
Natural Language Engineering 1 (1): 1–35. Printed in the United Kingdom

c© 2012 Cambridge University Press

1

A PDTB-Styled End-to-End Discourse Parser

Z I H E N G L I N 1,2, H W E E T O U N G 1 , and M I N - Y E N K A N 1

1 Department of Computer Science, National University of Singapore
13 Computing Drive, Singapore 117417

email: {linzihen, nght, kanmy}@comp.nus.edu.sg
2 SAP Research, SAP Asia Pte Ltd

30 Pasir Panjang Road, Singapore 117440
email: ziheng.lin@sap.com

(Received 22 September 2011; revised 28 February 2012; revised 12 August 2012)

Abstract

Since the release of the large discourse-level annotation of the Penn Discourse Treebank (PDTB),
research work has been carried out on certain subtasks of this annotation, such as disambiguating
discourse connectives and classifying Explicit or Implicit relations. We see a need to construct a
full parser on top of these subtasks and propose a way to evaluate the parser. In this work, we
have designed and developed an end-to-end discourse parser to parse free texts in the PDTB style
in a fully data-driven approach. The parser consists of multiple components joined in a sequential
pipeline architecture, which includes a connective classifier, argument labeler, explicit classifier, non-
explicit classifier, and attribution span labeler. Our trained parser first identifies all discourse and non-
discourse relations, locates and labels their arguments, and then classifies the sense of the relation
between each pair of arguments. For the identified relations, the parser also determines the attribution
spans, if any, associated with them. We introduce novel approaches to locate and label arguments,
and to identify attribution spans. We also significantly improve on the current state-of-the-art con-
nective classifier. We propose and present a comprehensive evaluation from both component-wise
and error-cascading perspectives, in which we illustrate how each component performs in isolation,
as well as how the pipeline performs with errors propagated forward. The parser gives an overall
system F1 score of 46.80% for partial matching utilizing gold standard parses, and 38.18% with full
automation.

1 Introduction

A piece of text is often not to be understood individually, but understood by linking it
with other text units from its context. These units can be surrounding clauses, sentences,
or even paragraphs. A text span may connect to another span, because there is a causal
relation between them. Two text spans may also be connected when they contrast each
other. Such semantic relations are termed rhetorical or discourse relations. A text becomes
semantically well-structured and understandable when its individual text units relate to
each other to form connections that can be recognized as higher-level prose argumentation
and presentation structures.

However even when a text is well-structured, it is not a trivial task to automatically

2 Z. Lin et al.

derive the discourse relations that hold the text together. In natural language process-
ing (NLP), discourse parsing is the process of understanding the internal structure of a
text and identifying the discourse relations in between its text units. Over the last three
decades, researchers have proposed a number of discourse frameworks from different per-
spectives for the purpose of discourse analysis and parsing (Grosz and Sidner 1986; Mann
and Thompson 1988; Polanyi 1988; Hobbs 1990; Lascarides and Asher 1993; Knott and
Sanders 1998; Webber 2004; Wolf and Gibson 2005). However, designing and construct-
ing such a discourse parser has been a difficult task, partially attributable to the lack of
large-scale annotated data sets.

The Penn Discourse Treebank (PDTB) (Prasad et al. 2008) is a recently released,
discourse-level annotation aligned with the Penn Treebank (PTB) (Marcus et al. 1993),
which aims to fill this need. Providing a common platform for discourse researchers, it
is the first annotation framework that follows the lexically grounded, predicate-argument
approach, as proposed in Webber’s framework (2004). The PDTB provides annotations for
relations that are explicitly signaled by discourse connectives1 as well as implied relations,
the argument spans of each relation, the sense of each relation, and when present, their
attribution spans. The following annotation shows a Condition relation between the itali-
cized and bolded spans that is explicitly signaled by the connective “if”; the text span in
the box is an attribution span.

The Treasury said the U.S. will default on Nov. 9 if Congress doesn’t act by then.

The predicate of this relation is the explicit discourse connective “if”, and the two ar-
guments to the predicate are the spans in italics and in bold. An attribution is a relation
between an agent and the abstract object denoted by the discourse relation or an argument
of a discourse relation. In this example, “The Treasury said” is the agent of the attribution
that covers the entire relation.

Implicit relations capture discourse relations that are not explicitly signaled by discourse
connectives. The following example is an Implicit Contrast relation. Here, annotators in-
ferred a connective “however” which can be inserted in between these two sentences to
reflect the relation.

She was untrained and, in one botched job killed a client.
Her remorse was shallow and brief.

There are a number of challenges associated with discourse parsing in the PDTB. They
include identifying discourse connectives from non-discourse ones, labeling the argument
spans of the relations, classifying the relation senses of both Explicit and Implicit relations,
and labeling the attribution spans. All of these steps need to be tackled in order to build
a fully automatic, end-to-end discourse parser in the PDTB style. Since its release, much
research has been carried out on the subtasks of the PDTB, such as identifying discourse
connectives and classifying Explicit or Implicit relations. In this work, we:

• design a parsing algorithm that performs discourse parsing in the PDTB representa-
tion; and

1 In this article, discourse connectives refer to a subset of connectives that signals discourse rela-
tions.

A PDTB-Styled End-to-End Discourse Parser 3

• implement an end-to-end system that is based on this algorithm in a fully data-driven
approach.

This system includes novel components to locate and label arguments as well as improved
components from previous work. We also propose and present a comprehensive evaluation
on the parser from both component-wise and error-cascading perspectives. To the best of
our knowledge, this is the first parser that performs end-to-end discourse parsing in the
PDTB style. The demo and source code of the parser have been released online2 (Lin et al.
2010).

2 Related Work

Many discourse frameworks have been proposed in the literature of discourse modeling.
Among them, there are the cohesive devices described by Halliday and Hasan (1976),
Hobbs’ inventory of coherence relations based on abductive reasoning (Hobbs 1985), the
Rhetorical Structure Theory (RST) proposed by Mann and Thompson (1988), Grosz and
Sidner (1986)’s models which aim to associate speakers’ intentions with their focus of
attention in discourse, the Linguistic Discourse Model (LDM) proposed by (Polanyi and
Scha 1984; Scha and Polanyi 1988), the Lexicalized Tree Adjoining Grammar for Dis-
course (D-LTAG) by (Webber and Joshi 1998; Webber 2004; Forbes et al. 2003), the Seg-
mented Discourse Representation Theory (SDRT) by Asher and Lascarides (2003) which
provides a logically precise dynamic semantic interpretation, and the discourse model that
associates discourse relations in a graph structure (Wolf and Gibson 2005). In the fol-
lowing, we will review a number of automatic systems that are based on these discourse
frameworks. Readers are referred to (Webber et al. 2011) for a more complete review on
discourse frameworks, algorithms for discourse structures, and discourse applications in
language technology.

Mann and Thompson (1988) proposed Rhetorical Structure Theory (RST) which takes
a nucleus-satellite view on rhetorical relations, in which the satellite text span plays a
subordinate role to the main nucleus. RST defines a set of rhetorical relations as well
as discourse schemas for the structural constituency arrangements of text. As the RST
schemas are recursive, they enable the embedding of relations, leading to a tree structure of
the text. RST falls into the category that associates discourse relations with text structures.

Marcu (1997) formalized an algorithm to automatically parse an unrestricted text into its
discourse tree using the RST framework. He made use of cue phrases to split a sentence into
elementary discourse units (edus), designed algorithms that are able to recognize discourse
relations with or without the signals of cue phrases, and proposed four algorithms for
determining the valid discourse tree given the relations of adjacent edus.

Continuing in this vein, Soricut and Marcu (2003) introduced probabilistic models to
segment a sentence into edus, and to derive their corresponding sentence-level discourse
structure, using lexical and syntactic features. They experimented with their models using
the RST Discourse Treebank (RST-DT) corpus (Carlson et al. 2001), which is annotated in

2 http://wing.comp.nus.edu.sg/∼linzihen/parser/

4 Z. Lin et al.

the RST framework and covers a small subset of the Wall Street Journal (WSJ), comprising
385 texts.

Huong et al. (2004) divided the discourse parsing process into two steps: first, they
used syntactic information and cue phrases to segment sentences into edus and to gener-
ate discourse structures at sentence-level, and then generated text-level structure from the
sentence-level ones in a constrained, bottom-up manner. They experimented with the RST-
DT corpus and showed promising system performance on four different component tasks
of: 1) sentence-level edu segmentation, 2) sentence- and text-level relation connection of
text spans, 3) relation orientation (i.e., nucleus vs. satellite) and 4) relation sense classifica-
tion. In our system experiments, we also perform component-wise evaluations in a similar
fashion.

