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ABSTRACT
We present a new algorithm to measure domain-specific read-
ability. It iteratively computes the readability of domain-
specific resources based on the difficulty of domain-specific
concepts and vice versa, in a style reminiscent of other bi-
partite graph algorithms such as Hyperlink-Induced Topic
Search (HITS) and the Stochastic Approach for Link-Structure
Analysis (SALSA). While simple, our algorithm outperforms
standard heuristic measures and remains competitive among
supervised-learning approaches. Moreover, it is less domain-
dependent and portable across domains as it does not rely
on an annotated corpus or expensive expert knowledge that
supervised or domain-specific methods require.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval; J.2 [Computer
Applications]: Physical Sciences and Engineering

General Terms
Algorithm, Measurement

Keywords
Readability Measure, Iterative Computation, Domain-Specific
Information Retrieval, Graph-based Algorithm

1. INTRODUCTION
The collections of domain-specific (e.g., math and medi-

cal) resources available online have grown substantially over
the years. Nowadays, there are not only large commercial
web sites, such as paper databases and encyclopedias, but
also millions of smaller web sites devoted to discuss domain-
specific topics and/or their related resources [27]. As such,
more people have incorporated internet search as part of
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their information seeking process for information and re-
sources in a specific domain. For example, there are stu-
dents looking for the definition of a math concept, professors
searching for academic articles, patients trying to find health
information and nurses seeking for evidence to support their
practices. While these information needs can be satisfied
by the resources, the process itself can be challenging. The
main reason behind is that domain-specific resources tar-
get varying audiences, giving lexical evidence to distinguish
different levels. For example, modular arithmetics can be
explained in the context of ring theory or disguised as clock
arithmetic, while the terminology used to describe symp-
toms of bird flu can be much more technical in a research
article than a health information webpage meant to be ac-
cessible to laymen. However, most common search engines
do not provide any indication of readability for the search re-
sults or allow for readability-based ranking. As a result, even
though there are many relevant documents in the search re-
sults, users still spend a lot of time figuring out which ones
are suitable to their level. This is especially true for the
medical domain where the majority of health information
are too difficult for the patients [9].

The key to the solution of this problem is an accurate
readability measure for domain-specific resources. Although
there are already quite a number of heuristic readability
measures and supervised-learning approaches for readabil-
ity measurement, they employ only generic text features,
such as average length of words, part-of-speech and dis-
course relations. As a result, they are largely ignorant of the
domain-specific elements (i.e., concepts) present in domain
resources and thus unable to measure their readability ac-
curately. This is compounded by the fact that constructing
the annotated corpus required for supervised approaches can
be costly as well. In contrast, current domain-specific read-
ability measures attempt to handle domain-specific concepts
but largely with hand-built expert knowledge. For example,
they use annotated familiarity scores to approximate diffi-
culty or ontologies to obtain the genericness and associations
of the domain-specific concepts. Despite the improvement
on accuracy over the heuristic and supervised approaches,
the major caveat is that such expert knowledge is still ex-
pensive and not easily available in most domains.

In this paper, we propose an algorithm for domain-specific
readability computation which does not require an anno-
tated corpus or expensive expert knowledge1. Our approach

1This work was partially supported by a National Research
Foundation grant “Interactive Media Search” (grant R252-
000-325-279).



is an iterative computation on a resource-concept graph based
on the intuition that the readability of the domain-specific
resources and the difficulty of domain-specific concepts pro-
vide accurate estimations of each other. Our evaluation has
shown that this algorithm outperforms heuristic-based mea-
sures, remains competitive even among supervised-learning
approaches, and is portable across domains.

The rest of the paper is organized as follows. We first re-
view the relevant literature on readability research in Section
2. Then we describe our intuitions and the resulted itera-
tive computation algorithm for domain-specific readability
in Section 3. We evaluate our approach in the domain of
math and medicine in Section 4 and discuss the directions for
future research in Section 5. Lastly, we relate our algorithm
to several graph-based iterative computation algorithms in
Section 6 and make our conclusion in Section 7.

2. REVIEW OF READABILITY RESEARCH
Readability measures indicate how difficult it is to under-

stand a piece of text. Therefore, they are commonly used by
educators to select appropriate materials for the target audi-
ence. Although they have been applied in many different do-
mains such as education, military and law, they are mostly
generic, i.e., without the flexibility to allow them to han-
dle the special elements in any domain. Only recently have
researchers started working on domain-specific readability
measures. In the following sections, we first review two
major classes of generic readability measures: the heuristic-
based measures and the supervised-learning approaches, and
then move on to the domain-specific ones.

2.1 Heuristic Readability Measures
According to a comprehensive review on classic readability

studies [6], heuristic readability measures were first devised
in the 1920s to facilitate the selection of textbooks. They
are usually expressed as a weighted sum of the values of
some features extracted from a piece of text. The features
extracted are the ones that correlate well with readability
while their weights are computed by linear regression.

Among all the text features, word features are consid-
ered as the strongest predictor. As early as 1923, Live
and Pressey [18] already demonstrated that the median fre-
quency of the words in a document correlated well with read-
ability. Since then, word features have always been a staple
in heuristic readability measures. For example, Vogel and
Washburne [24] used the number of different words and the
number of uncommon words, while Gray and Leary [10] em-
ployed the number of different unfamiliar words.

