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ABSTRACT
We introduce Enlil, an information extraction system that discov-
ers the institutional affiliations of authors in scholarly papers. Enlil
consists of two steps: one that first identifies authors and affilia-
tions using a conditional random field; and a second support vec-
tor machine that connects authors to their affiliations. We bench-
mark Enlil in three separate experiments drawn from three different
sources: the ACL Anthology, the ACM Digital Library, and a set
of cross-disciplinary scientific journal articles acquired by query-
ing Google Scholar. Against a state-of-the-art production base-
line, Enlil reports a statistically significant improvement in F1 of
nearly 10% (p « 0.01). In the case of multidisciplinary articles
from Google Scholar, Enlil is benchmarked over both clean input
(F1 > 90%) and automatically-acquired input (F1 > 80%).

We have deployed Enlil in a case study involving Asian genomics
research publication patterns to understand how government spon-
sored collaborative links evolve. Enlil has enabled our team to
construct and validate new metrics to quantify the facilitation of
research as opposed to direct publication.
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1. INTRODUCTION
Quantifying scholars’ performance is a difficult problem. While

there are many instruments to use to argue one’s scientific prowess,
it is generally accepted that others’ use of a scholar’s publications
represents key evidence. Measuring “use” is none the easier, but
has often been interpreted in terms of citation count or aggregate
citation metrics such as h-index [15], g-index [9], or more recently,
~-index [16].

Figure 1: An example of a co-author network coded with insti-
tutional affiliations. Like-colored nodes indicate identical affili-
ations and edges represent publications. Blue edges indicate co-
authorship among authors in the same institution; red, across
institutions.

While benchmarking individual scholars is important to their
promotion and tenure, higher-level (i.e., aggregate) bibliometrics
and scientometrics are perhaps even more important. For example,
a researcher may publish little, but play a significant role over time
by forging critical connections among others to facilitate research.
We have recently addressed this issue and developed research fa-
cilitation or RF-metrics [6] for individuals and groups. Measuring
the performance of whole academic units, institutions or countries
is important for department heads and deans, and also a key knowl-
edge management issue for the policymakers and funding agencies
that support their research work.

The institutional affiliations1 of authors of scholarly papers is an
important piece of metadata for enabling such publication data ag-
gregation. Research works in social sciences, scientometrics, bib-
liometrics and knowledge management such as [24] also use publi-

1We use “affiliations” and “institutions” interchangeably, although
an affiliation properly refers to just the correspondence between an
author and his institution.



cations records and associated metadata. The correct identification
of author’s affiliations is crucial for research works such as [26]
that study the impact of location, geography on emergent behavior.
In the current scholarly publication practice, this data is manually
entered by publishers or authors, and thus a valuable asset to pub-
lishers. Commercial services such as Thompson Reuters’ Web of
Science, Elsevier’s Scopus and Google Scholar sometimes provide
inaccurate mappings between the different authors and their insti-
tutional affiliations, incomplete listings of affiliations for publica-
tions with many authors, or do not provide the authors’ affiliation
at all. Also, access to such metadata can be prohibitively expen-
sive, restricting research and benchmarking exercises that rely on
this metadata to well-provisioned institutions2.

However, thanks to the triad of open access, self-archiving and
institutional repositories, scholarly publications themselves are now
easier to obtain from web sources. Armed with an automated sys-
tem that extracts authors from digital copies and associates them
with their affiliations, the public can now perform their own bibli-
ographic research, case studies and comparative benchmarking.

As a case in point, Figure 1 shows the actual co-authorship net-
work of a large set of authors involved in the Pan-Asian SNP Con-
sortium from 2004, where edges represent jointly published works.
This international consortium was sponsored by various national
government funding bodies. In our umbrella project, we are inter-
ested to know whether such funding resulted in sustained collabora-
tive links, after the sponsored funding finished. With a system that
can reliably extract author and affiliation information, construc-
tion of such networks becomes easy and the subsequent knowledge
management and analyses of such networks becomes possible.

We report on Enlil, a system that performs this task in a two-step
process: first, the extraction of author and institutions from schol-
arly documents via supervised sequence labeling; and second, the
matching of authors to their institutions via relation classification.
The key contributions of this paper are: 1) describing the features
used by our system and their efficacy on the problem, 2) perfor-
mance that significantly outperforms the current state-of-the-art, 3)
detailed analysis of the major error classes of our system and the
difficulties in author and affiliation extraction and matching, and 4)
a discussion of the knowledge management which Enlil enables.

2. RELATED WORK
Extracting authors, institutions and correlating them relates to

the domain of automated document processing, of which the gen-
eral problem of document structure analysis has been an active re-
search area since the 1960’s. Many of these works focus on the
scholarly record, and more recently at those encoded in rich text
formats, such as Portable Document Format (PDF). Klink et al.
[18] and Kim et al. [17] introduce methods that use both the tex-
tual and the layout features of a document to discover its structure,
however, these systems rely on hand-tuned rule sets and templates.
Such methods are brittle and may fail when presented with doc-
uments that follow new or different publishing styles. Gao et al.
[12] recently described SEB, a framework to detect the hierarchy
and reading order of a document using weighted bipartite graphs
but its fixed rules are again not flexible enough to capture docu-
ment metadata in practical scenarios.

A common method to address the fragility of handcrafted rule-
based systems is to employ statistical learning methods that auto-
matically construct the model from annotated data. This approach
removes the need for experts to construct the rule base. It also en-

2Thompson Reuters’ Web of Science and Elsevier’s Scopus can
each cost between 10K to 100K USD per year [20].

ables adaptability, as when new annotated data arrives, the learned
model can be regenerated to fit the new distribution of examples.
While general information retrieval now uses statistical learning
techniques at its core, current research in document analysis has
started to use statistical learning only recently. For the problem
of general document structure inference, Belaid et al. [2] has em-
ployed neural networks, while the SectLabel system [22] adopted
a Conditional Random Field (CRF) as their learning approach. We
build our work upon SectLabel, as its broad categories and ade-
quate overall performance provide a good base for improvement.