Recently, duVerle and Prendinger (2009) made use of a support vector machine (SVM)
approach, using a rich set of shallow lexical, syntactic, and structural features, to train two
separate classifiers on identifying the rhetorical structures and labeling the rhetorical roles
drawn from the RST-DT.

Wolf and Gibson (2005) proposed to use more complex discourse structures of chain
graphs to represent discourse relations. They released an annotation of 135 articles in a
corpus called Discourse Graphbank, which includes annotations for both Explicit and Im-
plicit relations.

Wellner et al. (2006) used multiple knowledge sources to produce syntactic and lexico-
semantic features, which were then used to automatically identify and classify Explicit and
Implicit discourse relations in the Discourse Graphbank. Their experiments show that dis-
course connectives and the distance between two text spans have the most impact, and that
event-based features also contribute to the performance. As they did not separate the ex-
perimental results for Explicit and Implicit relations, it is not possible to draw a conclusion
on the performance on classifying Implicit relations.

Baldridge and Lascarides (2005) proposed to represent the discourse structures of
SDRT (Asher and Lascarides 2003) in headed trees and model them with probabilistic
head-driven parsing techniques. They showed that dialogue-based features can improve
the models in both segmentation and relation recognition.

Subba and Di Eugenio (2009) presented a first-order learning approach to determine
rhetorical relations between discourse segments and a modified shift-reduce parsing algo-
rithm to build discourse parse trees. They showed improvements by exploiting composi-
tional semantics and segment discourse structure data.

Webber (2004) developed the Discourse Lexicalized Tree Adjoining Grammar (D-
LTAG) which associates discourse relations with lexical elements. In D-LTAG, discourse
relations are triggered by lexical elements (i.e., explicit or implicit discourse connectives),
focusing on low-level discourse structures and semantics of monologues.

The PDTB is the first annotation that follows the lexically grounded, predicate-argument
approach in the D-LTAG framework. The scope of the annotation is much larger in com-
parison with the RST-DT and the Discourse Graphbank, as it covers all Wall Street Journal
(WSJ) sections in the PTB. With the advent of the PDTB, some recent work has attempted
to recognize discourse connectives, relation senses, and argument spans in this newer cor-
pus. In a preliminary study, Miltsakaki et al. (2005) used syntactic features and a Maxi-
mum Entropy model to classify the relation senses of three explicit connectives – “since”,

A PDTB-Styled End-to-End Discourse Parser 5

“while”, and “when”. Using syntactic features extracted from the parse trees, Pitler and
Nenkova (2009) introduced a model that is able to disambiguate the discourse usage of
connectives and recognize Explicit relations. They extracted syntactic features from the
constituent parses with regard to the connectives, and showed that it significantly outper-
forms the baselines on a 10-fold cross validation.

Dinesh et al. (2005) observed the connection between the syntactic structures and the
annotation of argument spans for intra-sentential subordinating explicit connectives, and
proposed an automatic algorithm that applies parse tree subtraction to locate such argument
spans. Wellner and Pustejovsky (2007) and Wellner (2009) proposed machine learning
approaches to identify the head words of the two arguments for discourse connectives in the
PDTB. They utilized constituent features, dependency features, lexico-syntactic features,
as well as the connective and its contextual features. Elwell and Baldridge (2008) followed
this work with the use of general and connective-specific rankers and their combinations.
Although their method is capable of locating the positions of the arguments, it is not able to
label the span of these arguments. Prasad et al. (2010) proposed a set of heuristics to locate
the position of the Arg1 sentences for Explicit relations in cases that the two arguments are
not in the same sentence. Ghosh et al. (2011) designed the argument segmentation task for
Explicit relations as a token-level sequence labeling task using conditional random fields
(CRFs). They assumed gold standard discourse connectives and used a set of syntactic
features in two classifiers designed for the two arguments.

Machine learning approaches have been applied on the PDTB to identify Implicit re-
lations (i.e., discourse relations that are not signaled explicitly by discourse connectives
such as “because”) in Pitler et al. (2009) and our previous work (Lin et al. 2009). Pitler et
al. performed classification of Implicit discourse relations using several linguistically in-
formed features, such as word polarity, verb classes, and word pairs, showing an increase
in performance over a random classification baseline. Our classifier considers the context
of the two arguments, word pair information, as well as the arguments’ internal constituent
and dependency parses, and the results yield a significant improvement over the majority
baseline. Wang et al. (2010) subsequently employed the tree kernel and added temporal or-
dering information to automatically recognize and classify Explicit and Implicit discourse
relations. Zhou et al. (2010) used a language model to automatically generate implicit con-
nectives and presented two methods to use these connectives for recognition of Implicit
relations.

All of these research efforts on the PDTB can be viewed as isolated components of a
full parser. Our work differs from these prior efforts in that we design a parsing algorithm
that connects all of these subtasks into a single pipeline, and we implement this pipeline
into an end-to-end parser in the PDTB style. Our parser attempts to recognize explicit
discourse connectives, identify relation senses and argument spans for both explicit and
non-explicit relations, and recognize attribution spans for these relations. Component-wise,
we introduce two novel approaches to accurately locate and label arguments, and to label
attribution spans. We also significantly improve on the current state-of-the-art connective
classifier with newly introduced features.

6 Z. Lin et al.

1Financial planners often urge investors to diversify and to hold a smattering of
international securities. 2And many emerging markets have outpaced more mature
markets, such as the U.S. and Japan. 3Country funds offer an easy way to get a taste
of foreign stocks without the hard research of seeking out individual companies.

4But it doesn’t take much to get burned. 5Political and currency gyrations can
whipsaw the funds. 6Another concern: The funds’ share prices tend to swing more
than the broader market. 7When the stock market dropped nearly 7% Oct. 13,
for instance, the Mexico Fund plunged about 18% and the Spain Fund fell 16%.
8And most country funds were clobbered more than most stocks after the 1987
crash.

Fig. 1. An excerpt from the article wsj 0034. Each sentence is preceded with its superscripted
sentence number. All discourse and non-discourse connectives are italicized, with discourse connec-
tives further underlined. All relations annotated in this excerpt are also shown in Examples 1 – 9 in
Figure 2.

3 The Penn Discourse Treebank

The Penn Discourse Treebank (PDTB) covers the set of Wall Street Journal (WSJ) arti-
cles in the PTB – approximately one million words – which is much larger than previous
annotations such as the RST-DT. The PDTB adopts a binary predicate-argument view on
discourse relations, where a connective acts as a predicate that takes two text spans as its
arguments. The span to which the connective is syntactically attached is called Arg2, while
the other is called Arg1. The PDTB provides annotation for each discourse connective
and its two arguments. Example 1 in Figure 2 shows one Explicit relation extracted from
the excerpt in Figure 1, where the connective is underlined, Arg1 is italicized, and Arg2
is bolded. Figure 1 is an excerpt containing two consecutive paragraphs extracted from
wsj 0034, which will be used as a running example throughout this paper.

The PDTB also examined sentence pairs within paragraphs for discourse relations other
than Explicit relations. Example 4 shows such an Implicit relation where the annotator in-
ferred an implicit connective “for example” that most intuitively connects Arg1 and Arg2.
Some relations in the PDTB are alternatively lexicalized by non-connective expressions,
i.e., expressions that are not in the pre-defined, closed set of discourse connectives. Exam-
ple 5 is such an AltLex relation with the non-connective expression “Another concern”.

If no Implicit or AltLex relation exists between a sentence pair, annotators then checked
whether an entity transition (EntRel) holds. EntRel captures cases where the same entity
is realized in both sentences. If no EntRel is found, annotators labeled it as no relation
(NoRel). Examples 2 and 10 show an EntRel and a NoRel relation, respectively. Explicit,

A PDTB-Styled End-to-End Discourse Parser 7

(1) Financial planners often urge investors to diversify and to hold a smattering of
international securities. And many emerging markets have outpaced more
mature markets, such as the U.S. and Japan.

(Expansion.Conjunction – wsj 0034)
(2) And many emerging markets have outpaced more mature markets, such as the

U.S. and Japan. Country funds offer an easy way to get a taste of foreign
stocks without the hard research of seeking out individual companies.

