned systems deal with plagiarism at the pairwise
level. In recent work, Freire [7] and Meyer [14] also developed a
plagiarism detection system for programming assignments that al-
lows pairwise comparison. However, as stated earlier, a real-world
plagiarism detection system needs to perform n-way plagiarism de-
tection. Two systems that are not publicly available — PDetect [15],
an attribute-counting metric system, and PDE4Java [11], a structure
metric system — provide the capability to detect plagiarism clusters.

In summary, currently available systems focus on the core prob-
lem of detecting plagiarism in a pairwise or clusterwise manner.

But crucially, the current state-of-the-art misses in-depth knowl-
edge about how plagiarism is actually carried out (from the pla-
giarists’ view), as well as the knowledge of how the core problem
affects an instructor’s workflow (from the instructor’s view).

3. PLAGIARISM DETECTION METHOD

In implementing SSID, we take the structure metric method but
make changes to improve detection accuracy and efficiency. For
clarity, we review the entire working of our core algorithm, which
is largely in common with other structure metric systems, but high-
lights salient differences between SSID and other structure metric
systems. SSID follows a three step pipeline to judge the plagiarism
status of a set of submissions:

Tokenization is the first step. We note that tokenization is pro-
gramming language specific, as the tokenizer needs to know the
syntax and keywords associated with the inputs. Correct identifica-
tion of keywords and syntax has been shown to be an important fac-
tor in any programming language specific support tool [19]. SSID
is implemented for Java and C input. We use Java in our examples.

Our tokenizer currently ignores differences in whitespaces and
comments, as format alteration is commonly employed in plagia-
rism [13]. We define four token types: constants, keywords, sym-
bols, and variables. Our Java tokenization scheme merges both
numbers and characters into a single constant category, as Java al-
lows easy conversion of character comparisons to numeric ones and
vice versa. We also remove string constants, as suggested by Wise
et al. [24]. We also assign an integer hash value to each unique
string instead of storing each keyword and symbol as a string, to
facilitate fast string comparison. Also, as structure metrics can
generate spurious matches, we differentiate between tokens used
at the end or beginning of statements. As a result of the tokeniza-
tion phase, the token N-grams that represent each submission are
indexed into a hash table.

Pairwise, asymmetric similarity is computed per input submis-
sion pair. We adopt the Greedy-String-Tiling algorithm [23], but
modify the Minimum Match Length (M M L) termination criterion.
We deem two statements identical if and only if their contiguous to-
kens are identical. We also make a small efficiency improvement by
using hash value comparison, as suggested by Prechelt et al. [18] in
their JPlag system. This step creates a hash table representation for
each submission. Then, retrieving the indices of a N-gram is done
in O(1) time instead of O(n) time, reducing the practical average
submission comparison complexity to O(c?) from O(c?), where ¢
is the number of tokens in a submission.

A crucial extension in SSID is the support of skeleton code. In-
structors often provide students with skeleton code as a framework
to start structuring their programming assignments. Such code, if
not properly considered by the plagiarism system, will indicate pla-
giarism when in fact the suspicious code was initially provided by
the instructor. We thus extend the basic algorithm to exclude skele-
ton code from comparison. SSID does this by adding a mark prop-
erty to differentiate between the ordinary match marks that are de-
termined by the Greedy-String-Tiling algorithm [23], and the skele-
ton marks that match both submissions and the instructor provided
skeleton code. We consider a match as valid (to be flagged as part of
plagiarism) if and only if the number of match-marked statements
within a marked region satisfies the M M L.

To further improve the efficiency of the algorithm, we leverage
our tokenization scheme, which distinguishes tokens that form the
beginning of statements. Instead of considering all N-grams, SSID
only considers the ones where the first token is marked as the begin-
ning of a statement. This significantly reduces the practical runtime
by about 4 times and reduces spurious matching.