Other research has tried to apply more fine-grained methods on
smaller parts of the document to discover various types of relation-
ship between different entities. Systems by both Gao et al. [12] and
Lopez et al. [21] correlate figures to their captions, enabling better
document figure retrieval.

With respect to scholarly document metadata, Cortez et al. [7],
Councill el al. [8], aim to recover the citation network by recog-
nizing and parsing the reference strings that appear in scholarly
documents’ reference section, using a knowledge-based approach
and a CRF model, respectively. Chen et al. [4] integrated both
knowledge-based and data driven approaches into a single archi-
tecture for the same problem. The BibAll system [10] integrates
several existing systems such as ParsCit while also utilizing new
digital library services including Google Scholar to provide a com-
plete extraction of all the fields in a citation string. The CEBBIP
system by Gao et al. [11] also demonstrated that a CRF works for
the same problem for written Chinese. While all do identify and
delimit author names in reference strings present in a paper’s bibli-
ography, they do not perform the recognition, delimitation and ex-
traction of author names on the title page (i.e., they do not identify
the authors of the document itself, but the authors of the documents
which the document cites).

Our work here continues the automation process where previous
work has left off. In particular, we focus our attention on the title
page of a scholarly work, delimiting the document’s authors and
their institutions and building their correspondence. We observe
that good performance on such extractions from title pages often
requires knowledge of the spatial layout and font information in
addition to the text itself. This is in contrast to author processing in
reference strings in the bibliography that largely depends only on
lexical information.

Most closely related to our work is work by the CiteSeer team at
Penn State. Initial work by Han et al. [14] uses a Support Vector
Machine (SVM) to extract document metadata. The work is com-
prehensive but limited by two important factors. First, only the tex-
tual features of the document header are used, which leads to issues
in chunk identification in names that are delimited only by whites-
pace. Second, as the dataset contains only computer science re-
search papers, its performance outside of this domain is unknown.
Later work in SeerSuite [25] includes exactly our problem scope in
this work as one component: SVM Header Parser. This system is
closest to Enlil in terms of functionality: accepting PDF input and
extracting and matching authors with affiliations. As such, we use
SVM Header Parser as a comparative baseline in our system’s eval-
uation. Our results show the improvement of our system over SVM
Header Parser in both cross-domain and computer science datasets.

3. SYSTEM OVERVIEW
Our author and affiliation extraction and matching system, Enlil3,

comprises of two steps run in serial – an extraction step and a

3Enlil is the name of the air god in the Sumerian myth of the
Huluppu tree, the World Tree that connects heaven and earth.



Figure 2: Enlil’s system architecture. The rounded rectangle
indicates the system modules detailed in this paper; modules
outlined by dashes indicate preprocessing steps.

matching step. Figure 2 shows the overview of Enlil’s modules
and their interaction. The first step is modeled as sequence labeling
tasks that use a CRF as the supervised learning model, while an
SVM is used in the second step for relational classification. A sig-
nificant preprocessing pipeline provides our system with the nec-
essary textual and spatial input needed to complete our processing,
which we detail first.

OCR. Portable Document Format (PDF), while now an open
standard and the most common method for disseminating published
scholarly work, composes the rendered or printed page in several
different ways. While PDFs can be semantically rich, complete
with document logical structure (e.g., indicating which text are
headers, page numbers, titles), they can also lack the basic tex-
tual content shown in the image of the pages rendered – especially
when scanned without an accompanying character recognition step.
To produce a pipeline for author–affiliation matching that works
under all such circumstances, we choose to treat (pages of) PDF
documents as images, and use a commercial off-the-shelf optical
character recognition software, Nuance OmniPage4 to canonicalize
any input PDF into a standard format. We use OmniPage to output
an XML version of the document that provides both the textual and
spatial information (i.e., the X- and Y-coordinates) for each word
that appears on each page.

We then run SectLabel [22], an open-source module that takes
this type of input, to assign one of 23 semantic classes to each line
of text, including Author and Affiliation. Note that SectLabel does
not further process individual lines to delimit authors or institu-
tions. Enlil collects all reported author and affiliation lines as its
input for processing, discarding the rest of the input document, as
they are irrelevant to our problem. At this point, the system has
the required input for starting – two sets of lines of text marked as
either Author or Affiliation.

Tokenization. While individual lines of text classified as authors
or institutions are the input to Enlil, there still remains significant
processing needed to delimit the author and institutions correctly.
Lines marked as Authors may contain multiple author names, mark-
ers that signify a correspondence between authors and footnotes or
affiliations (hereafter called “markers”). Lines marked by the Sect-
Label preprocessor as Affiliation may also contain phone numbers

4Versions 16 and 17.

Figure 3: An example of name splitting.

or email addresses. Enlil’s first step is to correctly tokenize and
delimit the author and institutional information in the input. Tok-
enization is needed as author, marker and author-separating tokens
are commonly concatenated into a single printed token without in-
ternal spacing, as shown in Figure 3. To perform this tokenization,
we apply a short list of rules, starting with delimiting tokens by
spaces. In addition to the use of spaces, we also use the change in
formatting between characters (e.g., change to superscript or sub-
script) or the presence of punctuation marks to force the tokenizer
to break the token into smaller components. For example, in the
Author line, the signifier “Seyda Ertekin2,” can be split into
four tokens “Seyda”, “Ertekin”, “2” and “,”.

3.1 Author and Institution Extraction
Once tokens are identified, we use supervised sequence label-

ing to assign each of the tokens in both author or affiliation input
lines to one of three classes: name, symbol, and separator. These
classes correspond to an author or institution token, a correspon-
dence marker, and any separating token, respectively.

We use a linear Conditional Random Field (CRF) [19] to tackle
each of these two problems, as it has been shown to work well on
related sequence labeling tasks, such as reference string parsing, as
well as part-of-speech tagging. We use the freely-available CRF++
implementation5, which permits us to design feature classes that
describe the traits of hidden nodes, as well as the relationships be-
tween them. We use the same feature sets for both of the problems
of labeling author lines as well as affiliation lines, but use different
training data. Two CRF models are learned from labeled training
data sets (described later) – one for author line labeling and one for
affiliation line labeling.