(EntRel – wsj 0034)
(3) Country funds offer an easy way to get a taste of foreign stocks without the hard

research of seeking out individual companies. But it doesn’t take much to get
burned.

(Comparison.Contrast – wsj 0034)
(4) But it doesn’t take much to get burned. Implicit = FOR EXAMPLE Political and

currency gyrations can whipsaw the funds.
(Expansion.Restatement.Specification – wsj 0034)

(5) Political and currency gyrations can whipsaw the funds. AltLex [Another
concern]: The funds’ share prices tend to swing more than the broader
market.

(Expansion.Conjunction – wsj 0034)
(6) When the stock market dropped nearly 7% Oct. 13, for instance, the Mexico

Fund plunged about 18% and the Spain Fund fell 16%.
(Temporal.Synchrony – wsj 0034)

(7) Another concern: The funds’ share prices tend to swing more than the broader
market. When the stock market dropped nearly 7% Oct. 13, for instance, the
Mexico Fund plunged about 18% and the Spain Fund fell 16%.

(Expansion.Instantiation – wsj 0034)
(8) When the stock market dropped nearly 7% Oct. 13, for instance, the Mexico

Fund plunged about 18% and the Spain Fund fell 16%.
(Expansion.Conjunction – wsj 0034)

(9) When the stock market dropped nearly 7% Oct. 13, for instance, the Mexico
Fund plunged about 18% and the Spain Fund fell 16%. And most country
funds were clobbered more than most stocks after the 1987 crash.

(Expansion.Conjunction – wsj 0034)

Fig. 2. The nine discourse and non-discourse relations annotated on the excerpt in Figure 1. We
underline connectives, and italicize Arg1s, and bold Arg2s. The last line of each example shows the
relation sense and the file in the PDTB where the example is taken from. The relation sense is shown
in the format of Level-1-class.Level-2-type.Level-3-subtype.

8 Z. Lin et al.

Table 1. Level 1 classes and Level 2 types of the discourse relations in the PDTB. Level 3
subtypes are not shown.

Temporal Contingency Comparison Expansion
Synchrony Cause Contrast Conjunction
Asynchronous Pragmatic Cause Pragmatic Contrast Instantiation

Condition Concession Restatement
Pragmatic Condition Pragmatic Concession Alternative

Exception
List

Implicit, and AltLex relations are discourse relations, whereas EntRel and NoRel are non-
discourse relations3.

(10) A record date hasn’t been set. Bell, based in Los Angeles, makes and distributes
electronic, computer and building products.

(NoRel – wsj 0202)

For each discourse relation, the PDTB also provides annotation for the attribution (i.e.,
the agent that expresses the argument) for Arg1, Arg2, and the relation as a whole. For
example, the text span in the box in Example 11 – “declared San Francisco batting coach
Dusty Baker after game two” – is the attribution span for the relation.

(11) “I believe in the law of averages,” declared San Francisco batting coach

Dusty Baker after game two. Implicit = ACCORDINGLY “I’d rather see a so-so
hitter who’s hot come up for the other side than a good hitter who’s cold.”

(Contingency.Cause.Result – wsj 2202)

Aside from annotating all discourse and non-discourse relations, the annotators of the
PDTB provided a three-level hierarchy of relation senses. The first level consists of four
major relation classes: Temporal, Contingency, Comparison, and Expansion. “Temporal”
is used when the events or situations in Arg1 and Arg2 are related temporally. The “Con-
tingency” relation is used to mark when one argument causally influences the other. A
“Comparison” relation results when the events in Arg1 and Arg2 are compared to highlight
differences. “Expansion” relations result when the semantics/discourse of one argument is
continued or expanded in the other argument,

For each class, a second level of 16 types is defined to provide finer semantic distinctions.
They are listed in Table 1. For example, there are six types defined under the Expansion

3 Entity transition is also important in capturing textual coherence. Another line of research in cen-
tering theory (Grosz et al. 1995; Barzilay and Lapata 2008) explores local coherence by modeling
entity transition.

A PDTB-Styled End-to-End Discourse Parser 9

class: Conjunction, Instantiation, Restatement, Alternative, Exception, and List. A relation
is labeled as “Restatement” when one argument reiterates the semantics of the other argu-
ment. In contrast, “Conjunction” is used when Arg2 provides additional information that
is related to that in Arg1.

A third level of subtypes is defined to specify the semantic contribution of each argu-
ment. Nine out of the 16 types are refined into subtypes. For example, the sense labeled for
Example 4 is Expansion.Restatement.Specification, meaning that there is a Restatement
relation between Arg1 and Arg2, and Arg2 (instead of Arg1) is the argument that provides
specific details. In this work, we follow our previous work (Lin et al. 2009) and focus on
the Level 2 types, as we feel that Level 1 classes are too general and coarse-grained for
downstream applications, while Level 3 subtypes are too fine-grained and are only pro-
vided for some types.

4 System Overview

We designed our parsing algorithm as a sequential pipeline to mimic the annotation pro-
cedure performed by the PDTB annotators. Figure 3 shows the pseudocode. The input to
the parser is a free text T , whereas the output is the discourse structure of T in the PDTB
style. The algorithm consists of three steps which sequentially label Explicit relations,
Non-Explicit relations, and attribution spans. Non-Explicit relations include all relations
that are not Explicit – i.e., Implicit, AltLex, EntRel, and NoRel.

We first give a quick overview of the parser’s three steps. The first step is to identify
discourse connectives, label their Arg1 and Arg2 spans, and recognize their Explicit re-
lation senses. The parser starts by identifying all connective occurrences in T (Line 2 in
Figure 3), and labeling them as to whether they function as discourse connectives or not
(Lines 3–4). When a connective occurrence C is determined to be a discourse connective,
its Arg1 and Arg2 spans are then identified, and the parser classifies the tuple (C, Arg1,
Arg2) into one of the Explicit relation senses (Lines 5–7). The second step then examines
all adjacent sentence pairs within each paragraph. For each pair (Si, Sj) that is not iden-
tified in any Explicit relation from Step 1, the parser then classifies the pair into EntRel,
NoRel, or one of the Implicit/AltLex relation senses (Lines 12–15). Following the PDTB
annotation convention, our parser also ignores inter-paragraph relations, i.e., it ignores the
adjacent sentence pair in between two paragraphs. In the third step, the parser first splits
the text into clauses (Line 21), and for each clause U that appears in any discourse relations
(i.e., Explicit, Implicit, and AltLex relations; we term EntRel and NoRel as non-discourse
relations), it checks whether U is an attribution span (Lines 22–24). In this step, the parser
also follows the PDTB representation to only identify attribution spans appearing in dis-
course relations. It will not examine spans that are outside the text of the detected discourse
relations.

In our work, we adopt a sequential pipeline to parse a text, instead of following
a top-down or bottom-up approach that is common in determining the RST discourse
trees (Marcu 1997). The reason for this design is twofold. First, the algorithm mimics the
annotation procedure performed by the PDTB annotators, in which they labeled argument
spans, identified relation senses, and annotated attribution spans in a step-by-step manner.
Second, as the PDTB makes no commitments as to what kinds of high-level structures

10 Z. Lin et al.

Input: a text T

Output: a discourse structure of T

1: // Step 1: label Explicit relations
2: Identify all connective occurrences in T

3: for each connective occurrence C do
4: Label C as disc-conn or non-disc-conn
5: if C is disc-conn then
6: Label Arg1 span and Arg2 span of C

7: Label (C, Arg1, Arg2) as one of the Explicit relations
8: end if
9: end for

10:
11: // Step 2: label Non-Explicit: Implicit, AltLex, EntRel, and NoRel relations
12: for each paragraph P in T do
13: for each adjacent sentence pair (Si, Sj) in P do
14: if (Si, Sj) is not labeled as an Explicit relation in Step 1 then
15: Label (Si, Sj) as EntRel, NoRel, or one of the Implicit/AltLex relations
16: end if
17: end for
18: end for
19:
20: // Step 3: label attribution spans
21: Split T into clauses
22: for each clause U do
23: if U is in some Explicit/Implicit/AltLex relation from Step 1 or 2 then
24: Label U as attr-span or non-attr-span
25: end if
26: end for

Fig. 3. Pseudocode for the discourse parsing algorithm.

may be built up from the low-level units, we do not presume a tree-like structure or adopt a
corresponding tree parsing algorithm. Note that this design allows a relation to be embed-
ded within the argument of another relation, as well as an argument to be shared between
two adjacent relations (i.e., the Arg1 of the current relation is the Arg2 of the previous
relation). For instance, Example 6 is embedded in the Arg2 of Example 7, and sentence
4 is shared between Example 3 and 4 as a common argument. Lee et al. (2006) provides
detailed discussion on such types of relation dependencies.