The algorithm finds the matched regions in the input submis-
sions A and B in decreasing sizes of contiguous identical state-
ments, until no more matches satisfying M M L can be found. To
provide the user with a clear notion of the similarity of two sub-
missions, we define a similarity measure to reflect the percentage
of tokens that are covered by matches. For example, if the code
for submission A is entirely embedded within another submission
B, the similarity from A to B is 100%, but is smaller in the op-
posing direction. This results in the asymmetric similarity mea-
sure sim(A — B) = folmuchmukedlenind W then define the
symmetric similarity score sim(A, B) as the maximum of the two
asymmetric values sim(A — B) and sim(B — A).

Determining plagiarism clusters is the final step. SSID groups
submissions that are all highly similar to each other. The cluster-
ing employed uses a similarity threshold to assign each submission
into at most one group (plagiarism cluster) or as a singleton (orig-
inal submission), in a deterministic, reproducible manner. These
clustering requirements are fulfilled by DBScan [5].

Finally, we note that the real-time performance of SSID is also
critical. Instructors need immediate feedback for incorporating pla-
giarism detection into their already busy workflows. On an or-
dinary modern generation 2.8 GHz Linux laptop, SSID evaluates
datasets consisting of 80+ introductory programming assignment
submissions, amounting to over 3600 submission pairs, in less than
4 seconds on average, tested over three runs. This is an adequately
short delay for most instructors.

4. PLAGIARISM CORPUS

Prechelt et al. [18] noted that the success of plagiarists is propor-
tional to their effort in attempting plagiarism. However, we hypoth-
esize that plagiarists might find certain types of plagiarism easier to
perform than others.

To better understand how plagiarism works in practice, we asked
student volunteers to actively plagiarize submissions from two indi-
vidual in-lab introductory level programming assignments. As the
assignments are carefully monitored, we have a large set of true
negative examples. The attempted modifications then constitute
positive known examples of plagiarism, while the original submis-
sions for the assignments constitute negative examples. To begin
with, we picked four of the known original submissions from each
assignment as samples for participants to perform plagiarism. The
four samples were picked as they constituted different means to
solve the problem and our asymmetric similarity metric indicated
that these were substantially different.

28 student volunteers participated in our corpus collection work.
They generated a plagiarized version of their given source code
sample, under time pressure to simulate the limited time and effort
that plagiarists commonly have in practice. In total, 28 x 2 = 56
positive and about 180 negative examples are given in our corpus.
The corpus is also distributed along with the SSID system at the
SSID website'. Using our symmetric similarity metric sim(A, B),
when the size of the N-grams used is set to 2, and M ML is set
to 2 statements, our system successfully differentiates between the
plagiarized positives and original negatives with 100% accuracy.
The parameter settings were set by using the standard method of
cross validation, where different subsets of the corpus are rotated
for determining optimal parameter settings and accuracy testing.
Figure 2 shows the similarity distribution for the first assignment.

4.1 Attack Types

We analyzed the different types of plagiarism attempts (termed
attacks) that participants attempted. For example, a detection fail-

N=13

N=10

- ORG
tolees PLAG

Il
.

T

)
—-ka

[}

20 40 Similarity (%) 50 80 100
MML =2

Figure 2: Similarity distributions for the first assignment in the
corpus for various sized /V-gram lengths where M M L is set to
2. Note the perfect separation between original non-plagiarized
submissions (ORG) and plagiarized ones (PLAG).

ure (termed confusion) can occur when lines of code are inserted
into the copied code segment, splitting the original code segment
in two. As SSID is structure metric based, insertions can prevent
SSID from identifying the copied code segments. In our descrip-
tion of each attack, we include a ratio in parenthesis that indicates
the attack’s effectiveness, as measured by the number of times the
attack confused SSID (left number), over the total number of times
the attack was observed (right number).

Note while individual attacks may confuse SSID, a single plagia-
rized assignment consists of many attacks, and perfect separation
of positive and negative cases does not require perfect per-attack
detection; indeed, it is a collective decision over all attacks present
in a plagiarism attempt. We classify the observed attacks into three
broad categories, as follows:

1. Immutable attacks do not modify the token sequences and are
not effective against SSID. We first list them and then collectively
discuss salient points about individual attacks. This was the largest
category of observed attacks, amounting to 122 observed attacks,
out of 246 in total or about 40%.