Enlil has two logically separate sets of feature classes that it uses
for this extraction step. The first set of features are content features
– ones related to the textual content of the tokens. However, we
have found that relying solely on punctuations and token identity
features that can be found in raw text fails to demarcate author and
affiliation sections well. This is due to the fact that many publica-
tion formats depend on the visual layout of a title page for this task.
A human reading the formatted rich text can easily detect different
logical units by their font sizes or positions. For this reason, Enlil
also utilizes a second set of features based on the text layout – these
features capture font size or spatial position. We will see that this
second set of features is especially important and it significantly
improves performance (Section 4).

Our system only uses binary-valued features. Note that all but
the first layout feature depends on rich text input that is provided
by our OCR / line classification preprocessing pipeline. We list the
feature classes used by the CRF for both author and affiliation line
token labeling, listing the content features first.

— Token Identity (content): We encode separate features for each
token in three different forms: 1) as-is, 2) lowercased, and 3) low-
ercased, stripped of punctuation. For this feature and the following
n-gram feature, the feature sets are the binary presence or absence
of the token.
— N-gram prefix/suffix (content): The first as well as the last 1-4
characters of the token in lowercase format.
5http://crfpp.sourceforge.net/



Table 1: Gazetteers used by Enlil and their sources.
Dictionary Type # of Entries

Person

First name (Male)a 3,901
First name (Female)a 4,955
Last nameb 88,799
Last name (Romanized Chinese) 286

Location Countries and citiesc 50,000
a
ftp://ftp.funet.fi/pub/doc/dictionaries/DanKlein/

b
http://www.census.gov/genealogy/names/

c
http://world-gazetteer.com

— Length (content): The length of the token is also an important
feature, as separators and markers are often fixed in length. Enlil
counts the total number of characters in the token and turns on only
(“1”) of the following features: 1Char, 2Char, 3Char, or 4+Char.
— Punctuation (content): Any punctuation present in the token is
detected and categorized into one of three groups: continuingPunc-
tuation (e.g. commas, semicolons), stopPunctuation (e.g. periods),
others (e.g. apostrophe), or noPunctuation. The first two groups
usually serve as separators that demarcate authors’ names, while
the third can serve as a part of a name (e.g. “O’Reilly”).
— Number (content): We identify numbers present in the token us-
ing simple regular expressions, assigning the numeric sequence to
one of four mutually-exclusive categories – 1Digit, 2Digit, 3Digit
or 4+Digit; otherwise, the feature gets the value noDigit. The num-
ber feature helps to distinguish numeric markers, and parts of ad-
dresses present in affiliations.
— Gazetteers (content): We incorporate several gazetteers of com-
mon tokens in place and people names into our system. Each token
is checked for its presence on each of the gazetteers. Table 1 details
the source and demographics of each.
— First word in line (layout): We check if the token is the first
word in an input line, as an author name is usually short and con-
tained within a single line, so the first word in a line may mark the
start of a new author.
— Source Section (layout): Rich text formats (as provided by the
OCR XML output format) propagate high-level document struc-
tures such as paragraphs and columns. We use this information to
decide whether different tokens are in the same section. Two tokens
cannot belong to the same logical unit if they are in two different
sections of the text, which may occur when reading inputs line by
line. Figure 4 shows an example of three lines of text logically
containing six separate lines, due to the two-column format.
— Orthographic case (layout): We assign the token one of the
following values: Initialcaps, MixedCaps, ALLCAPS, or others.
— Sub–Superscript (layout): Tokens have one of these two fea-
tures turned on if it is a subscript or a superscript. This feature is
especially useful for detecting affiliation correspondence markers,
such as in Figure 3.
— Font format (layout): We use three features – Bold, italic, and
underline – to indicate the tokens’ respective format.
— Font size (layout): Different logical portions of the document
may be rendered in different font sizes. Author names are usually
in the same font size or in a larger font than affiliations and rarely
smaller. This feature captures the regularities in size. However,
as different documents may use different sizes, it is the relative
difference between the base font size in a document and the target
token that we encode using this feature class. The values for our
feature are small, normal, and large.
— Format change (layout): This is a differential feature which is
conditioned on two consecutive labels in the CRF model. It cap-
tures the change of layout format when moving from one token
to the next. This feature encodes whether two consecutive tokens

have the same format. Here, “format” is defined as the combina-
tion of “Font format”, “Sub–superscript”, and “Font size” features.
The “Format change” is assigned the value “fbegin” if any of these
three component features changes its value from the previous token
to the current; otherwise, it is assigned the value “fcontinue”.

Post-Processing then constructs author and institution names
from the labeled tokens. As author names may occur in various
format, such as “S. Ertekin” or “Ertekin, S.”, each name is con-
verted to its normalized form “S Ertekin” using regular expressions
to detect locations of any separator characters, and transposing the
internal results as needed. We define the normalized form to be
the first initial, any middle initial, followed by last name (e.g., “S
Ertekin”). This form is used when Enlil is evaluated under relaxed
match conditions (See Section 4.1).

We then group consecutive tokens with the same class together
to form a list of author names and a list of affiliations together with
their markers. In Figure 3, Enlil generates “Seyda Ertekin” as
the author name and “2” as the correspondence marker. As we
use the change in formatting between characters in the tokenization
step, consecutive tokens in the same word need to be concatenated
differently. One common example is when an author name is writ-
ten using small capitals, such as “ERTEKIN”, there are two tokens
“E” and “RTEKIN”. In such cases, we need to ensure that no extra
space is inserted between them to form the correct name.

In the previous steps, Enlil does not make use of the actual dis-
tance between tokens in rich text formats where larger spaces usu-
ally serve as implicit separators. For example, in Figure 4, the sec-
ond affiliation line contains two occurrences of the string “National
University of Singapore”, separated only by a large gap with no
explicit separator, hence, appending them together leads to an in-
correct result. In post-processing, we measure the actual distance
between consecutive words and check for tab characters if present.
When a larger than usual space appears inside a string, it is split.
This processes the authors and affiliations in Figure 4 correctly.
Identifying the complete list of authors and affiliations ends the
first step.