The pipeline of the parser is shown in Figure 4, which consists of the connective classi-
fier, argument labeler, explicit classifier, non-explicit classifier, and attribution span labeler.
The first three components correspond to Step 1 in Figure 3, while the last two correspond

A PDTB-Styled End-to-End Discourse Parser 11

Connective
classifier

Argument labeler
Argument
position
classifier

Argument
extractor

Explicit
classifier

Non-Explicit
classifier

Attribution
span labeler

Connective
classifier

Argument
Position
classifier

Argument
extractor

Explicit
classifier

Non-Explicit
classifier

Attribution
span labeler

Step 2Step 3

Step 1

Fig. 4. System pipeline for the discourse parser.

to Steps 2 and 3, respectively. There are two sub-components in the argument labeler:
an argument position classifier and an argument extractor. A detailed description of these
components follows in the next section.

To illustrate the complete flow of the parsing algorithm, we look at how an ideal parser
parses the excerpt of two paragraphs in Figure 1. In the first step, after comparing the text
against the list of 100 discourse connectives defined in the PDTB, 10 connective occur-
rences are identified, which are italicized in Figure 1. The connective classifier then checks
these occurrences and labels six of them as discourse connectives, as indicated by the un-
derlines in Figure 1. The argument labeler follows by labeling the Arg1 and Arg2 spans
for each discourse connective. In Example 6, the Arg1 and Arg2 spans for the connective
“when” labeled by the argument labeler are “for ... 16%” and “the ... 13”. The tuple (when,
“for ... 16%”, “the ... 13”) is next propagated to the explicit classifier, which classifies the
relation sense as Synchrony. In the second step, the parser examines all adjacent sentence
pairs within paragraphs 1 and 2 separately, i.e., the inter-paragraph sentence pair (S3, S4)
is exempt from checking. Since there are Explicit relations already assigned to the pairs
(S1, S2) in Paragraph 1 and (S6, S7) and (S7, S8) in Paragraph 2 (see Example 1, 7, and
9), they are also exempt from further classification. The non-explicit classifier then clas-
sifies the remaining pairs (S2, S3), (S4, S5) and (S5, S6) as EntRel, Implicit, and AltLex
relations, respectively, as shown in Example 2, 4, and 5. In the last step, the attribution
span labeler will examine all discourse relations to label their attribution spans. As there
are no such spans in Figure 1, the reader is referred to Example 11 for a sentence with an
attribution span that would be labeled.

We now refine this overview by detailing the individual components’ structure and pro-
cessing workflow.

12 Z. Lin et al.

5 Components

Our system takes a fully data-driven, supervised learning approach. As such, the annotated
data is processed into binary feature vectors that are suitable input to a maximum entropy
learning model. In the following descriptions, we describe the component designs as well
as the derived feature classes.

5.1 Connective Classifier

There are 100 types of discourse connectives defined in the PDTB. Given a connective oc-
currence such as “when”, the parser needs to decide whether it is functioning as a discourse
connective. To illustrate, compare the use of the connective “and” in Example 1 (i.e. Sen-
tence 2) and in Sentence 5 of Figure 1. In Example 1, “And” is functioning as a discourse
connective to join two discourse events in Arg1 and Arg2, thus the annotators labeled the
sense as Expansion.Conjunction. On the other hand, the “and” in Sentence 5 is used to link
“Political” and “currency” in a noun phrase, which is not an example of discourse use. In
the entire PDTB corpus, words and phrases annotated as discourse connectives (100 types)
constitute only 29.65% of all their occurrences, with the remaining 70% not functioning as
discourse connectives. Thus, it is crucial to disambiguate the connectives before sending
them down the pipeline to label their argument spans and relation senses.

Pitler and Nenkova (2009) showed that syntactic features extracted from constituent
parse trees are very useful in disambiguating discourse connectives. Beside the connective
itself as a feature, they applied other syntactic features: the highest node in the tree that
covers only the connective words (which they termed self category), the parent, left and
right siblings of the self category, and two binary features that check whether the right
sibling contains a VP and/or a trace. The best feature set they demonstrated also included
pairwise interaction features between the connective and each syntactic feature, and inter-
action features between pairs of syntactic features.

In addition to the above, we observed that a connective’s context and part-of-speech
(POS) give a very strong indication of its discourse usage. For example, the connective
“after” usually functions as a discourse connective when it is followed by a present partici-
ple, as in “after rising 3.9%”. The syntactic parse path from the connective to the root of
the tree models how it is syntactically connected to the sentence as a whole, reflecting its
functionality within the sentence. Based on these observations, we propose a set of lexico-
syntactic and path feature classes for a connective C with its previous word prev and next
word next:

− C POS
− prev + C

− prev POS
− prev POS + C POS
− C + next

− next POS
− C POS + next POS
− path of C’s parent→ root
− compressed path of C’s parent→ root

A PDTB-Styled End-to-End Discourse Parser 13

Input: a discourse connective C and the text T

Output: Arg1 and Arg2 spans of C

1: // Argument position classifier
2: Classify the relative position of Arg1 as SS or PS
3:
4: // Argument extractor
5: if the relative position of Arg1 is SS then
6: Identify the Arg1 and Arg2 subtree nodes within the sentence parse tree
7: Apply tree subtraction to extract the Arg1 and Arg2 spans
8: else // the relative position of Arg1 is PS
9: Label the sentence containing C as Arg2

10: Identify and label the Arg1 sentence from all previous sentences of Arg2
11: end if

Fig. 5. Pseudocode for the argument labeler, which corresponds to Line 6 in Figure 3.

Each of the above lines represents a feature class. The first seven feature classes model
the connective’s context and POS, while the last two are the path from C to the root and
the compressed path where adjacent identical tags are combined (e.g., -VP-VP- is com-
bined into -VP-). Our path feature class is novel in the way it models the syntactic relation
between the connective under consideration and the syntactic root. Appendix A.1 lists the
features to disambiguate the connective “after” in Example 20, whose constituent parse tree
is shown in Figure 10. Appendix A uses the Explicit relation in Example 20 to illustrate
the features extracted for the classifiers in Step 1.

5.2 Argument Labeler

The parser now labels the Arg1 and Arg2 spans of every connective labeled in the previous
step as a discourse connective, in two steps: (1) identifying the locations of Arg1 and Arg2,
and (2) labeling the spans. We note that Arg2 is the argument with which the connective is
syntactically associated, and thus its position is fixed once we locate the connective. The
remaining problem of the first step is in identifying the location of Arg1. We implement
this as a classification task to recognize the relative position of Arg1, with respect to the
connective (Line 2 in Figure 5). According to the different relative positions of Arg1, the
argument extractor then attempts to extract the Arg1 and Arg2 spans in the second step
(Line 5 – 11 in Figure 5). Figure 5 gives the pseudocode for the argument labeler, which
corresponds to Line 6 in Figure 3 and is further discussed in the following.

5.2.1 Argument Position Classifier

Prasad et al. (2008) described the breakdown of the positions of Arg1 in their study of
the PDTB annotations. They showed that Arg1 can be located within the same sentence

14 Z. Lin et al.

as the connective (SS), in some previous sentence of the connective (PS), or in some sen-
tence following the sentence containing the connective (FS). When Arg1 is located in some
previous sentence, it can either be in the immediately previous sentence of the connective
(IPS), or in some non-adjacent previous sentence of the connective (NAPS). Example 8 is
a relation where the arguments and connective appear in the same sentence, while Exam-
ple 1 shows a case in which Arg2 immediately follows Arg1. The distribution from Prasad
et al. (2008) shows that 60.9% of the Explicit relations are SS, 39.1% are PS, and less than
0.1% are FS (only 8 instances).