Other features have been considered as well: Vogel and
Washburne [24] also examined five other classes of features,
including sentence structure, part of speech, paragraph con-
struction (e.g., the number of sentences), general structure
(e.g., the number of lines in a book) and physical makeup
(e.g., weight and size of type). However, among these fea-
tures, only the number of prepositions and number of simple
sentences were found useful. Gary and Leary [10] further ex-
panded the exploration of features by examining 64 count-
able variables in four categories: content, style, format and
features of organization. They identified average sentence
length, number of pronouns and number of prepositional
phrases as useful in addition to word features.

In 1948, two most succinct yet reliable readability mea-
sures were devised: the Flesch-Kincaid Reading Ease (FKRE)

formula [8] and the Dale-Chall readability formula [5]. Both
consist of one sentence feature and one word feature. They
share the average sentence length as the sentence feature
but use the average number of syllables per word and the
percentage of words out of a predefined list of 3,000 easy
words respectively as the word feature.

Most of the readability formulas that come afterwards
only simplify the computation process. For example, the
Automated Readability Index (ARI) [14] and Coleman-Liau
Index [3] count the characters in a word instead of the sylla-
bles, while Simple Measure of Gobbledygook (SMOG) [19]
uses the number of polysyllable (i.e., more than three sylla-
bles) words as the only feature. Therefore, up to today, the
FKRE and Dale-Chall formulas still stand as the state-of-
the-art heuristic readability measures.

Although heuristic readability measures provide a quick
and indicative way to compute readability, they use only a
small number of features to summarize the characteristics of
a piece of text. This is often an oversimplification, as much
information, such as the identity of the individual words and
the knowledge encoded in the text, is lost in the process.

2.2 Supervised Learning Approaches
From the perspective of supervised learning, readability

measurement can be viewed as a classification problem. For
this method, one needs to first define a set of labels repre-
senting different levels of readability and use them to anno-
tate a corpus of text documents as the training data. Once
collected, features can be extracted from the training data
to build a model that captures the relationship between the
features and the labels. Then the resulted model can be
used to predict the label of an unseen document based on
its extracted features. The readability of this document is
the readability level represented by the label.

Under this framework, many researchers have re-examined
the utility of most text features. Starting from word fea-
tures, Collins-Thompson and Callan [4] construct one un-
igram language model for each of the 12 American grade
levels based on a corpus of webpages with grade-level anno-
tations. These language models capture the probability of a
word occurring in the document of a certain grade level.
The readability of a new document is then predicted by
finding the language model that most likely generates all
the words in it. Their evaluation shows that this approach
outperforms the traditional reading measure on webpages.
Similarly, Leroy et al. [17] has adopted this approach in
classifying the readability of health information into three
levels (basic, intermediate and advanced), achieving a high
accuracy of 98%. Further along this line, Schwarm and Os-
tendorf [22] explore the effect of using higher order n-gram
models (up to trigram) on classification performance and
show that it helps to minimize error rates.

Besides using higher order n-gram models, Schwarm and
Ostendorf [22] also attempt to combine word features with
other text features. They first compute the perplexity scores
which indicate how well the language model of the document
to be classified matches with the ones of the 12 grade lev-
els. These perplexity scores are then used as the feature
set of an Support Vector Machine (SVM) classifier together
with other text features, such as FKRE score and out of
vocabulary rate scores, as well as four parse features, such
as average parse tree height and average number of noun
phrases. Although the set of non-word features considered



is not large, this classifier is able to further minimize the
error rates compared to the one based on trigrams.

An alternative approach to combine different types of fea-
tures is to train one classifier for each type and then fuse
their predictions. For example, Heilman et al. [12] extend
the work of Collins-Thompson and Callan’s [4] by introduc-
ing a k-Nearest Neighbour (kNN) classifier on grammatical
features such as the sentence length and the patterns of the
parse tree. The predictions from the kNN classifier are in-
terpolated with the ones from the SVM classifier to produce
a final prediction, which is better than using either one of
the classifiers alone.

Most recently, Pitler and Nenkova [21] examine by far the
largest set of textual features. Their feature set includes
word (unigram language model), syntactic (identical to the
parse features in Schwarm and Ostendorf’s work [22]), lex-
ical cohesion (e.g., average cosine similarity between sen-
tences), entity coherence (e.g., the transition probability of
an entity from being the subject in one sentence to the
object in the next) and discourse relations (i.e., language
model over discourse relations instead of words). Their re-
sult shows that word features and average sentence length
are strong predictors but the strongest ones are discourse
features. Moreover, there is also a complex interplay be-
tween different types of features. While successful, their
study is a proof-of-concept; they acknowledge that auto-
matic extraction for such rich features does not yet exist.

Despite the fact that supervised learning approaches of-
fer better accuracy compared to heuristic measures, there
are still two main issues that limit their utility in domain-
specific readability measurement: First, all previous work
require an annotated corpus as the training data. This is
costly to construct for domain-specific resources, whose an-
notation can only be done by experts. Second, although
language modeling helps to generate useful word features, it
is largely ignorant of the domain-specific concepts. In other
words, it treats domain-specific concepts as a sequence of
tokens without considering their semantics or the relation-
ships among them. Therefore, it would not be as effective
for domain-specific readability measurement.

2.3 Domain-Specific Readability Measures
To reduce the need for a corpus and better handle domain-

specific concepts, domain-specific readability measures have
focused on identifying the difficulty of such concepts with ex-
pert knowledge. Depending on the type of expert knowledge
utilized, these measures can be classified into two categories:
wordlist-based and ontology-based approaches.