3.2 Author Matching via Relational Classifier
The second step then matches affiliations to authors, also using

a supervised classification model. While quadratic in complexity
(O(nm), where n is the number of authors, and m the number of
institutions), in practice this process is efficient as the total number
of authors and affiliations is usually small. However, exceptions do
occur in certain consortium papers common in fields such as High-
Energy Physics, where hundreds of authors and tens of institutions
are common.

While it is easy to decide the correct affiliations using simple
heuristic rules with accompanying affiliation markers for the ma-
jority of cases, there are complications that we observed that led
us to use a more sophisticated supervised learning approach. This
is because the format of scholarly documents is diverse and many
formats do not contain markers. Moreover, the input extraction
process is not error-free and a learning system can deal better with
noise than absolute, heuristic rules. Hence, our system also takes
the distance between a candidate author and a candidate institution
as evidence to improve accuracy. One limitation of this approach
is that the spatial distance is only available in rich text formats.
Fortunately, our processing pipeline provides this evidence source.

For humans, the relationship between an author and an institu-
tion is often easily detected using simple observations. First, these
names are usually clearly separated from the other parts of the doc-
ument, and are at a close proximity to each other. Second, there are



Figure 4: An example of names in different columns in a rich
text format document.
usually markers that indicate the connection between them. We use
two sets of features that can capture this evidence: the markers pro-
vided by the previous module and the distances between the author
and the affiliation. There are two distance features in our system:
Euclidean distance and Logical distance. The Euclidean distance
between two strings is measured by calculating the difference in
the x − y coordinates of the strings’ center (as measured by their
bounding box). The logical distance measures the difference in the
document logical addresses of the strings’ line. Each line can be
assigned a unique logical address comprising of four components:
its page, column, paragraph, and line index. For example, two lines
are in the same paragraph if their page, column, and paragraph in-
dices are equal. The logical distance can be computed in Enlil from
the input XML that is provided by Omnipage, which structures its
OCR output into such hierarchical text units.

Note that because we generate features for all possible pairs of
authors and institutions, our matching problem is not an exclusive
(hard) matching task: an author may have more than one affiliation
and an institution may serve for more than one author’s affiliation.
A common scenario is when several authors have the same marker,
thus, belonging to the same institution. In Enlil, we allow both
author and institution to be associated with multiple markers, al-
though we observe that it is rare for an institution to have more
than one marker.

We use a standard SVM with a Gaussian kernel as the learning
paradigm for this pointwise classification step, implemented using
LibSVM [3], with the below binary features:

— Signal symbol: This feature is turned on when a candidate au-
thor and institution are both marked by an identical marker. All
markers are stored in plain text with no additional format informa-
tion as correspondence markers of an author and an affiliation may
have different formatting. An author and an affiliation can also be
associated with more than one marker. For example, an author “C.
Lee Giles” in Figure 3 will be associated with two markers “1” and
“2” that follow immediately after it. This one-to-many relationship
helps finding the correct affiliations if there are more than one.
— Logical distance: This feature class is a collection of three fea-
tures indicating whether the two strings are in the same page, col-
umn, and paragraph. We observe that the affiliated institution is
usually in the same structure as the author.
— Euclidean distance: OmniPage assigns the x-y coordinates in
pixels of the bounding box of every word in the document. Enlil
uses these values to compute the coordinates of every author and
affiliation strings. We then compute the distance between an au-
thor and all possible affiliations along the x- and y-axis and use the
Euclidean distance to find the nearest affiliation, as the correct af-
filiation is often the nearest, as exemplified in Figure 4. To further
favor author names that appear before a potential affiliation, we pe-
nalize affilations that appear before the author name by a factor of
2. If an affiliation is computed to be the nearest, value of the fea-
ture is yes, otherwise, the value is no. This feature is useful when
there is no correspondence marker, as is typical in some publication
styles (e.g., ACM proceedings).

4. EVALUATION
In evaluating Enlil, we have the following questions we want to
answer:

Q1. How effective is Enlil at recovering exact author and institu-
tion strings from scholarly papers, when compared with a
suitable baseline? Is Enlil also effective at matching authors
to institutions to form correct affiliations?

Q2. Does performance vary when the documents come from dif-
ferent domains?

Q3. What type of errors does Enlil typically make and what sources
cause them? How does performance vary when it is provided
with real-world or clean input?

Q4. What impact do the different features have on author–affiliation
matching performance?

We first describe the datasets used in our evaluation, experimental
results and finish with a detailed analysis.

4.1 Datasets
We evaluate Enlil on three different datasets to illustrate both

evaluation in depth (volume) and in breadth (variety): For volume,
we used articles from the the ACM Digital Library, and a larger
corpus from the Association for Computational Linguistics’ (ACL)
Anthology. For variety, we collected a set of cross-disciplinary sci-
entific journal articles by querying Google Scholar.

The first two datasets are from specific technical domains. We
sampled computer science papers and their metadata from the ACM
Portal, representing 2,243 documents and 6,625 authors6. The meta-
data from the ACM contains a list of all authors and their affilia-
tions, making it a useful gold standard for author extraction. How-
ever, it does not list the exact number of institutions shown as ap-
pearing in the actual PDF file. For example, it is common for two
authors in a paper to be associated with the same institution. In this
case there might be a single institution string for both authors, or
two duplicated ones (one for each author, as in Figure 4). Hence,
the ACM metadata does not represent a complete gold standard
for institution extraction, and hence we omit institution extraction
evaluation on this dataset.

The ACL Anthology Corpus is the largest of our datasets, con-
taining 23,533 documents7. However, there is no ground truth so
we need to manually extract and label the data. In evaluating Enlil’s
results on this dataset, we randomly selected 100 papers from this
source, sampling mostly from its conference proceedings. Papers
from the same conference usually use an identical conference tem-
plate, so we made an assumption (discussed later) that the result
would be indicative of Enlil’s performance over the whole ACL
Anthology Corpus. In addition, the processing time grows linearly
with the number of articles and Enlil takes about 42 seconds on av-
erage to process one document in this corpus (cost is mostly based
on the prerequisite OCR).