Motivated by this observation, we design an argument position classifier to identify the
relative position of Arg1 as SS or PS. We ignore FS since there are too few training in-
stances. We notice that the connective string itself is a very good feature. For example,
when the connective token is “And” (i.e., “and” with its first letter capitalized, as in Ex-
ample 1), it is a continuation from the previous sentence and thus Arg1 is likely in PS;
whereas when the connective token is lowercase “and”, Arg1 is likely the clause at the left
hand side of “and” and thus it is in SS (Example 8). Furthermore, some connectives al-
ways take a particular position. For example, “when” always indicates an SS case, whereas
“additionally” always indicates PS.

Aside from the connective string, we also use the contextual feature classes in the clas-
sifier for the connective C with its first and second previous words prev1 and prev2. The
list below gives the feature classes used in our supervised classifier.

− C string
− position of C in the sentence: start, middle, or end
− C POS
− prev1

− prev1 POS
− prev1 + C

− prev1 POS + C POS
− prev2

− prev2 POS
− prev2 + C

− prev2 POS + C POS

After the relative position of Arg1 is identified, the result is propagated to the argument
extractor, which employs different strategies to extract the Arg1 and Arg2 spans, depending
on whether the result is SS or PS.

5.2.2 Argument Extractor

When the relative position of Arg1 is classified as PS from the previous stage, Arg1 is
located in one of the previous sentences of the connective, while Arg2 is in the same
sentence as the connective. A majority classifier labels the immediately previous sentence
as Arg1, which already gives an F1 of 76.90% under the gold standard setting on the entire
PDTB. In this paper, we focus on extracting the argument spans for the SS case and do not
focus on identifying the Arg1 sentences for the PS case. As such, we employ the majority

A PDTB-Styled End-to-End Discourse Parser 15

classifier as our classifier for the PS case. Next, we describe our approach to extract the
arguments for the SS case in detail.

When Arg1 is classified as in the same sentence (SS), this means that Arg1, Arg2, and the
connective itself are in the same sentence. This can be further divided into four situations
depending on the overlap and position of the two arguments in the sentence:

1. Arg1 precedes Arg2,
2. Arg2 precedes Arg1,
3. Arg2 is embedded within Arg1, or
4. Arg1 is embedded within Arg2.

These four situations are illustrated by Examples 8, 6, 12, and 13, respectively. One possi-
ble approach is to split the sentence into clauses before deciding which clause is Arg1 or
Arg2. The problem with this approach is that it is not able to recognize the last two cases,
where one argument divides the other into two parts. Another challenge is to exclude the
text spans that are not in the relation, such as the span “It’s the ... American” in Example 12.

(12) It’s the petulant complaint of an impudent American whom Sony hosted for a year
while he was on a Luce Fellowship in Tokyo – to the regret of both parties.

(Temporal.Synchrony – wsj 0037)

(13) The prime minister, whose hair is thinning and gray and whose face has a
perpetual pallor, nonetheless continues to display an energy, a precision of
thought and a willingness to say publicly what most other Asian leaders dare
say only privately.

(Comparison.Concession.Contra-expectation – wsj 0296)

Dinesh et al. (2005) showed that Arg1 and Arg2 in the same sentence for subordinat-
ing connectives are always syntactically related as shown in Figure 6(a), where Arg1 and
Arg2 nodes are the lowest nodes that cover the respective spans. They demonstrated that
a rule-based algorithm is capable of extracting Arg1 and Arg2 in such cases for subordi-
nating connectives. By using tree subtraction, the third case mentioned above can be easily
recognized and the text spans that are not in the relation can be excluded. In Figure 6(a),
Span 3 is labeled as Arg2 that divides Arg1 into two non-continuous Spans 2 and 4. The
out-of-relation spans (Spans 1 and 5) are also excluded by subtracting the subtree root at
the Arg1 node from the entire tree starting from the Root.

However, dealing with only the subordinating connectives is not sufficient. Subordinat-
ing connectives only take up 40.93% for the SS cases; the percentages of coordinating
connectives and discourse adverbials in the whole PDTB for SS cases are 37.50% and
21.57%, respectively. We observe that coordinating connectives (“and”, “or”, “but”, etc.)
usually constrain Arg1 and Arg2 to be syntactically related in one of two ways as shown
in Figure 6(b)-(c), where CC is the connective POS. Example 14 and Figure 7 give an
example to illustrate Figure 6(c). Discourse adverbials do not demonstrate such syntactic
constraints as strongly as subordinating and coordinating connectives do, but their Arg1
and Arg2 are also syntactically bound by the positions of and path between the two ar-
gument nodes. For example, Figure 8 shows the syntactic relation of the Arg1 and Arg2
nodes for the discourse adverbial “still” in Example 15. Furthermore, the rule-based al-
gorithm in (Dinesh et al. 2005) does not recognize the fourth case where the Arg1 span

16 Z. Lin et al.

26

Root

Arg1 node

Arg2 node

3 42

Root

Arg1 node

Arg2 node

CC

Root

Arg1 node Arg2 node

CC

51

(a) (b) (c)

Fig. 6. Syntactic relations of Arg1 and Arg2 subtree nodes in the parse tree. (a): Arg2 contains
span 3 that divides Arg1 into two spans 2 and 4. (b)-(c): two syntactic relations of Arg1 and Arg2 for
coordinating connectives.

S

VP NP

VP ,

,

CC VP

.

. The figures in both reports

were adjusted to remove the effects of usual seasonal patterns

but

weren't adjusted for inflation

Arg2 node

Arg1 node

Fig. 7. The parse tree for Example 14 to illustrate Figure 6(c).

is embedded within Arg2. The ratio of third case to fourth case occurrences in the entire
PDTB corpus is approximately 1:1. Thus we believe that the fourth case also needs to be
taken care of.

(14) The figures in both reports were adjusted to remove the effects of usual seasonal
patterns, but weren’t adjusted for inflation.

(Comparison.Contrast – wsj 0036)

(15) The ultimate result came in Hymowitz v. Lilly, where the highest New York court
expanded the market-share approach for the first time to say that drug makers that
could prove Mindy Hymowitz’s mother didn’t use their pill must still pay their
share of any damages.

A PDTB-Styled End-to-End Discourse Parser 17

VP

ADVP

RB

still

VPMD

must

S

NP

SBAR

IN

that

Arg1 node

Arg2 node

Fig. 8. Part of the parse tree for Example 15 with Arg1 and Arg2 nodes labeled.

(Comparison.Concession.Contra-expectation – wsj 0130)

Given these observations, we design an automatic argument node identifier to first iden-
tify the Arg1 and Arg2 subtree nodes within the sentence parse tree for all subordinating
connectives, coordinating connectives, and discourse adverbials; and then apply tree sub-
traction to extract the Arg1 and Arg2 spans. The argument node identifier labels each inter-
nal node (except the part-of-speech node) of the tree with three probabilities: functioning
as Arg1-node, Arg2-node, and None. The internal node with the highest Arg1-node prob-
ability is chosen as the Arg1 node, and likewise for the Arg2 node. If the Arg1 node is
the ancestor of the Arg2 node, the subtree under the Arg2 node is then subtracted from the
Arg1 subtree to obtain the Arg1 span, and conversely when the Arg2 node is the ancestor
of the Arg1 node. Motivated by the syntactic properties observed, we use the following
feature classes for the node N under consideration with regard to the connective C:

− C string
− C’s syntactic category: subordinating, coordinating, or discourse adverbial
− number of left siblings of C

− number of right siblings of C

− the path P of C’s parent→ N

− the path P and whether the number of C’s left sibling is greater than one
− the relative position of N to C: left, middle, or right

The syntactic category (subordinating, coordinating, or discourse adverbial) of the con-
nective is a useful clue of the locations of the Arg1 and Arg2 nodes. We obtain the corre-
sponding categories for the connectives from the list provided in (Knott 1996). Appendix C
shows the list of discourse connectives and their syntactic categories from Knott’s thesis.
The path from C’s parent node to the node N under consideration is also an informative
feature, as it reflects how N is related to C syntactically. The following are two paths for
the actual Arg2 node and the MD node in Figure 8:

RB ↑ ADVP ↑ VP
RB ↑ ADVP ↑ VP ↓MD

18 Z. Lin et al.

The relative position of N to C is medial when N is on the path of C to root; it can also
be left or right depending on whether it is located on the left- or right-hand side of this
path. This feature also models the syntactic relation of C and N to some extent. To label
each internal node with three probabilities, we adopt a maximum entropy classifier, as it is
capable of estimating class probabilities.