2.3.1 Wordlist-based Approaches
The wordlist-based approaches derive the conceptual dif-

ficulty of domain-specific concepts from domain wordlists.
For example, in the domain of consumer healthcare, Kim et
al. [13] use the average term and concept familiarity scores
from the Open Access and Collaborative Consumer Health
Vocabulary (OAC CHV) as the the difficulty of terms and
concepts. A distance score is computed based on how far
an unseen document differs from known document samples.
This score is combined with two other distance scores based
on text length and syntactic features to become the final
readability measure. This approach is able to correlate well
with the heuristic-based measures on most documents, while
correctly identifying the difficult documents which heuristic-

based measures miss. However, whether the familiarity fea-
tures work well compared to the other features is left unex-
amined in this study.

Borst et al. [1] associate the conceptual difficulty with
rarity. This is in turn estimated by the size of generic En-
glish wordlists (12,000 to 264,000) in which a medical term
appears. Their hypothesis is that the smaller the wordlist a
word appears in, the more common (and thus less difficult)
it is. The complexity of the words in a document is summa-
rized by their average complexity and combined with the av-
erage sentence length to produce a final score. An accuracy
of 92% is achieved when applied to the two case problem of
distinguishing documents targeted at non-experts from the
ones targeted at medical professionals.

2.3.2 Ontology-based Approaches
Different from the wordlist-based approaches, the ontology-

based approaches utilize an existing ontology of domain-
specific concepts to derive possible indicators for readability.
Yan et al. [26] introduce two additional components into the
Dale-Chall Readability formula for medical documents: doc-
ument scope and document cohesion. The document scope
is based on the scope of the medical terms in the document,
which is in turn defined as their depth in the Medical Sub-
ject Heading2 (MeSH) hierarchy. On the other hand, the
document cohesion measures the relatedness of the medi-
cal terms in a document. The more associations the terms
have in the ontology, the more cohesive a document is. The
combined formula is reported to be significantly better cor-
related with the readability of the medical documents, when
compared to heuristic readability measures.

In short, these measures address two issues of supervised
learning approaches: the need for a corpus and ignorance of
domain-specific concepts. However, they still require expert
knowledge and incur substantial labor cost in constructing
their annotated wordlist or ontology. These resources may
not be available for other domains. As a result, the applica-
bility of such methods remains limited.

2.4 Summary
The study in heuristic readability measures has identified

word difficulty and average sentence length as the two impor-
tant readability indicators among all the text features. This
is enhanced by the supervised learning approaches which
have enabled deeper text features to be extracted automati-
cally and combined with more sophisticated statistical mod-
els. In spite of the better accuracy achieved, they require
annotated domain-specific corpora and are largely ignorant
of the domain-specific concepts. Domain-specific readabil-
ity measures address the two issues by deriving information
from domain-specific concepts using expert knowledge; how-
ever, the cost and availability of expert knowledge still limit
the applicability of such approaches.

All previous works have refined generic readability mea-
sures to be sensitive to nuances within a domain by using
annotated resources. Is there a way to introduce domain-
specific readability without the use of expensive supervision?

Our method addresses this need. Similar to other domain-
specific measures, it derives further information (i.e., diffi-
culty) from a list of domain-specific concepts and it as a
indicator for readability. However, this is done without any
annotated corpus or expensive knowledge source. Therefore,

2http://www.nlm.nih.gov/mesh/



our approach is able to provide better readability estimation
for domain-specific resources compared to generic readabil-
ity measures, and, more importantly, can be ported across
a wide variety of domains.

3. METHODOLOGY
In a nutshell, our method first constructs a bipartite graph

with two sets of nodes representing domain-specific resources
and domain-specific concepts, respectively, and edges repre-
senting the occurrence of the latter in the former. Then we
iteratively compute 1) the readability score for a resource
node based on the difficulty scores of the adjacent concept
nodes, and 2) the difficulty score for a concept node based
on the readability scores of the adjacent resource nodes.

The required inputs for our algorithm are a list of domain-
specific concepts and a corpus of domain-specific resources.
A key distinction of our work from previous works is that
both do not need to be annotated – a flat list of concepts
and a corpus of resources is all that is required. Note that
“resources”here connote any textual resource (e.g., an schol-
arly article, webpage, formalized educational lesson module,
or a newspaper clipping), but in the context of this paper,
we occasionally use “webpages” or “documents” to stand in
for the more general notion of “resources”.

These are easy requirements to satisfy for most domains:
A list of domain-specific concepts is usually available in the
form of a domain-specific dictionary, encyclopedia, or the
index at the back of a textbook. Given such a list, a domain-
specific corpus can be constructed by downloading the top
N (e.g., 100) results of each of the listed concepts from a
search engine. Conversely, if a list of domain-specific con-
cepts cannot be found but there are existing collections of
domain-specific resources, such collections can be taken di-
rectly as the corpus while the list can be constructed by
extracting key phrases [25] or by simply listing all the noun
phrases from it. Lastly, if neither of them exists, one can
manually select a small number of domain-specific concepts
as a seed list, and then collect a corpus of domain-specific
webpages with the help a search engine. One can then iter-
atively expand them by extracting phrases from the corpus
to expand the list and then using the expanded list to collect
more webpages for the corpus.

In any case, the amount of expert knowledge needed (i.e.,
knowing whether a concept belongs to a specific domain) is
significantly less than the amount needed by other domain-
specific readability measures (i.e., understanding the con-
cepts sufficiently well to assign a score or construct an on-
tology out of them). Therefore, we consider our approach
to be less dependent on domain-specific knowledge sources
and more portable across domains.

We will first explain the intuition behind our method and
then describe the algorithm for the computation in detail.

3.1 The Intuition
Our method is based on a simple mutually recursive ob-

servation between domain-specific resources and concepts:

• A domain-specific resource A is less readable than an-
other domain-specific resource B if A contains more
difficult domain-specific concepts than B.