1) Insertion, modification or deletion of comments (0/35)
2) Indention, spacing or line breaks modifications (0/38)
3) Identifier renaming (0/41)

4) Constant modification (0/2)

5) Insertion, modification, or deletion of modifiers (0/6)
6) No change (0/0)

Structure metric systems are all immune to Attacks 1, 2, 3 and
4 as the conversion of the program into token types canonicalizes
any renaming. For Attack 5, the Java tokenizer in SSID specifically
ignores changes in access modifiers (e.g., public, protected).

2. Size dependent attacks may confuse SSID, dependending on
the size of the modified code segment. 64 instances were observed
in our corpus. They are most effective in short programs, where
the modification is proportionally large compared to the original
source. But in large programs, they may be inefficient due to the
amount of effort needed to perform the modifications.

7) Reordering of independent statements (6/10)
8) Reordering of methods (6/16)

9) Insertion or removal of parentheses (0/20)
10) Inlining or refactoring of code (13/18)

For Attacks 7 and 8, SSID correctly detected a portion of the
attacks. When the original code segment were split into chunks
smaller than M ML = 2, SSID failed. For example, one attack
reordered all of the three contiguous and independent statements

Thttp://wing.comp.nus.edu.sg/downloads/SSID/PlagiarismCorpus.html within a block. Since the resultant code segment was a single state-

left = tree.getLeft();
right = tree.getRight();

right = tree.getRight();
left = tree.getLeft();
(b) Plagiarised copy

(a) Original submission

Figure 3: A reordering statement attack (Attack type 7) that is
successfully detected by SSID.

if(myString.equals(“right”)) return 1; if(myString.equals(“right™)) Il

if(myString.equals(“left”)) return 1; myString.equals(“left”)) return 1;

return 0; return O;

(a) Original submission (b) Plagiarised copy

Figure 4: A refactoring attack (Attack type 10) that confused
SSID.

ment in length, the code segments did not exceed the M M L thresh-
old and went undetected. Attacks were detected by SSID when the
reordered statements consisted of two large blocks or were struc-
turally identical. In Figure 3, the resulting token sequence is the
same even after the statement reordering, and can be detected as a
match.

Attack 9 modifies the syntactic scheme of the code, by adding or
removing parentheses that are optional in Java. SSID’s tokenization
step automatically canonicalizes the Java syntax used in most cases,
inserting missing parentheses to single-lined conditional statements
and loops; in those cases the attacks failed.

Inlining and refactoring (#10) requires more effort. Six of the in-
lining attacks confused SSID as the inlined method length caused
the original code segments to be less than M M L in length, or were
combined with other successful attacks like statement reordering.
Seven refactoring attacks, by combining conditional statements to-
gether (as in Figure 4), succeeded.

3. Successful Attacks confused SSID in all instances. They were
observed in our corpus 60 times.

11) Redundancy (8/8)

12) Scope modification (7/7)

13) Modification of control structures (14/14)

14) Declaration of variables (10/10)

15) Modification of method parameters (1/1)

16) Modification of import statements (2/2)

17) Introduction of bug (1/1)

18) Modification of temporary variables in expressions (10/10)
19) Modification of mathematical operations and formulae (2/2)
20) Structural redesign of code (5/5)

We comment briefly on the more common attacks. Redundancy
attacks (#11) remove or insert non-functional code. Scope mod-
ifications (#12) involve moving variable declarations to larger or
smaller scope, which make it similar to size-dependent attacks.
Control constructs were modified (#13) by changing looping vari-
ables, initialization and termination conditions, running loops in re-
verse. In conditional statements, the logic is changed by swapping
the 1 f and else blocks, or refactoring i f—e1se compounds into
separate i f blocks. For variable declaration (#14), plagiarists com-
bined several variable declarations into a single compound state-
ment, or separated a compound statement into components. Finally,
plagiarists expanded or compressed expressions, using or dropping
temporary variables to store the return values from expressions, ac-
cessing them later when needed.

S. USER INTERFACE WORK FLOW

In addition to comparing pairwise similarity between submis-
sions and detecting plagiarism clusters, SSID has a Web-based log

Submitted By: 036 Submitted By: 039

v e
Skeleton code matched
segment

Figure 5: Snapshot of Pairwise Comparison interface. Codes
in red and dark red denote the matched regions the instructor
selected and matched regions in the displyed submissions, re-
spectively. Code in green denotes no identical region is found in
the other submission.