To illustrate how the argument position classifier and argument extractor work together
to label the arguments, let us look at Example 12. After examining the features for the
connective “while”, the argument position classifier will decide that Arg1 and Arg2 are in
the same sentence (SS), and pass it to the argument extractor. Since the class is SS, the
argument extractor invokes the argument node identifier to locate the internal node that
covers the Arg1 span (i.e., “whom Sony ... both parties”) and that covers Arg2 and the
connective (i.e., “while he ... in Tokyo”). Finally, tree subtraction is applied to clean up and
remove the Arg2 span from the Arg1 span.

5.3 Explicit Classifier

After identifying a discourse connective and its two arguments, the next step is to decide
what Explicit relation it conveys. It is important to disambiguate the relation sense of the
connective, as the same connective may carry different semantics under different contexts.
For example, the connective “and” has different senses of Expansion.Conjunction and Ex-
pansion.List in Example 8 and 16, respectively.

(16) Microsoft added 2 1/8 to 81 3/4 and Oracle Systems rose 1 1/2 to 23 1/4.
(Expansion.List – wsj 0327)

Prasad et al. (2008) reported a human agreement of 94% on Level 1 classes and 84% on
Level 2 types for Explicit relations over the whole PDTB corpus. The connective itself is a
very good feature, as only a few connectives are ambiguous as pointed out in (Pitler et al.
2008), and the distribution of the majority of the ambiguous connectives is highly skewed
toward certain senses. We train an explicit classifier using three types of feature classes of
the connective C and its previous word prev:

− C string
− C’s POS
− C + prev

We follow our previous work (Lin et al. 2009) to train and test on the 16 Level 2 types.

5.4 Non-Explicit Classifier

The PDTB also provides annotation for Implicit relations, AltLex relations, entity tran-
sition (EntRel), and otherwise no relation (NoRel), which are lumped together as Non-
Explicit relations. The Non-Explicit relations are annotated for all adjacent sentence pairs
within paragraphs. If there is already an Explicit relation from the previous step between
two adjacent sentences, they are exempt from further examination.

Similar to the explicit classifier, we adopt the Level 2 types for the Implicit and AltLex

A PDTB-Styled End-to-End Discourse Parser 19

We had

no operating problems at all

PRP

NP

VBD

DT NN NNS IN DT

NP ADVP

NP

VP

S

We

had

no operating

problems

at

all

nsuj dobj

advmodnndet

dep

(a) (b)

Fig. 9. A constituent subtree (a) and a dependency subtree (b) for Arg1 of an implicit relation from
wsj 2224.

relations. As there are too few training instances for Condition, Pragmatic Condition, Prag-
matic Contrast, Pragmatic Concession, and Exception relations (in total only 9 training in-
stances), these five types are removed, resulting in 11 Level 2 types. Thus, our Non-Explicit
classifier assigns candidate sentence pairs to one of 13 types (11 Level 2 types plus EntRel
and NoRel). We apply the three feature classes from our previous work (Lin et al. 2009):

− constituent parse features
− dependency parse features
− word-pair features

Constituent parse and dependency parse features include production rules and depen-
dency rules from the parse trees of the arguments. From our observation of the PDTB
relations, the syntactic structure within one argument may constrain the relation sense and
the syntactic structure of the other argument. For Arg1 and Arg2 of each relation, we ex-
tract the corresponding constituent and dependency parses. As an argument can be a single
sentence or a clause, this results in a whole constituent/dependency tree or parts of a tree.
From these parses, we extract all possible production rules and dependency rules, and rep-
resent each rule as three binary features to check whether it appears in Arg1, Arg2, or both
arguments. For instance, the production rules for the subtree in Figure 9(a) are S → NP
VP, NP → PRP, PRP → “We”, etc.; the dependency rules for the dependency subtree in
Figure 9(b) are “had”← nsubj dobj, “problems”← det nn advmod, “at”← dep. Word-pair
features are word pairs in which one word is extracted from Arg1 and the other from Arg2,
i.e., all (wi, wj) where wi is a word from Arg1 and wj a word from Arg2.

AltLex relations are very similar to their counterpart Explicit relations, except that they
are alternatively lexicalized by some non-connective expressions, instead of being ex-
pressed by one of the 100 PDTB pre-defined discourse connectives. Such non-connective

20 Z. Lin et al.

expressions are usually attached to the beginning of Arg2 (e.g., such as “Another concern”
in Arg2 of Example 5). To distinguish AltLex relations, we use three feature classes that
represent the first three stemmed terms of Arg2. For the example above, the features that
are turned on will be term1=another, term2=concern, and term3=the.

5.5 Attribution Span Labeler

For each discourse relation (i.e., Explicit, Implicit, or AltLex relation), the PDTB annota-
tors labeled the attribution spans and annotated four dimensions for Arg1, Arg2, and the
relation: their sources, types, scopal polarities, and determinacy. For the current parser, we
label the attribution spans without labeling the four attribution dimensions and direction
(Arg1, Arg2, or the relation) it is associated with. The reason is that our focus of study
is the attribution location and span, and recognizing these four dimensions and attribution
direction will lead to building another set of classifiers which are outside of our study. Note
that we label attribution spans that appear within discourse relations.

The attribution span labeler consists of two steps: splitting the text into clauses, and de-
ciding which clauses are attribution spans. In the first step, we employ a lightweight clause
splitter that we have developed which uses a syntactically motivated approach similar to
(Skadhauge and Hardt 2005). This clause splitter makes use of punctuation symbols and
syntactic structures of SBAR complements.

The attribution span labeler then classifies each clause into attr-span or non-attr-span.
Words (especially verbs) in the clause are a very good clue to decide whether it is an
attribution. Examples are the verbs “declared” and “say” in Example 11 and 15. Another
useful clue is by looking at the end of the previous clause and the start of the next one. In
Example 11, which is partially replicated below, the previous clause ends with a comma
and a closing quotation mark, and the next clause starts with an opening quotation mark,
which suggest that the previous and next clauses are in the same speech act and the current
clause is probably the attribution of the speech.

. . . averages,” declared San Francisco batting coach Dusty Baker after game two. “I’d . . .

Based on these observations, we propose the following feature classes which are extracted
from the current, previous, and next clauses (curr, prev, and next):

− lowercased and lemmatized verbs in curr

− the first and last terms of curr

− the last term of prev

− the first term of next

− the last term of prev + the first term of curr

− the last term of curr + the first term of next

− the position of curr in the sentence: start, middle, end, or whole sentence
− production rules extracted from curr

Appendix B shows features extracted for the above example. Some clauses that belong to
single attribution spans may be incorrectly split into more than one clause by the clause
splitter. For example, “said C. Bruce Johnstone, who runs Fidelity Investments’ $5 billion

A PDTB-Styled End-to-End Discourse Parser 21

Equity-Income Fund.” is annotated as a single attribution span in the PDTB. It is (mistak-
enly) split into two clauses “said C. Bruce Johnstone,” and “who runs Fidelity Investments’
$5 billion Equity-Income Fund.” by the clause splitter, and then both classified as attr-span.
To correct such mistakes, adjacent attribution clauses within a sentence are combined to
form a single attribution span after classification.

6 Evaluation

In all of our experiments, we follow the recommendation from (PDTB-Group 2007) to use
Sections 02–21 in the PDTB for training, Section 22 for development, and Section 23 for
testing. All classifiers are trained with the OpenNLP maximum entropy package4 without
smoothing and with 100 iterations.

For each component, the experiments are carried out when there is no error propagated
from the previous components (i.e., using gold standard annotation for the previous com-
ponents), and also when there is error propagation. As the PDTB was aligned with the
PTB, we can either directly use the gold standard parse trees and sentence boundaries from
the PTB files, or we can apply an automatic parser and sentence splitter. The experiments
are carried out under three settings for each component:

1. GS + no EP: using gold standard (GS) parses and sentence boundaries without error
propagation (EP)

2. GS + EP: using GS with EP
3. Auto + EP: using both automatic parsing and sentence splitting (Auto) with EP.

Thus, GS + no EP corresponds to a clean, per-component evaluation, whereas the
Auto + EP setting assesses end-to-end fully automated performance (as would be expected
on new, unseen text input). We use the NIST text segmenter5 to insert sentence boundaries
and the Charniak parser6 to parse the sentences in the Auto setting. As there are no gold
standard dependency parses for the PTB files, we employ the Stanford dependency parser7

in both GS and Auto settings.
The main focus of this work is designing an end-to-end discourse parser joined by all

components and not on improving a specific component. As such, we only reimplement
(Pitler and Nenkova 2009)’s system to compare with our connective classifier. For the
other components, we do not reimplement other systems mentioned in the related work
section.