• A domain-specific concept A is more difficult than an-
other domain-specific concept B if A is mentioned in
less readable domain-specific resources than B.

This intuition helps us solve cases where the generic read-
ability measures lead to incorrect conclusions for the diffi-
culty of domain-specific concepts in isolation. For example,
let us say we need to determine whether a resource contain-
ing the concept ‘ring theory’ is less readable than another
one containing the concept ‘Pythagorean theorem’. If we
extract normal text features such as the average number of
syllabus or the percentage of familiar words, ‘Pythagorean
theorem’ would be incorrectly calculated as more difficult
than ‘ring theory’. However, if we examine a corpus of re-
sources containing these two words, we may discover that
‘ring theory’ also appears on less readable pages about ad-
vanced math concepts, such as ‘isomorphism theorem’ and
‘Abelian group’, whereas ‘Pythagorean theorem’ appears on
more readable pages about basic math concepts, such as ‘tri-
angle’ and ‘sine’. With this information, we can decide that
‘ring theory’ is more difficult than ‘Pythagorean theorem’
and infer that the resource containing ‘ring theory’ are less
readable than one containing ‘Pythagorean theorem’.

In this way, we can determine the relative readability of
domain-specific resources by the relative difficulty of the
domain-specific concepts they contain and vice versa. In
the web context, we use concepts as the context for assess-
ing resource readability, and webpages as the context for
assessing concept difficulty.

3.2 The Algorithm
We first construct a resource-concept graph. This graph

is bipartite, containing two types of nodes, one representing
concepts, the other representing resources. Edges are added
between a concept node and a resource node to represent the
occurrence of former on the latter. After constructing this
graph, we start the score computation by first assigning an
initial difficulty score to each concept node and a readability
score to each resource node. We can then iteratively update
the readability scores for the resources based on the difficulty
scores of the associated concepts (and vice versa) until the
termination condition is met. The final scores at the nodes
can be taken as the readability for resources and difficulty
for concepts. We describe the details of graph construction
and score computation in the following sections.

3.2.1 Graph Construction
Given a list of concepts and a collection of resources,

the first and most important step in constructing the page-
concept graph is to count the occurrences of the concepts in
the resources. To do so, we first index all the resources using
the open source text search engine Lucene3. We then use
each of the concepts as a query to retrieve a set of matching
resources. Lastly, we derive the number of occurrences from
the term frequency vectors of the retrieved resources.

With the occurrence statistics collected, the construction
of the graph is straightforward (Algorithm 1): we create a
representing concept node for each concept in the list (Lines
2-4) and a representing resource node for each resource in
the collection (Lines 5-7). We then add an edge between an
concept node and a resource node if the concept represented
by the former occurs on the resource represented by the
latter (Lines 8-11). This completes the construction of graph
and Fig.1 gives an example of a graph constructed based on
two resources and a list of concepts.

3http://lucene.apache.org/



Figure 1: Example of Graph Construction

Algorithm 1 constructGraph(concept− list, corpus)

1: initialize empty graph G
2: for all concept c in concept− list do
3: create a new concept node cNode representing c
4: add cNode to G
5: for all resource r in corpus do
6: create resource node rNode representing r
7: add rNode to G
8: for all resource node rNode in G do
9: for all concept node cNode in G do

10: if the concept c represented by cNode appears in
the resource r represented by rNode then

11: add edge (rNode, cNode) to G
12: return G

3.2.2 Score Computation
The score computation starts with an initialization step

(Algorithm 2). In this step, we assign an initial score to each
resource node (Lines 1-2), representing its readability, and
each concept node (Lines 3-10), representing its difficulty:

To initialize the score for a resource node, we choose to
use the FKRE formula as it is one of the classic, widely-used
heuristic readability formula as described in Section 2.1.

score(rNode) = 206.835−1.015∗avgSL(r)−84.6∗avgWL(r),

where avgSL(r) and avgWL(r) stand for the average sen-
tence length in words and the average word length in sylla-
bles of the resource r respectively [8].

For a concept node, we initialize its score as the average
readability of all the resources containing the concept.

score(cNode) =

∑
rNode∈Adj(cNode) score(rNode)

|Adj(cNode)| ,

Algorithm 2 initialize(G)

1: for all resource node rNode in G do
2: score(rNode) ← readability(r)
3: for all concept node cNode in G do
4: score(cNode) ← 0
5: counter ← 0
6: for all resource node rNode in G do
7: if edge (rNode, cNode) exists in G then
8: score(cNode) ← score(cNode) + score(rNode)
9: counter ← counter + 1

10: score(cNode) ← score(cNode)/counter

Algorithm 3 iterate(G)

1: for all node n in G do
2: newScore(n) ← 0
3: counter ← 0
4: for all node aNode in G do
5: if edge (n, aNode) exists in G then
6: newScore(n) ← newScore(n) + score(aNode)
7: counter ← counter + 1
8: newScore(n) ← newScore(n)/counter + score(n)

where Adj(cNode) stands for the collection of nodes adja-
cent to cNode.

We then proceed to the iterative computation step in
which the new score of each node is as the average of the
scores of the neighboring nodes plus its current score (Algo-
rithm 3):

newScore(n) =

∑
aNode∈Adj(n) score(aNode)

|Adj(n)| + score(n),

where Adj(n) stands for the collection of nodes adjacent to
the node n.