Student: 038

Figure 6: Snapshot of log system interface.

system that records plagiarism activities for each student, as well as
visuals to illustrate plagiarism clusters and other plagiarism-related
information for gathering evidence on plagiarism.

(1) Pairwise Comparison Interface. As described in Section 3,
we employ the structure metric method in our SSID. An advantage
of the structure metric method is that the comparison results can
be easily displayed. While user interface of MOSS uses the small
number of colors for matched code regions, our interface uses sev-
eral colors to display the comparison between assignments. Fig-
ure 5 shows a partial snapshot of the Pairwise Comparison inter-
face. The interface allows the user to have a quick overview on the
code segments found identical in both submissions.

(2) Log System. One of the major differences between our SSID
and other similar systems is that SSID has a log system. Every
report of suspicious pairs, confirmation of plagiarism cases and re-
sults of investigation (if the student is found guilty or innocent) is
recorded in the system.

In Figure 6, student ‘038’ is under investigation by an instructor
from the course CS3256 for plagiarizing the submission from stu-
dent ‘053.” ‘038’ has denied committing plagiarism and reasoned
that both their submissions were similar because they solved the as-
signment together. Through the records on ‘038’ in the log system,
the instructor can see that ‘038’ has been found guilty of plagia-
rizing another submission from ‘053’ in another course CS2143.
Therefore, the instructor can conclude that student ‘038’ has prob-
ably committed plagiarism in CS3256 as well.

(3) Detecting Plagiarism Clusters. Once a group that conducts
plagiarisms is defined, the group can be displayed in the Cluster
Summary interface. For example, Figure 7 shows the (partial) Clus-

Plagiarism cluster consists of: 028, 035, 048 Similarity

028

Figure 7: Snapshot of Cluster Summary interface (partial). Ver-
tices and edges denote students’ ids and the maximum similar-
ity between two students’ submission, respectively.

CS2105: Introduction to Computer Networks

Ranking

Cut off criterion: |2 80% | =

* Student matic in red denotes the student is found gty in plagiarism for the assignment
* To mark /unmark a stdent, clck the student matric

» To show / hide plagiarism chister, click the show / hide fink next to the plagiarism chister

* To view smdent’s summary, move mouse cursor to the student matric Rank | Student Found
1 053 2
| 35250 ! 02¢ !
PE e | || 063 !
053 4 52 1
| |E 043 1
28 :
s 3 056 1
048 7 035 1
5 07 1
5 08 1
o
| se.324% 10 038 1
033
063
066
043 ride]
047
064

Figure 8: Snapshot of Assignments interface. The left frame
shows the overview of each plagiarism clusters in assignments.
The right frame show the statistics of the top 10 students being
detected in a plagiarism cluster.

ter Summary interface which consists of students ‘028,” ‘035,” and
‘048.” Each vertex and each edge in the interface represent a stu-
dent id and the maximum similarity value of the submission pair
between two students, respectively. In addition, edges are repre-
sented with different colors and thickness. Based on the evidence
given in this interface, the instructor may consider forming a learn-
ing group consisting of the students ‘028, ‘035,” and ‘048’ to en-
hance their learning experience. Since the edges connected to ‘028’
are thicker than the one connecting ‘035’ and ‘048’ it is highly pos-
sible that ‘035" and ‘048’ have both copied their assignment from
that of ‘028

(4) Finding Plagiarism Activities. After checking a number of as-
signments through SSID, an instructor wants to know the statistics
on the students who often conduct plagiarism. This can be done
through Assignments interface as shown in Figure 8. This interface
provides a summary of plagiarism clusters for each assignment (left
in Figure 8). Furthermore, the interface also provides a list of the
top 10 students in plagiarism clusters, which helps the instructor in
monitoring plagiarism activity (right in Figure 8).