6.1 Results for Connective Classifier

On the connective classifier task, Pitler and Nenkova (2009) (hereafter, P&N) reported an
accuracy of 96.26% and F1 of 94.19% with a 10-fold cross validation (CV) on Sections 02–
22. To compare with P&N, we also run a 10-fold CV on Sections 02–22 using their fea-
tures and obtain replicated accuracy of 96.09% and replicated F1 of 93.57%. Adding in

4 http://maxent.sourceforge.net/
5 http://duc.nist.gov/duc2004/software/duc2003.breakSent.tar.gz
6 ftp://ftp.cs.brown.edu/pub/nlparser/
7 http://nlp.stanford.edu/software/lex-parser.shtml

22 Z. Lin et al.

Table 2. Results for the connective classifier. No EP as this is the first component in the
pipeline.

P&N +new
Acc. F1 Acc. F1

GS 95.30 92.75 97.34 95.76
Auto 94.21 91.00 96.02 93.62

our lexico-syntactic and path features, the performance is increased to 97.25% accuracy
and 95.36% F1, yielding improvements of 0.99% and 1.17% over the reported results and
1.16% and 1.79% over the replicated results. A paired t-test shows that the improvements
over our replication of P&N’s results are significant with p < 0.0018.

In Table 2, we report results from the connective classifiers trained on Sections 02–21
and tested on Section 23. As there is no error propagated into the connective classifier since
it is the first component, we report results for just the GS and Auto settings. The second and
third columns show the accuracy and F1 using the features of P&N, whereas the last two
columns show the results when we add in the lexico-syntactic and path features (+new).
Introducing the new features significantly (all with p < 0.001) increases the accuracy and
F1 by 2.04% and 3.01% under the GS setting, and 1.81% and 2.62% under Auto. This
confirms the usefulness of integrating the contextual and syntactic information. As the
connective classifier is the first component in the pipeline, good performance is crucial to
mitigate the effect of cascaded errors downstream.

When we look into the incorrectly labeled connectives, we find that the connective with
the highest number of incorrect labels is “and” (8 false negatives and 4 false positives for
the GS setting). This is not surprising, as “and” is always regarded as an ambiguous connec-
tive. A solution to this problem is to separately train one model for each highly ambiguous
connective and train another generic model to identify the remaining connectives.

6.2 Results for Argument Labeler

We next perform evaluation on the argument position classifier, and report micro precision,
recall, and F1, as well as the per-class F1, in Table 3. The GS + no EP setting gives a high
F1 of 97.94%, which drops 3.59% and another 2.26% when error propagation and full au-
tomation are added in. The per-class F1 shows that the performance degradation is mostly
due to the SS class (Arg1 and Arg2 in the Same Sentence): the drops for SS are 5.36% and
3.35%, compared to 1.07% and 0.68% for PS. When we look into the contingency table

8 It is not possible to conduct paired t-test on the reported results for P&N as we do not have their
predictions.

A PDTB-Styled End-to-End Discourse Parser 23

Table 3. Results for the argument position classifier.

Per-class F1

Prec. Recall F1 SS PS

GS + no EP 97.94 97.94 97.94 98.26 97.49
GS + EP 94.66 94.04 94.35 92.90 96.42
Auto + EP 92.75 91.44 92.09 89.55 95.74

Table 4. Results for identifying the Arg1 and Arg2 subtree nodes for the SS case under the
GS + no EP setting for the three categories.

Arg1 F1 Arg2 F1 Arg1&Arg2 F1

Subordinating 88.46 97.93 86.98
Coordinating 90.34 90.34 82.39
Discourse adverbial 46.88 62.50 37.50

All 86.63 93.41 82.60

for the GS + EP setting, we notice that out of the 36 false positives propagated from the
connective classifier, 30 of them are classified as SS; for the Auto + EP setting, there are
46 out of 52 classified as SS. This shows that the difference in the performance drops for
SS and PS is largely due to error propagation from the connective classifier, and not to the
classes themselves. Although not strictly comparable, these results are consistent with the
results in (Prasad et al. 2010), which reported an accuracy of 93% on classifying discourse
adverbials into intra- and inter-sentential. Three feature classes were used in (Prasad et al.
2010): connective head, connective position, and syntactic path from the connective to the
root of the sentence.

We next evaluate the performance of the argument extractor. Table 4 illustrates the re-
sults of identifying the Arg1 and Arg2 subtree nodes for the SS case for the three connective
categories. The last column shows the Arg1&Arg2 F1 which requires both Arg1 and Arg2
nodes to be identified correctly. We only show the results for the GS + no EP setting. As
expected, Arg1 and Arg2 nodes for subordinating connectives are the easiest ones to iden-
tify and give a high Arg2 F1 of 97.93% and a Arg1&Arg2 level F1 of 86.98%. We note
that the Arg1 F1 and Arg2 F1 for coordinating connectives are the same, which is unex-
pected, as we expect Arg2 nodes to be easier to classify since Arg2 and the connective are
syntactically associated. Error analysis shows that Arg2 spans for coordinating connectives
tend to include extra text that causes the Arg2 nodes to move lower down in the parse tree.

24 Z. Lin et al.

Table 5. Overall results for the argument extractor.

Arg1 F1 Arg2 F1 Arg1&Arg2 F1

Partial
GS + no EP 86.67 99.13 86.24
GS + EP 83.62 94.98 83.52
Auto + EP 81.72 92.64 80.96

Exact
GS + no EP 59.15 82.23 53.85
GS + EP 57.64 79.80 52.29
Auto + EP 47.68 70.27 40.37

For example, “... and Mr. Simpson said he resigned in 1988” contains the extra span “Mr.
Simpson said” which causes the Arg2 node (which covers “he resigned in 1988”) moving
two levels down the tree. The system erroneously labels “Mr. Simpson ... 1988” as Arg2.

Also as we discussed, discourse adverbials are difficult to identify as their Arg1 and Arg2
nodes are not strongly bound in the parse trees. However, as they do not take up a large
percentage in the test data (only 5.38% of the test data is for identifying Arg1 and Arg2
nodes for discourse adverbials under the GS + no EP setting), they do not lead to a large
degradation as shown in the last row of the overall performance of the three categories.

Miltsakaki et al. (2004) reported human agreements on both exact and partial matches
to be 90.2% and 94.5%, respectively. We follow this work and report both exact and partial
matches. When checking exact match, we require two spans to match identically, exclud-
ing any leading and ending punctuation symbols. A partial match is credited if there is any
overlap between the verbs and nouns of the two spans. The results for the overall perfor-
mance for both SS and PS cases are shown in Table 5. The GS + no EP setting gives a
satisfactory F1 of 86.24% for partial matching on Arg1&Arg2 F1. On the other hand, the
results for exact matching are much lower than the human agreement. In Miltsakaki et al.’s
work, most disagreements for exact match were reported to come from partial overlaps
which do not show significant semantic difference. Similarly, in our analysis, we observed
that most misses are due to small portions of text being deleted from or added to the spans
by the annotators to follow the minimality principle. The minimality principle states that
the annotation should include in the argument the minimal span of text that is sufficient for
the interpretation of the relation. This requires deep semantic analysis and poses difficulties
for machines to follow.

6.3 Results for Explicit Classifier

Following the pipeline, we then evaluate the explicit classifier, with its performance shown
in Table 6. Recall that human agreement on Level 2 types is 84.00% and a baseline clas-

A PDTB-Styled End-to-End Discourse Parser 25

Table 6. Results for the explicit classifier.

Precision Recall F1

GS + no EP 86.77 86.77 86.77
GS + EP 83.19 82.65 82.92
Auto + EP 81.19 80.04 80.61

Table 7. Results for the non-explicit classifier.

Precision Recall F1 Baseline F1

GS + no EP 39.63 39.63 39.63 21.34
GS + EP 26.21 27.63 26.90 20.30
Auto + EP 24.54 26.45 25.46 19.31

sifier that uses only the connectives as features already yields an F1 of 86.00% under the
GS + no EP setting on Section 23. Adding our new features improves F1 to 86.77% (but
which is not a statistically significant improvement). With full automation and error prop-
agation, we obtain an F1 of 80.61%. Pitler and Nenkova (2009) show that using the same
syntactic features as their connective classifier is able to improve the explicit classifier on
a 10-fold cross validation on Sections 02-22. We have trained the classifier on Sections 02-
21 using their features and tested on Section 23, but it actually performs worse than the
baseline. Therefore we do not include their features in the explicit classifier.