As Enlil aims to process scientific publications in general – pri-
marily journal articles and conference proceedings – we must also
test breadth-wise, on documents drawn from diverse sources. Enlil
needs to perform well for both humanities and general sciences
to support its downstream use cases, so we deemed the breadth-
wise evaluation the most critical. To achieve this, we manually
constructed and labeled a corpus of 800 documents from various
scholarly journals across four large branches of science, as shown
6We sampled Portal by retrieving all results returned by Google
Scholar for the query “site:dl.acm.org”.
7http://www.aclweb.org/anthology, visited on May
22th, 2013



in Table 2. Documents were chosen from different fields and from
different journals and publishers to ensure a wide variety of for-
mats, indicative of the input we expect Enlil will need to handle
when processing both science and humanities publications. Docu-
ments were also sampled uniformly – we drew each fourth of the
corpus from four different major branches of science, extending the
uniform sampling into the individual component fields. All doc-
uments were downloaded from our institution’s library subscrip-
tion or from freely-available Web sources. Documents were all
uniformly in PDF and processed by our preprocessing pipeline to
obtain the input content and layout information. We created the
gold standard by manually performing both steps in the process: 1)
extracting the authors and institutions from each document in the
corpus, and 2) then matching author and institution pairs together
to form affiliations. The dataset used in our experiments (minus
the copyrighted PDFs) – including the gold standard are publicly
available8.

We trained a single pair of CRF (linear CRF with the window
size of 2) and SVM (standard SVM with a Gaussian kernel) mod-
els for all of the results reported in the subsequent experiments.
A small training dataset was separately (non-overlapping with the
testing sets) compiled from articles from the same three sources.
We used a total of 390 instances of author and institution extrac-
tions for the CRF model and 1,969 instances of author-affiliation
matching for the SVM model. All the training data was annotated
by the first author.

Within a document, we deem an author’s name to be his unique
identity. However, an author can have both his full name as well as
a shortened version within the same paper (this occurs, for exam-
ple, in Springer’s proceedings template) and in such cases, we have
chosen to retain the short name – as the full name can easily be
converted to its short form for evaluation, described later. To main-
tain consistency in annotation we apply the following rules. First,
titles (e.g., PhD or MSc) are removed if present; second, email ad-
dresses and phone numbers are discarded, but any physical address
information in an affiliation is retained as part of the affiliation. Fi-
nally, the author and affiliation strings should be preserved in their
original form if not otherwise affected (e.g. National University
of Singapore is retained over its abbreviated form NUS, when both
forms are present). Diacritics are also allowed to be represented by
ASCII close equivalents (e.g., université for universite).

While our preprocessing pipeline affords rich text format input, it
is not perfect; the output from the preprocessing is not always clean
and contributes significant amount of noise. In analyzing the page
image to produce the textual and spatial features the commercial
OCR package occasionally misrecognizes content. In our obser-
vation, this problem occurred most frequently with characters with
diacritics (as shown in Figure 5), as the commercial OCR package
we used is tuned for English input. The SectLabel preprocessing
runs after OCR, to infer the document logical structure and assign
lines to their semantic categories. However, some lines may be
incorrectly identified or missed, as shown in Figure 6.

As the preprocessing is a significant source of error, we also
wish to benchmark Enlil on both clean input data and real input
data. To enable such analyses, we selected a subset of 160 articles
from the cross-disciplinary corpus which produce correct OCR and
Sectlabel results. We use this smaller collection (dubbed the Clean
dataset from Google Scholar) to assess Enlil’s performance without
cascading errors that come from preprocessing, whereas the origi-
nal 800 document collection (dubbed Full) is used to approximate
Enlil’s expected, real-world performance.
8http://wing.comp.nus.edu.sg/downloads/
enlilCollection/

Table 2: Demographics on our cross-disciplinary dataset. The
dataset comprises of 800 documents, manifesting 2,217 in-
stances of author and 1,821 instances of institution names.

Branch Field
Number of Number of
Journals / Authors /

Documents Affiliations

Applied

Aerospace 2 / 20

879 / 507

Agricultural 2 / 20
Biomedical 2 / 20
Dentistry 2 / 20
Forestry 2 / 20

Mechanical 2 / 20
Medical 2 / 20
Mining 2 / 20
Nursing 2 / 20
Robotics 2 / 20

Formal

Computer 5 / 50

519 / 388Logic 5 / 50
Mathematics 5 / 50

Statistics 5 / 50

Natural

Astronomy 4 / 40

813 / 516
Biology 4 / 40

Chemistry 4 / 40
Ecology 4 / 40
Physics 4 / 40

Social

Anthropology 4 / 40

470 / 410
Criminology 4 / 40
Economics 4 / 40

History 4 / 40
Psychology 4 / 40

Figure 5: An example of incorrect character recognition from
preprocessing by OmniPage. The umlaut (¨) is separated from
its base u and the affiliation marker number 1 (“one”) is mis-
recognized as the character l (“ell”).

4.2 Experimental Results
We report extraction results using two schemes: exact match and

relaxed match. Exact match judges an extraction as correct only
when the author or affiliation name matches the ground truth with
canonicalization – i.e., after minor, automatable rules, such as re-
moving multiple spaces, trimming, lowercasing, and removing un-
necessary punctuation, are applied. Relaxed match relaxes the ex-
act match, by allowing small name variations (e.g., short name and
full name, with or without middle initials). Figure 6 shows an ex-
ample of author names in their short forms that can be matched
with their full forms in relaxed mode. We do this by using the
Jaro-Winkler string metric to compare the ground truth against the
extracted output. We use a similarity threshold of 0.95 for author
names and 0.85 for affiliation names. We chose a lower thresh-
old for affiliation names, as observation showed that they are usu-
ally much longer and contain more variation as compared to author
names. To be precise, relaxed matching performance will always
be equal or greater to exact matching performance.

We use SVM Header Parser from SeerSuite [25] as the baseline
in our experiments. As mentioned, this tool focuses only on the



computer and information science domains and related areas. To
be expected, it does not work well with our cross-disciplinary col-
lection and significantly underperforms Enlil in three of our cross-
disciplinary datasets while performing equivalently only on the cor-
pus of documents from the Formal domain.

We first review the results of the evaluation, examining each
dataset in turn, to answer our evaluation Q1. We answer Q2–4 in
the discussion immediately following.