(5) Similarity between Students. According to Figure 8, student
‘038’ and ‘053’ belong to the same group. An instructor also wants
to verify whether ‘038’ belong to another plagiarism cluster where
student ‘053, ‘063,” and ‘066’ belong. To address this issue, our
SSID provides the Between Individual interface (see Figure 9). Af-

Assignment : 1 Similarity
063 0s6 — 0%
E—— > {00,
/
.-/
083 038
Assignment : 2 Similarity
063 sl — 0%
|/< =:
083 038

Figure 9: Example of Between Individual interface.

Top 5 similar submissions to student 038

* Student matsic in red denotes the stodent i found gulty in plagiasism for the assignment
+ To vicw code comparison betwween a student and student 038, click the student matric

| Assignments Similarity (in decreasing order)
T >

: W 024 (30.602%)

I 105 (26.846%)
I 03! (26.517%)

N 016 (33 245%)
I 00: (27.443%)
I 1) 2557
I 13 (21414%)
I 02 (20.168%)

I 141 (19.322%)
. 130 (15.919%)
3 | REERIELD]
I o:0(17.672%)
007 (17.672%)

b

Figure 10: Snapshot of Top Similarities interface. This interface
displays the top 5 similar submissions in each assignment for
student ‘038.

ter selecting the target group of students, this interface displays the
similarity between their submission pairs.

According to Figure 9, the similarities between the submission
from ‘038, and the submission from ‘063’ and ‘066’ are below
50% for both Assignments 1 and 2 (upper and lower in Figure 9,
respectively). While 038’ has similarity of 90% with "053’ in As-
signment 1, the similarity between the submissions from these stu-
dents dropped to less than 50% in Assignment 2. This serves as a
strong evidence to support the fact that ‘038’ has probably stopped
plagiarizing the work of others.

(6) Finding the Submissions Most Similar to a Student’s Sub-
mission. SSID provides the Top Similarities interface (see Fig-
ure 10) to inform the instructor whether a suspicious student who
may perform plagiarism has stopped plagiarizing other students’
assignments.

Suppose that our target student is ‘038’ as shown in Figure 10.
After an instructor selects the target student and entering the num-
ber of candidates (K) to display, the K students are paired up with

the target student ‘038’ based on similarities between submissions
of ‘038’ and those of others. SSID sets the default value of K to 5.
In Figure 10, an instructor has chosen to display the top 5 similar
submissions in each assignment for student ‘038.” Since there are
no similarities greater than 50% in Assignments 2 and 3, the in-
structor can conclude that ‘038’ has been working on his own since
his submission of Assignment 2.

6. CONCLUSION

We have presented a plagiarism detection system that assists in-
structors with the tedious task of detecting and reporting source
code plagiarism cases. We extended the core task of detecting pla-
giarism between a pair of students, to a clustering framework, in
order to support detection of plagiarism done by groups. To support
instructors, SSID extends the visualization of assignment similar-
ity to a group level and offers database views of code similarities
across assignments and courses. Currently, our SSID only accepts
Java programs as inputs. However, the system can be easily adapted
by comparing other program languages if a tokenizer for the target
language is introduced.

To better understand code plagiarism, we asked student volun-
teers to plagiarize input code samples in the Java programming
language to build a corpus. On our corpus, our SSID is able to dis-
tinguish between original and plagiarized submissions with 100%
accuracy. Our analysis of the resultant corpus identified two ma-
jor categories of attacks: immutable attacks and size dependent at-
tacks. However, we also identified 10 other modes of attacks that
are not properly identified by current detection systems (including
SSID), which serve as an agenda for future work in source code
plagiarism detection.