After each iteration, we check whether the termination
condition is met (Algorithm 4). This is done by computing
the change in the ranks of the resource nodes based on their
scores to see if it stabilizes. We take the square root of
the residual sum of squares (RSS) divided by the number
of nodes as a measure for the change. More specifically, the
change is computed using the following formula:

change =

√
(
∑

rNode∈G(newRank(rNode)− rank(rNode))2)

totalNumberOfRNodes
.

If the change in the ranks stabilizes (i.e., is smaller than
the threshold), the scores of the nodes will be updated a
final time as the new scores and the computation terminates;
otherwise, the update is followed by more iterations until
the termination condition is finally met. Upon termination,
the scores of the concept nodes and the resource nodes are,
respectively, the computed difficulty and readability scores.
Note that the values of the scores themselves are not of
import, but rather that the relative order between individual
concept or resource.

In the case where new resources and concepts are added
after the iterative computation is completed for the exist-
ing resource collection and concept list, we can update the
graph structure accordingly, initial the scores of the newly
added nodes as the average score of their adjacent nodes,
and then carry out further iterative computations on the



Algorithm 4 terminate(G)

1: change ← 0
2: counter ← 0
3: RSS ← 0
4: for all resource node rNode in G do
5: newRank(rNode) ← convert(newScore(rNode))
6: rank(rNode) ← convert(score(rNode))
7: RSS ← RSS + (newRank(rNode)− rank(rNode))2

8: counter ← counter + 1
9: change ← (RSS/counter)1/2

10: return (change < THRESHOLD)

updated graph until the termination condition is (again)
met. Alternatively, we may rerun the algorithm on the en-
larged resource collection and concept list. This should pro-
vide more accurate estimation especially when the number
of newly added resources and concepts is substantial.

There are already a number of well-established algorithms
in the web search domain for computing quality scores for
webpages such as PageRank, HITS, and SALSA. However,
as far as we know, our work is the first to apply this method-
ology for domain-specific readability measurement. We will
relate our approach to the the existing graph-based iterative
computation algorithms in Section 6.

4. EVALUATION
We have two specific goals we wish to achieve in evalu-

ating our algorithm. Our primary goal is to demonstrate
the efficacy of our approach and our secondary goal is to
demonstrate our technique’s domain independence.

To accomplish these two goals, we performed three sets of
experiments in two different domains. As our funded project
work centers on the domain of mathematics, we carried out
a set of experiments to measure the performance of our ap-
proach with a collection of math resources and concepts and
compared it to four different baselines. Second, since a truly
domain independent method should rely on as little domain-
specific resources and concepts as possible, we have also in-
vestigated into how many math resources and concepts our
method needs to achieve good performance. Last, we evalu-
ated the performance of our approach on medical documents
to show its portability across domains. We discuss these
evaluations in turn.

4.1 Experiment in the Math Domain
While our technique is minimally supervised, to properly

assess the results, we need to first compile a set of materials
that have gold-standard readability annotations. To ensure
fairness, we sought additional annotators for our main math-
ematics corpus. The resulting construction, annotation and
validation of the ground truth took 3 man-months. We feel
that this was a significant investment of resources and would
be a data bottleneck for other comparative work. As such,
to encourage comparative work, we have made the resulted
corpus and judgments available for download4.

We follow our own earlier recommendations in corpus col-
lection. We use a corpus of mathematically related webpages
extended from our earlier work [27] for the evaluation of our
algorithm. In total, we have chosen 27 common math con-
cepts from MathWorld encyclopedia, covering different as-

4http://wing.comp.nus.edu.sg/downloads#mwc

Table 1: Readability Scale for Webpages
Value Corresponding Education Background
1 Primary
2 Lower Secondary
3 Higher Secondary
4 Junior College (Basic)
5 Junior College (Advanced)
6 University (Basic)
7 University (Advanced)

pects of math, such as areas (e.g., “geometry” and “number
theory”), operations (e.g., “Fourier transform”), theorems
(e.g., “Pythagorean theorem”) and objects (e.g., “complex
number”). We chose them specifically to reflect the diver-
sity of concepts in math and ensure the webpages collected
cover a wide spectrum of readability.

For each chosen math concept, we performed a Google
web search and incorporated the first 100 results into our
corpus. To obtain the ground truth readability judgments
for evaluation, we asked 30 undergraduate students to anno-
tate the readability level for 120 randomly chosen, manually
segmented, math relevant webpages from our corpus. Other
dimensions of the webpages were also annotated, but the
discussion of these dimensions are out of the scope of this
study, and are not mentioned further. The details of the
readability levels used can be found in Table 1.

Subjects were first shown an annotation guide explaining
how to use our web-based annotation system and what the
readability levels are. After reading the guide, the subjects
annotated webpages by reading math webpages and select-
ing an appropriate readability level as shown in Fig. 2. Each
subject was asked to annotate 20 webpages in 45 minutes
and were given a token amount as appreciation for their ef-
forts. On average, each webpage was annotated by 5 to 8
subjects. We take the average annotated values to establish
the ground truth of readability.

Figure 2: Webpage Annotation Interface. Subjects
select a readability value for the webpage from the
drop-down menu at the annotation panel.

Before the experiment, we also needed to determine whether
manual readability annotation is indeed a feasible and repro-
ducible task. To do this, we assessed inter-annotator relia-
bility by first computing the pairwise inter-judge agreement
using Cohen’s Kappa coefficient [2]. Cohen’s Kappa mea-



sures the agreement between two annotators, accounting for
chance agreement. Its values range from 1.0 (complete corre-
lation/agreement) to -1.0 (complete disagreement/negative
correlation). A zero value indicates no correlation. The
average pairwise inter-judge agreement was .72, indicating
substantial agreement. We also applied Fleiss’ Kappa [7], a
multi-rater agreement measure, to calculate the agreement
among all the subjects. The result was similar (.73).