Q1 (Performance vs. Baseline) – ACM Corpus. The eval-
uation results of the ACM Corpus show large improvements of
Enlil over the current state-of-the-art SVM Header Parser in both
author extraction and affiliation matching (Table 3). In relaxed
mode, F1 scores increase by 9.9% and 9.7% in these two exper-
iments, respectively. When comparing two systems, both Enlil and
SVM Header Parser can process PDF documents. However, SVM
Header Parser only focuses on the textual content, while Enlil also
accounts for the document’s spatial layout and font information.
Because of this loss of fidelity in its input representation, SVM
Header Parser encounters some issues that do not occur in Enlil;
for example, chunk identification in space-separated names, as il-
lustrated by Figure 4.

ACL Anthology. Both the ACM Corpus and the ACL Anthol-
ogy contain computer science research papers in well-defined tem-
plates so we had expected their evaluation results to be very similar.
However, Table 3 shows that the affiliation matching performance
of both systems drop noticeably in the ACL Anthology corpus. We
believe two reasons are responsible for the drop. First, as we only
sample a small number of documents from the ACL Anthology,
failing to match authors and affiliations correctly in some docu-
ments greatly affect F1. In order to get a better approximation,
we need to build the gold standard for a larger number of docu-
ments; however, this task requires manual annotation, effort that
we preferentially allocated to the cross-disciplinary dataset. Sec-
ond, a number of the ACL Anthology articles are older records
(dating from the 1970s and 80s, before digital desktop publishing),
published with different layout formats. This is in contrast to the
ACM Corpus whose papers are largely contemporary. These legacy
documents are an important factor that reduces the performance of
both Enlil and SVM Header Parser.

Cross Disciplinary Corpus. Table 4 shows the affiliation match-
ing performance with the cross disciplinary corpus. Detailed, per-
task performance for Enlil is detailed in Tables 5 and 6. Gener-
ally we can see that performance in terms of F1 measure for both
tasks is in the upper 80s for both tasks when the full automated
pipeline is used. Extraction performance betters matching perfor-
mance slightly as correct matching is preconditioned on correct
extraction. In addition, invalid correspondence markers affect the
matching result even though the extraction might be correct. Al-
though the extraction of affiliation is much harder than author ex-

Figure 6: Examples of incorrect classifications by the second
stage of preprocessing by Sectlabel, in which an Editor line is
misclassified as Author, and a part of an institution is misclassi-
fied as Footnote.

traction due to its complex structure – for example some may use
Department, School, Address, while others use Institute – name
canonicalization is beyond the scope of the current work. Thus,
there is little difference in performance between author and affilia-
tion extraction in Enlil.

Q2 (Domain Sensitivity). To answer the second question, we
analyse the evaluation results of Enlil on different domains in Ta-
ble 4. In general, the performance drops noticeably in the Nature
and Social subsets. This indicates that the current models of Enlil
fail to recognize some paper formats in these categories. This is a
common problem of systems employing statistical learning meth-
ods when encountering new types of input data. We try to alleviate
this by collecting training data from many major publishers, such
as Elsevier or Springer. Their articles not only have well-defined
structure and conform to a limited number of templates but also
cover multiple scientific disciplines. The result is that Enlil can
handle cross-disciplinary papers better than SVM Header Parser.
In SVM Header Parser, there are large gaps between the Formal
and other subsets. In our experiments, it always achieves the best
performance in the Formal subset because its training data con-
tained mostly computing-related papers which are most similar to
this subset (Table 2). The t–test result in Table 4 supports this
finding, showing significant differences between Enlil and SVM
Header Parser in Applied, Nature, and Social datasets (p < 0.01).

Q3 (Clean vs. Noisy). We observe that cascading errors from
OmniPage and SectLabel do significantly affect performance. When
we remove these errors in the Clean dataset (Table 4), the average
performance increases significantly (p « 0.01 ) with gain of 10.3%
for exact match and 9.7% under the relaxed match scheme. These
values indicate that there is significant difference in Enlil’s perfor-
mance when the dataset is clean than when it is not, and that proper
clean input is important to ensure optimum performance. As in
many other cases, the main difficulty comes from the fact that such
tools also need to deal with a variety of input forms from various
disciplines.

In particular, the effects of three minor types of error are alle-
viated when our system is in relaxed mode: 1) incorrect character
recognition caused by OCR, 2) missing words in affiliations ex-
tracted by the SectLabel line classifier, and 3) occurrences of mixed
use of both full and short names in a document. In Table 4, the aver-
age difference between two matching modes in Full dataset (3.4%)
is slightly larger than this number in the Clean dataset (2.5%), be-
cause the first two errors are removed in the second dataset and only
the third type remains (interleaved full/short names). This kind of
mixture deserves special care as it affects our system in two ways:
First, when the full name and the short name of the same author
are stored as different entities, it reduces the system’s precision.
This is ignored in relaxed mode where all names are converted to a
standard form, first initial, middle initial, and last name. However,
the second effect, caused by the different positions of the full name
and the short name within the document, still remain. Our system
uses various types of distances between the author’s name and the
affiliation as features, and the correct affiliation is likely to be the
nearest one. So, an author may be associated with incorrect affilia-
tions because the nearest ones are usually not the same with respect
to the locations of his full name and short name.

With respect to clean input, we would like to highlight two other
systematic errors that are intrinsic to Enlil. First, when lines con-
tain author or affiliation data but co-occur with other metadata (e.g.,
authors or email addresses concatenated with institution names),
Enlil’s extraction CRF may fail to correctly identify the data and
discard the noise. Although we try to remove redundant parts of a
line in pre-processing using regular expressions, this does not filter



Table 3: Performance comparison between Enlil and SVM Header Parser (SHP) on the ACM and ACL datasets. Double asterisks
(**) indicates that F1 performance was significantly better than SHP (p < 0.01).