7. REFERENCES

[1] A. Aiken. Moss: A System for Detecting Software
Plagiarism. 1994. http://theory.stanford.edu/ aiken/moss/.
[2] H. L. Berghel and D. L. Sallach. Measurements of Program
Similarity in Identical Task Environments. ACM SIGPLAN
Notices, 19(8):65-76, 1984.
V. Ciesielski, N. Wu, and S. Tahaghoghi. Evolving Similarity
Functions for Code Plagiarism Detection. In Proc. of the
10th Annual Conference on Genetic and Evolutionary
Computation (GECCO’08), pages 1453-1460, 2008.
[4] J. L. Donaldson, A.-M. Lancaster, and P. H. Sposato. A
Plagiarism Detection System. In Proc. of the 12th SIGCSE
Technical Symposium on Computer Science Education
(SIGCSE ’81), pages 21-25, 1981.
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. In Proc. of the 2nd
International Conference on Knowledge Discovery and Data
Mining (KDD-96), pages 226231, 1996.
J. A. Faidhi and S. K. Robinson. An Empirical Approach for
Detecting Program Similarity and Plagiarism within a
University Programming Environment. Computers &
Education, 11(1):11-19, 1987.
M. Freire. Visualizing Program Similarity in the AC
Plagiarism Detection System. In Proc. of the Working
Conference on Advanced Visual Interfaces (AVI’08), pages
404-407, 2008.
D. Gitchell and N.Tran. Sim: A Utility for Detecting
Similarity in Computer Programs. In Proc. of the 30th
SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’99), pages 266-270, 1999.

3

[

—
W
—_—

[6

—_

[7

—

[8

[

[9] S. Grier. A Tool That Detects Plagiarism in Pascal Programs.
In Proc. of the 12th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’81), pages 1520,
1981.

[10] M. H. Halstead. Elements of Software Science. Elsevier
Science Ltd., 1977.

[11] A.Jadalla and A. Elnagar. PDE4Java: Plagiarism Detection
Engine for Java Source Code: a Clustering Approach.
International Journal of Business Intelligence and Data
Mining, 3(2):121-135, 2008.

[12] C. L. Jocoy and D. DiBiase. Plagiarism by Adult Learners
Online: A case study in detection and remediation. The
International Review of Research in Open and Distance
Learning, 7(1), 2006.

[13] C. Liu, C. Chen, J. Han, and P. S. Yu. GPLAG: Detection of
Software Plagiarism by Program Dependence Graph
Analysis. In Proc. of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD’06), pages 872-881, 2006.

[14] C. Meyer, C. Heeren, E. Shaffer, and J. Tedesco. CoMoTo —
the Collaboration Modeling Toolkit. In Proc. of the 16th
Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE’11), pages 143-147,
2011.

[15] L. Moussiades and A. Vakali. PDetect: A Clustering
Approach for Detecting Plagiarism in Source Code Datasets.
The Computer Journal, 48(6):651-661, 2005.

[16] W.T. Ooi and T. C. Tan. A Survey on Awareness and
Attitudes towards Plagiarism among Computer Science
Freshmen. CDTLink, 9(3), 2005.

[17] K.J. Ottenstein. An Algorithmic Approach to the Detection
and Prevention of Plagiarism. ACM SIGCSE Bulletin,
8(4):30-41, 1976.

[18] L. Prechelt, G. Malphol, and M. Philippsen. Finding
Plagiarisms among a Set of Programs with JPlag. Journal of
Universal Computer Science, 8(11):1016-1038, 2002.

[19] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing;:
Local Algorithms for Document Fingerprinting. In Proc. of
the 2003 ACM SIGMOD International Conference on
Management of Data (SIGMOD’03), pages 76-85, 2003.

[20] P. Vamplew and J. Dermoudy. An Anti-Plagiarism Editor for
Software Development Courses. In Proc. of the 7th
Australasian Conference on Computing Education
(ACE’05), pages 83-90, 2005.

[21] K. L. Verco and M. J. Wise. Software for Detecting
Suspected Plagiarism: Comparing Structure and
Attribute-counting Systems. In Proc. of the 1st Australasian
Conference on Computer Science Education (ACSE ’96),
pages 81-88, 1996.

[22] M. J. Wise. Detection of Similarities in Student Programs:
YAP’ing may be Preferable to Plague’ing. In Proc. of the
23rd SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’92), pages 268-271, 1992.

[23] M. J. Wise. String Similarity via Greedy String Tiling and
Running Karp-Rabin Matching. 1993.
ftp://ftp.cs.su.oz.au/michaelw/doc/RKR_GST.ps.

[24] M. J. Wise. YAP3: Improved Detection of Similarities in
Computer Program and Other Texts. In Proc. of the 27th
SIGCSE Technical Symposium on Computer Science
Education (SIGCSE *96), pages 130-134, 1996.