The measured agreement was substantial but not strong
(not above .8). We manually examined the annotations to
discover which labels were being confused. We observed that
although the subjects are able to determine what is read-
able and what not, the exact value annotated may still dif-
fer slightly between subjects. This is shown by the fact that
67% of the disagreed readability annotations had a standard
deviation of less than 0.5. To eliminate these small pertur-
bations, we applied Spearman’s rho [23], which converts the
values to rank order. The measured correlation is .93 (again,
read on a -1.0 to +1.0 scale). This indicates a strong corre-
lation for rank order and confirms our hypothesis that the
general order of readability can be reliably distinguished.

As readability measures were devised to facilitate material
selection, it is more important to be able to determine the
relative importance between pairs of documents rather than
assigning exact labels. Thus, we evaluate our approach by
the pairwise judgments accuracy. For each pair of webpages
in the collection, we examine their readability scores from
the subjects and those from our system. A pairwise judge-
ment is said to be correct if both scores agree on whether one
is more (or less) readable than the other. We ignored pairs
of annotated readability values whose difference are smaller
than a threshold (0.5) – we considered such pairs indistin-
guishable even by our subjects – and hence not suitable to be
included into evaluation. In total, there were 5,165 qualified
pairwise judgements for the annotated webpages.

4.1.1 General Evaluation
We ran our system with all the webpages in our corpus

and a list of math concepts compiled from MathWorld En-
cyclopedia. We present the pairwise judgment accuracy (as
well as the Spearman’s rho) of our system (denoted as IC)
and the four baselines in Table 2. The best performance of
our system after resource and concept selection (denoted as
ICS, to be introduced later in Section 4.1.2) is also shown.

The four baselines include one standard heuristic measure
(FKRE score) and three supervised learning approaches:
Näıve-Bayes (NB) classifier5, SVM classifier6 and Maximum
Entropy (Maxent) classifier7. The three classifiers are trained
on the annotated webpages and use only binary features in-
dicating whether a particular math concept appears on the
webpage. We intentionally limited these baseline classifiers
to use the same inputs as our IC method, as we are only
interested in how well they could make use of the concepts
to perform readability measurement. We also tried adding
discretized versions of average word length, average sentence
length and the FKRE score into the baselines’ feature sets,
but this did not manage to improve their performance. For
all the supervised learning approaches, 5-fold cross valida-
tion was performed to avoid overfitting.

5http://www.cs.waikato.ac.nz/ml/weka/
6http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
7http://maxent.sourceforge.net/

Table 2: Evaluation Results on Math Webpages
Pairwise Spearman

FKRE .72 .48
NB .72 .52
SVM .80 .70
Maxent .82 .67
IC .85 .72
ICS .87 .77

As can be seen from the table, FKRE showed a modest
amount of correlation (.72 on pairwise judgment accuracy
and .48 on Spearman’s rho). This is similar to the results
achieved by the NB classifier. In contrast, the two other
baselines, SVM and Maxent, performed significantly better,
scoring .80 and .82 on pairwise judgment accuracy and .70
and .67 on Spearman’s rho respectively. However, our ap-
proach still outperformed all the baselines with .85 and .72
on the two metrics.

We believe these results strongly validate our method and
address our first experimental goal. In order to verify the
second goal of domain-independence, we have also run an-
other set of experiments in the math domain to study how
our method’s performance varies when only a subset of the
webpages and concepts is given.

4.1.2 Evaluation with Selection Strategies
In this set of experiments, we use only a subset of math

webpages and concepts selected by four different selection
strategies: 1) selecting N webpages at random, 2) selecting
the top N webpages with the highest quality, as indicated
by their ranks in the search results from which they were
collected, 3) selecting N concepts at random, and 4) select-
ing the top N most important concepts as indicated by a
concept-based version of TF.IDF. The N mentioned in the
selection strategies is set to five different levels: 20%, 40%,
60%, 80% and 100%. The resulting performance of these
selection strategies are shown in Fig. 3-4.

Two points are noteworthy from the results: First, as
more webpages are selected, the performance of our system
improves. However, the initial performance and the rate of
improvement differ for the two page selection strategy. If
we choose the webpages at random, the initial performance
(N=20%) is much lower than the one achieved by choosing
the webpages by quality. In contrast, when webpages are
chosen by quality, the initial performance is only marginally
worse than the one achieved using all the webpages. This
shows that our method can work with a very small set of
webpages as long as they are of high quality.

Second, similar to the results on page selection strategies,
if concepts are chosen at random, increasing the number
of concepts helps to improve the performance. However,
if the concepts are chosen by importance, using only the
top 60% of the concepts in fact further boosts the perfor-
mance of our system. This indicates that the concepts with
low TF.IDF do not contribute positively to the performance
and should be removed from the graph using this selection
strategy. Therefore, we have also incorporated the concept
selection by TF.IDF into our system and denoted this im-
proved version as ICS. The resulting performance is further
improved to .87 and .77 on the two metrics as shown at the
last row of Table.2.



In summary, our approach is able to work with a small
set of domain-specific resources and concepts to achieve good
performance with simple, automatic selection strategies. There-
fore, it is highly portable to any domains even for the ones in
which it is difficult to collect a sizeable collection of domain-
specific resources or a list of domain-specific concepts.