Experiment Corpus Mode Enlil SVM Header Parser
Precision Recall F1 Precision Recall F1

ACM Exact 95.7 93.5 94.6** 84.1 73.5 78.4
Author Relaxed 97.9 95.5 96.7** 93.2 81.3 86.8
Name ACL Exact 93.4 90.1 91.8** 84.8 72.7 78.3
Extraction Relaxed 94.7 91.3 92.9** 92.2 79.1 85.1

ACM Exact 89.6 88.2 88.9** 78.8 68.8 73.5
Affiliation Relaxed 91.4 89.9 90.6** 87.0 75.7 80.9
matching ACL Exact 84.5 82.8 83.6** 74.2 62.9 68.1

Relaxed 85.7 84.0 84.8** 79.3 67.2 72.7

Table 4: Enlil’s affiliation matching comparison between Enlil and SHP on the cross-domain full and clean datasets. Exact match
results shown, with relaxed matching results shown in parentheses. Significant improvement in Enlil between the full and clean
datasets denoted by “*” (p < 0.05) and “**” (p < 0.01). “†” indicates significance (p < 0.01) of Enlil’s performance over SHP.

Dataset Branch Enlil SVM Header Parser
Precision Recall F1 Precision Recall F1

Full

Applied 86.3 (89.7) 89.7 (90.9) 87.9 (90.3)† 38.1 (46.3) 7.99 (9.63) 13.2 (15.9)
Formal 87.8 (90.1) 87.9 (89.5) 87.9 (89.8)† 57.6 (62.6) 41.1 (44.5) 47.9 (52.0)
Natural 80.1 (80.7) 81.2 (81.8) 80.7 (81.3)† 55.7 (56.7) 28.3 (28.8) 37.5 (38.2)
Social 70.4 (81.4) 83.4 (92.7) 76.3 (86.7)† 37.4 (44.9) 26.7 (32.1) 31.2 (37.4)
Average 81.6 (85.5) 85.6 (88.7) 83.6 (87.0)† 47.2 (52.6) 26.0 (28.8) 32.5 (35.9)

Clean

Applied 95.9 (96.8) 98.1 97.0 (97.4)**† 41.3 (44.4) 12.1 (13.1) 18.8 (20.2)
Formal 95.6 (95.6) 97.3 96.4 (96.4)**† 63.9 (68.6) 51.9 (55.7) 57.3 (61.5)
Natural 95.4 (96.7) 96.7 (97.4) 96.1 (97.0)**† 47.1 (50.6) 26.5 (28.5) 33.9 (36.5)
Social 80.4 (92.3) 90.9 (97.0) 85.3 (94.6)*† 38.7 (44.0) 29.3 (33.3) 33.3 (37.9)
Average 92.0 (95.4) 95.9 (97.5) 93.9 (96.4)**† 47.8 (51.9) 29.9 (32.6) 35.8 (38.8)

Table 5: Author extraction comparison between the cross-
domain full and clean dataset. Exact match results shown, with
relaxed results in parentheses when different. Significant im-
provement denoted by “*” (p < 0.05) and “**” (p < 0.01).

Dataset Branch Precision Recall F1

Full

Applied 81.9 (85.7) 95.9 (96.4) 88.3 (90.7)
Formal 89.5 (94.1) 94.0 (94.6) 91.7 (94.3)
Natural 85.5 (86.4) 94.6 (95.1) 89.8 (90.5)
Social 73.8 (85.3) 95.3 (97.4) 83.2 (90.9)
Average 82.7 (87.9) 95.0 (95.9) 88.4 (91.6)

Clean

Applied 97.5 (99.5) 100.0 98.8 (99.7)**
Formal 96.4 100.0 98.1 **
Natural 94.8 (96.7) 99.3 97.0 (97.9)**
Social 80.5 (93.1) 100.0 89.2 (96.4)*
Average 92.3 (96.4) 99.8 95.8 (98.0)**

Table 6: Institution name extraction comparison between the
cross-domain full and clean dataset, using exact match. Re-
laxed results are identical. Significant improvement denoted
by “*” (p < 0.05) and “**” (p < 0.01).

Dataset Branch Precision Recall F1

Full

Applied 88.2 95.7 91.8
Formal 90.6 89.7 90.2
Natural 87.8 87.9 87.9
Social 80.9 93.2 86.6
Average 86.8 91.7 89.2

Clean

Applied 96.1 99.0 97.5**
Formal 98.7 97.4 98.1*
Natural 96.7 98.9 97.8**
Social 87.8 95.2 91.3
Average 94.8 97.6 96.2**

all of the noise. To address this, the CRF also needs to be trained to
handle noisy input. As our current feature set caters only to charac-

Table 7: Effect of different feature sets – (Log)ical distance,
(Euc)lidean distance and (Sig)nal symbol – on the Full and
Clean dataset. Exact match results shown, with relaxed match-
ing results shown in parentheses when different. “**” show
significant differences from the ’All’ feature set (p < 0.01).

Data-
Branch

Features
set Log+Euc** Sig+Log** Sig+Euc All

Full

Applied 49.4 (51.2) 82.4 (83.6) 86.9 (89.2) 87.9 (90.3)
Formal 73.1 (74.9) 68.0 (68.1) 87.9 (89.8) 87.9 (89.8)
Natural 48.8 (58.9) 73.9 (74.3) 79.3 (79.6) 80.7 (81.3)
Social 58.7 (68.9) 66.7 (68.4) 75.3 (85.5) 76.3 (86.7)

Average 57.5 (63.5) 72.8 (73.6) 82.4 (86.0) 83.6 (87.0)

Clean

Applied 57.2 (58.5) 85.9 (86.4) 96.8 (97.2) 97.0 (97.4)
Formal 78.7 71.6 96.4 96.4
Natural 58.0 (58.9) 85.4 95.4 (96.4) 96.1 (97.0)
Social 65.1 (73.3) 67.4 (69.8) 83.6 (92.2) 85.3 (94.6)

Average 64.8 (67.4) 77.6 (78.3) 93.0 (95.6) 93.9 (96.4)

terize names, separators and markers, further work needs to encode
features dedicated to marking such noise. A second error happens
when the relationship between an author and his affiliations is ex-
pressed in the prose content, rather than relying on visual or spatial
effects or stylistic conventions. Figure 7 shows an example of such
error. Solving this problem requires understanding its content, be-
yond the scope of the current work.