Figure 3: Effects of Page Selection Strategy

Figure 4: Effects of Concept Selection Strategy

4.1.3 Error Analysis
While we are satisfied with our approach, a detailed error

analysis revealed two potential areas for improvement:
First, as we do not pre-process the webpages to iden-

tify the main content of the webpages, math concepts that
are presented as auxiliary information, such as navigational
links and advertisements, have added substantial noises to
the graph construction process. For example, the math con-
cept “number theory”happens to appear at the navigational
panel from MathWorld. Consequently, all the 39 MathWorld
pages in our corpus, which make up about 10 percent of the
pages containing the math concept, are included into the
difficulty computation for this concept and have adversely
affected the accuracy of our approach. Moreover, there are
also many webpages in our corpus whose main contents are
quite readable, but whose“related concepts”section contains
a large number of difficult math concepts (e.g., there is an
encyclopedic page on polynomial which lists more than 60
difficult concepts). In such cases, the computed readability
is artificially inflated. We believe that further pre-processing
to exclude certain sections of the webpages would signifi-
cantly reduce the number of errors.

Second, in the current formulation, all concepts on a page
are considered to be equal regardless of whether they are
only briefly mentioned or explained in detail. Ideally, if a
concept is only briefly mentioned, it should not be consid-
ered as very important for the page as well as in the readabil-
ity computation. If the relative importance of concepts on

Table 3: Evaluation Results on Medical Webpages
Pairwise Spearman

Heuristic .63 .28
NB .73 .53
SVM .82 .70
Maxent .76 .60
IC .72 .49
ICS .75 .54

a page can be determined, we can use a weighted average to
suppress the unimportant ones and obtain a more accurate
estimation of readability. We believe natural language anal-
ysis of the webpage would be needed to compute the relative
importance and determine the weights automatically.

4.2 Experiment in the Medical Domain
Our experiment in the medical domain also followed the

same general methodology. We first selected 27 medical con-
cepts of varying difficulty levels from MeSH, covering dif-
ferent aspects of medicine, such as diseases (e.g., cough),
injuries (e.g., bruise), substances (e.g., vitamin), symptoms
(e.g., snoring), therapies (e.g., blood transfusion) and pro-
cedures (e.g., bronchoscopy). For each of these concepts, we
then downloaded the top 100 search results and consolidated
the webpages for our medical corpus. Due to budgetary limi-
tations, this corpus was only manually annotated by the first
author. Readability values were annotated for a subset of
the corpus (946 pages) using the same labels.

4.2.1 General Evaluation
We ran our system with all the medical webpages and a

list of medical concepts compiled from MeSH. The results
are listed in Table 3. In this experiment, there are 320,976
pairwise judgments.

The performance of our approach for the medical domain
is modest in comparison to the math domain. On one hand,
our system still significantly outperformed the heuristic mea-
sures: pairwise judgement accuracy improves from .62 to .72
(.75 after concept selection, threshold = 40%) while Spear-
man’s rho increases from .28 to .49 (.54 after concept selec-
tion) (p < 0.001 for all cases). On the other hand, when com-
pared to the supervised classifiers, our approach achieved
similar results as the the NB classifier and Maxent classifier
but did not manage to outperform the SVM classifier. How-
ever, considering the fact that our approach did not have ac-
cess to the large amount (∼1000) of readability annotations
as the supervised classifiers did, we consider our approach
as performing reasonably well and believe that this test does
demonstrate its portability.

4.2.2 Error Analysis
As for the potential sources of errors, we observe that the

medical webpages contain more noise than the mathematical
ones. This is because health information webpages are of-
ten commercial in nature and contain many advertisements
which overwhelm the main content. In addition, they also
tend to include more related medical concepts in navigation
bars. For example, there is a webpage about snoring which
lists more than 100 medical concepts at its navigation bar
while its main content only contains less than 20. We be-
lieve this higher degree of noise is one of the factors that
compromise the performance of our system. Nevertheless,



this should be readily solvable if we apply pre-processing to
exclude certain sections beforehand.

Another factor that compromises our system is the more
limited spectrum of readability levels in the medical cor-
pus, in comparison to mathematics. Although we have in-
tentionally chosen concepts of different difficulty levels and
from different areas, medical concepts are inherently diffi-
cult. None of the webpages are targeted to primary school
students. This is rather different from the math scenario,
where we can easily find highly readable webpages full of
games and animations that explain easy math concepts to
younger audiences. Without such webpages, our algorithm
is limited in its ability to discern and boost basic readability
scores. This suggests that one can estimate the effectiveness
of our algorithm in a particular domain by measuring the
width of the readability spectrum. We hypothesize that the
wider the spectrum, the more effective our algorithm will
be. We plan to validate this hypothesis in future work.

5. DIRECTIONS FOR FUTURE RESEARCH
In addition to the ways to improve our algorithm as men-

tioned in Section 4.1.3 and 4.2.2, we also notice that there
are cases where it is insufficient to use a single value for
readability or difficulty for a concept. We believe this can
be solved by modeling difficulty and readability using prob-
ability distributions. For example, we may be able to derive
from the corpus that 70% of the pages related to the concept
“geometry” are highly readable (e.g., pages targeted at pri-
mary school students about simple geometric shapes), while
the other 30% are much less readable (e.g., pages targeted at
university students on differential geometry). Then we can
more accurately model the difficulty of “geometry” as 70%
easy and 30% difficult instead of using the average value.

Moreover, our current approach models only the relation
between one pair of attributes – difficulty and readability –
between domain-specific resources and domain-specific con-
cepts. However, there are still much more other correla-
tions between other pairs of attributes as we have observed
in our corpus. For example, books are commonly written
for generic topics (e.g., linear algebra). This is one of our
observed cases where the “type” of the resources can be in-
fluenced by the “genericity” of concepts.

In order to properly model these considerations, we are
developing a probabilistic framework with Bayesian Net-
works [11]. A Bayesian Network (BN) is a generic proba-
bilistic framework that has been widely used for inference
in many different domains. It is a directed acyclic graph
with nodes representing variables and edges encoding con-
ditional dependence. The algorithm discussed here is easily
incorporated into this framework when we consider the con-
structed graph as a two-layer (concept and resource layers)
BN and use parameter learning as the iterative computation
step. In addition, the BN’s probabilistic nature and gener-
icity would allow us to use probability distribution to model
any attributes and study their correlation easily.

6. RELATED GRAPH-BASED ITERATIVE
COMPUTATION ALGORITHMS

Our work is inspired by other successful iterative graph
algorithms which have made their impact in digital libraries.
We relate and contrast our approach to three of them: PageR-
ank, HITS and SALSA.

PageRank [20] is a link analysis algorithm based on the
intuition that the number of backlinks of a webpage is a
good indication of its popularity or importance. It works
on a graph which contains nodes representing webpages (or
publications or authors in a digital library) and the directed
edges representing the link from the source to the target
node (e.g., a hyperlink or citation). The score of a node
is computed as the probability of a random surfer visiting
the corresponding node by following the hyperlinks. This
algorithm has been very successful and widely used in do-
mains such as web searches and citation analysis. However,
in our problem, we need to model two types of objects, re-
sources and concepts, in the graph. Correspondingly, the
edges in our graph represent occurrences. Under our con-
struction, having more links means there is a resource that
has a higher number of different concepts or a concept that
has a higher domain frequency. Due to the fact that the
readability of a resource depends on the number of “diffi-
cult” concepts instead of the number of different concepts,
while the difficulty of a concept tends to be inversely cor-
related with its domain frequency, we believe that a direct
application of PageRank would not work for our problem.

HITS [15] is more similar to our algorithm compared to
PankRank in the sense that it also keeps track of two sepa-
rate hub and authority scores, using them to compute each
other iteratively. The main difference between HITS and
our approach is that we consider two types of objects and
attach the two difficulty and readability scores separately. In
addition, HITS constructs the graph online using a subset
of documents from the corpus retrieved by a query, whereas
our algorithm constructs the graph offline with all the doc-
uments in the collection.

SALSA [16] combines the strength of PageRank and HITS
by incorporating the backlink information into the hubs and
authority computation. However, the idea of using backlinks
as an indication of readability or difficulty does not make
much sense in our application.

7. CONCLUSION
We propose an iterative computation algorithm for domain-

specific readability measurement based on the intuition that
the readability of domain-specific resources and the diffi-
culty of domain-specific concepts can be recursively esti-
mated from each other.

As such, in our algorithm, we first construct a graph rep-
resenting the resources and concepts, and then iteratively
update 1) the readability score for a resource based on the
difficulty scores of the domain-specific concepts it contains
and 2) the difficulty score for a concept based on the read-
ability scores of the resources which it appears in.

Our approach improves the accuracy of readability mea-
surement over the standard heuristic measures and remains
competitive among supervised learning approaches in both
math and medical domain. Moreover, our approach only
requires a list of domain-specific concepts and a corpus of
domain-specific resources. These requirements are less strict
and less domain-dependent compared to both supervised
and domain-specific approaches which require an annotated
corpus or expensive expert knowledge. Therefore, we believe
that our approach is a simple yet effective and portable solu-
tion to measure the readability for domain-specific resources.

In the future, we plan to further improve our approach by
constructing a probabilistic framework to generically model



the attributes of the domain-specific resources and concepts
and the possible correlations between them.

Our research on readability is part of a long-term project
towards developing domain-specific search engines, specifi-
cally for the math and medical communities. We plan to
utilize such readability estimation techniques into appropri-
ate browse/search interfaces, such that users will be able
to locate domain-specific resources suitable to their level of
expertise quickly. This would help to validate the utility
of readability in domain-specific information retrieval and
bring real benefits to end users.
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A vocabulary-based näıve-bayes classifier and
readability formulas. Journal of the American Society
for Information Science and Technology, 2008.

[18] B. A. Lively and S. L. Pressey. A method for
measuring the ‘vocabulary burden’ of textbooks.
Educational Administration and Supervision,
9:389–398, 1923.

[19] H. G. McLaughlin. SMOG grading - a new readability
formula. Journal of Reading, 12(8):639–646, May 1969.

[20] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[21] E. Pitler and A. Nenkova. Revisiting readability: A
unified framework for predicting text quality. In
EMNLP, pages 186–195, 2008.

[22] S. E. Schwarm and M. Ostendorf. Reading level
assessment using support vector machines and
statistical language models. In ACL ’05, pages
523–530, 2005.

[23] C. Spearman. The proof and measurement of
association between two things. The American
Journal of Psychology, 100(3-4):441–471, 1987.

[24] M. Vogel and C. Washburne. An objective method of
determining grade placement of children’s reading
material. The Elementary School Journal, 28:373–381,
1928.

[25] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin,
and Craig. Kea: Practical automatic keyphrase
extraction. In ACM DL, pages 254–255, 1999.

[26] X. Yan, D. Song, and X. Li. Concept-based document
readability in domain specific information retrieval. In
CIKM ’06, pages 540–549. ACM, 2006.

[27] J. Zhao, M.-Y. Kan, and Y. L. Theng. Math
information retrieval: user requirements and prototype
implementation. In JCDL, pages 187–196, 2008.