Q4 (Effectiveness of different features). As our contribution
is primarily with using logical structure, we focus our discussion
on the effectiveness of the layout features proposed for use in the
author–affiliation matching task. In Enlil, we use a set of three
features – signal symbol, logical distance and Euclidean distance –
in the SVM model. We compare their effects in Table 7 by carrying
out feature ablation testing.

It is clear that the signal symbol is the most important feature in
both exact mode and relaxed mode. On average, the removal of this
feature causes significant drop (p < 0.01) in Enlil’s performance –



Figure 7: A complex scenario when Enlil fails.

Figure 8: Enlil’s exact match performance on the Full dataset,
broken down by number of authors per paper. The dark line
shows the number of papers represented by it (for e.g., in the
leftmost cluster the F1 score of .72 is the averaged performance
of Enlil on 163 singly-authored papers).

26.1% in exact mode and 23.5% in relaxed mode – compared with
the full feature set. These differences reflect the common use of
correspondence markers in scholarly documents.

The second most important feature is the Euclidean distance be-
tween authors and affiliations. Its effect is less than that of signal
symbol but still important. Enlil’s performance decreases by 10.8%
(p < 0.01) and 13.4% (p < 0.01) on average in exact and relaxed
modes respectively. In some specific domains, such as Formal and
Social, the effect of Euclidean distance may even outweigh the im-
portance of signal symbol. We conjecture that in domains where the
number of authors per publication is small, affiliations can be juxta-
posed with authors’ name. In such cases, correspondence markers
are unnecessary and can be dismissed, which reduces the effect of
signal symbol feature. The average numbers of authors per publica-
tion from Social and Formal domain are 2.35 and 2.60 respectively,
which are smaller than the value of Applied domain (4.40) and Nat-
ural domain (4.07). This evidence strengthens our conclusion.

Logical distance is the feature which has the least significant
(p > 0.05) effect on performance. In all cases, the performance gain
of this feature is very small (from 1.0% to 1.2%). It is interesting
to note that this feature is the only feature that can be obtained re-
liably from raw text – the other two are only available in rich text
formats that encode layout information. This result implies that raw
text input (provided by text extraction software e.g. PDFBox) will
likely be problematic for any solution looking to perform author–
affiliation matching.

Given that one of ten authors/institutions are incorrectly extracted
and one in fifteen affiliations are incorrectly matched by Enlil, is
this performance sufficient to support downstream analytics? We
think the answer is yes. Extraction and matching failures happen
in specific papers, and as such, errors are not uniformly distributed.
Documents that do not follow regular conventions (e.g., Figure 7)
will generate low-confidence results, and should be easy to detect.
We note that problems also occur more frequently on scholarly
documents with many authors and institutions (Figure 8), as these
demonstrate more exceptions than documents with few authors.

Figure 9: The same co-author network as in Figure 1 where
the affiliation data is provided automatically by Enlil, compiled
from freely-available publications. The circled group indicates
a discrepancy in comparison to the ground truth in Figure 1.

5. APPLICATIONS
Enlil has proven immediately useful in several scholarly anal-

yses. Our umbrella project (from which Enlil’s development was
funded) aimed to define Asia via natural scholarly collaboration
patterns rather than by geopolitical boundaries. By associating
scholars to their institutions and countries via Enlil, we have de-
veloped novel metrics that discover nascent collaboration trends,
and uncover institutions/countries that facilitate collaborations be-
tween other researchers (rather than direct publications) [6]. Cho et
al. [5] used Enlil’s author-affiliation output to aggregate the micro-
patterns of collaboration among authors to macro-patterns of col-
laboration among Asian countries. As an example, Figure 9 shows
the same network as the manually constructed version in Figure 1,
but the latter uses data automatically acquired by Enlil. In this ex-
ample, Enlil fails to process a publication of authors in a single
marked group. Hence, all of them are assumed to have different
affiliations. The rest of the network remains almost the same with
only minor changes between closely related authors.

We also have created a public website9 that allows students and
laymen to perform their own scholarly network analyses through a
simple four-step serial workflow. In the website, Enlil is a primary
component on the backend pipeline processing. Users first input
some seed authors of interest. They are then presented with a set of
results harvested from Google Scholar, with which they can refine
and visualize the resultant co-authorship network. The site allows
the visualization of the network over time, showing how collabora-
tions and network/citation metrics evolve. Previous scientometric
work (e.g., [1]) has largely been the province of experts working
with clean and costly data sources (such as Thomson Reuters’ Web
of Science). Our work in integrating Enlil into such a web-based
frontend shows that such knowledge management tasks can now be
relatively cost-free and taken back by citizen science.

We are currently using Enlil for tracking the migration of re-
search networks. Based on publication co-authors and institutions,
a researcher’s changing institutional affiliations and collaborative
network can be traced over time. This information can be used to
construct large-scale patterns in the migration of research networks
to elucidate the shifting centers of intellectual labor (Luukkonen
et al. [23], Glanzel et al. [13]). Such information is vital for pol-
icy makers, economists, and social scientists to gauge how well
investments into research capital and Big Science facilities have
translated into the production of innovation hubs.

9http://www.huluppu.net/



6. CONCLUSIONS
We have studied the extraction of author-affiliation relationship

in scholarly documents and introduced Enlil, a complete system for
matching authors and affiliations from publications in PDF format.
Our system employs both sequence and pointwise machine learn-
ing models (CRF and SVM) to outperform the previous state-of-
the-art in author/affiliation extraction and matching. The features
in our system are also carefully selected and analyzed to make bet-
ter use of the layout information in rich text documents.

Our evaluation over three datasets assessed Enlil’s performance
in breadth as well as depth. For computer science articles, Enlil
significantly outperforms prior work by almost 10% in F measure.
Enlil’s performance gain widens when tested with articles repre-
senting a variety of domains. Analysis shows that Enlil’s combined
representation of both spatial and logical document structure signif-
icantly aids its performance, validating work [22] arguing in favor
of rich document representations for document analysis input.

Enlil is but one component of a digital library and knowledge
managment solution for scholarly publications. We have used Enlil
in our various scientometric projects of which we have highlighted
the PASNP case study. It has shown its value in creating network
analyses in a simple and less costly manner than previous work that
required clean, publisher-provisioned metadata and expert knowl-
edge.
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