6.4 Results for Non-Explicit Classifier

For the non-explicit classifier, a majority class baseline that labels all instances as EntRel
yields an F1 in the low 20s, as shown in the last column of Table 7. The percentage of En-
tRel is slightly higher than the most frequent implicit Cause relations (21.34% vs. 21.24%
in the implicit relations). A single component evaluation (GS + no EP) shows a micro F1

of 39.63%. Although the F1 scores for the GS + EP and Auto + EP settings are unsatisfac-
tory, they still significantly (p < 0.01) outperform the majority class baseline by about 6%.
This performance is in line with the difficulties of classifying Implicit relations discussed
in detail in our previous work (Lin et al. 2009).

26 Z. Lin et al.

Table 8. Results for the attribution span labeler.

Precision Recall F1

Partial
GS + no EP 79.40 79.96 79.68
GS + EP 65.93 79.96 72.27
Auto + EP 64.40 51.68 57.34

Exact
GS + no EP 65.72 66.19 65.95
GS + EP 54.57 66.19 59.82
Auto + EP 47.83 38.39 42.59

Table 9. Overall performance for both Explicit and Non-Explicit relations. GS + no EP
setting is not included, as this is not a component-wise evaluation.

F1

Partial
GS + EP 46.80
Auto + EP 38.18

Exact
GS + EP 33.00
Auto + EP 20.64

6.5 Results for Attribution Span Labeler

The final component, the attribution span labeler, is evaluated under both partial and exact
match, similar to the argument extractor. From Table 8, we see that the GS + no EP set-
ting achieves F1 scores of 79.68% and 65.95% for partial and exact match, respectively.
When error propagation is introduced, the degradation of F1 is largely due to the drop in
precision. This is not surprising as at this point, the test data contains a number of false
positives propagated from the previous components. This has an effect on the precision
calculation but not recall (the recall scores do not change). When full automation is further
added, the degradation is largely due to the drop in recall. This is because the automatic
parser introduces noise that causes errors in the clause splitting step.

6.6 Overall Performance

To evaluate the whole pipeline, we look at the Explicit and Non-Explicit relations that
are correctly identified. We define a relation as correct if its relation sense is classified

A PDTB-Styled End-to-End Discourse Parser 27

correctly, and both its Arg1 and Arg2 are partially or exactly matched. The overall perfor-
mance is shown in Table 9. Under partial matching, the GS + EP setting gives an overall
system F1 of 46.80%, while under exact matching, it achieves an F1 of 33.00%. Auto + EP
gives 38.18% F1 for partial match and 20.64% F1 for exact match. A large portion of the
misses come from the Non-Explicit relations, as they are more difficult to classify in com-
parison to the Explicit relations. The GS + EP F1 is close to the system F1 of 44.3% of an
RST parser reported in (duVerle and Prendinger 2009).

7 Discussion and Future Work

The overall performance of the whole pipeline shows that the non-explicit classifier gener-
ates a large portion of the errors, which suggests that there is still much room for improve-
ment in that component. In our previous work (Lin et al. 2009) on classifying Implicit
relations, we have shown that the difficulties of this task are mostly attributed to four types
of challenges: the ambiguity among the relation senses, the need for using inference and
a knowledge base, the analysis of the contextual information in understanding the argu-
ments, and access to world knowledge. We plan to tackle some of these challenges in the
non-explicit classifier in our future work. For example, we may extract information from
external resources such as WordNet (Miller 1995) and Wikipedia to incorporate world
knowledge into the component.

In our explicit classifier, although the tuple (C, Arg1, Arg2) is passed into the classifier,
the current approach does not make use of information from Arg1 and Arg2. One future
direction is to extract informative features from these two arguments for the explicit clas-
sifier. The current approach also does not deal with identifying Arg1 from all previous
sentences for the PS case. Although about 77% of Arg1s can be located in the immediately
previous sentence of Arg2s in this case, it is important to take the rest into consideration
to make this component complete. Furthermore, this task will not be easy, as there is no
restriction on the distance between Arg1 and Arg2. Example 17 shows a situation where
Arg1 is located four sentences away from Arg2. Our next step is to design a PS identifier
and integrate it into the current pipeline. One possibility is to follow (Prasad et al. 2010) to
use a set of filters and heuristics to locate the positions of Arg1 spans.

(17) GOODY PRODUCTS Inc. cut its quarterly dividend to five cents a share from 11.5
cents a share. The reduced dividend is payable Jan. 2 to stock of record Dec. 15.
The Kearny, N.J.-based maker of hair accessories and other cosmetic products said
it cut the dividend due to its third-quarter loss of $992,000, or 15 cents a share. In
the year-ago quarter, the company reported net income of $1.9 million, or 29 cents
a share. The company also adopted an anti-takeover plan.

(Expansion.Conjunction – wsj 0068)

The PDTB provides annotations for the direction of the attributions to indicate whether
an attribution is pointing to Arg1, Arg2, or the relation as a whole. In Example 18, the
attribution “traders said” points to Arg1, while the second attribution “Disney ... said”
points to the whole relation.

(18) But then it shot upward 7 1/2 as Goldman, Sachs & Co. stepped in and bought,

28 Z. Lin et al.

traders said . However, Disney specialist Robert Fagenson said : “I would be
surprised if Goldman represented 4% of the opening volume.”

(Comparison – wsj 2232)

Such information can also be incorporated into the parser, as this provides finer grained
information on the opinions and the opinion holders, which is useful for downstream sub-
jectivity analysis. The current attribution span labeler only considers clauses within the
relation, which may result in missing clauses that are attribution spans of the relation but
reside outside the relation. For instance, in Example 19, the attribution span “said David ...
Sunday’s go” for the relation “I’m for ... lost yesterday” resides outside the relation itself,
thus it will not be examined by our system. One possible approach to solve this problem
is to use a window of sentences to check previous and following sentences for attributions
that are pointing to this relation.

(19) “I’m for the Giants today, but only because they lost yesterday.
I love ’em both. The only thing I’m rooting for is for the Series to go seven games,”
said David Williams, a Sacramento septuagenarian, at the Coliseum before

Sunday’s go .
(Contingency.Cause.Reason – wsj 2202)

Wellner (2009) pointed out that verbs from the attribution spans are useful features in
identifying the argument head words. In his work, Wellner checked whether the argu-
ment verb (as only argument verbs, not argument spans, are identified) is a potentially
attribution-denoting verb. This suggests that we can feed the results from the attribution
span labeler back into the argument labeler. In fact, we can feed all of the results from the
end of the pipeline back into the start, to construct a joint learning model (imagine an arrow
being drawn from the attribution span labeler back to the connective classifier in Figure 4).

We believe that our discourse parser is very useful in downstream applications, such
as text summarization and question answering (QA). For example, a text summarization
system may utilize the contrast and restatement relations to recognize updates and redun-
dancy, whereas causal relations can be used in a QA system to answer why-questions. The
attribution spans from the parser are also very useful for applications on opinion mining
and subjectivity analysis to locate the opinion holders.

Discourse structure can also be used in analysis and understanding of the coherence of
text. Given two texts and their respective discourse structures, one can analyze and compare
these two structures. Discourse patterns extracted from the structures may suggest which
text is more coherent than the other. In (Lin et al. 2011), we propose a coherence model
which applies the output from the discourse parser that we have developed in this work, and
demonstrate that this model is capable of distinguishing a coherent text from an incoherent
one. We further demonstrate in (Lin et al. 2012) that this model can be used to rank a
list of machine-generated summaries with regard to their readability. This illustrates the
applicability of our discourse parser in other NLP applications.

8 Conclusion

In this work, we have designed a parsing algorithm that performs discourse parsing in
the PDTB representation, and implemented it into an end-to-end system in a fully, data-

A PDTB-Styled End-to-End Discourse Parser 29

driven approach. This is the first end-to-end discourse parser that can parse any unrestricted
English text into its discourse structure in the PDTB style. We have proposed automatic
approaches to locate the relative positions of arguments and label the argument spans when
they appear in the same sentence. The performance of the connective classifier is also sig-
nificantly improved from previous work. We have implemented a component to label the
attribution spans for the relations. We evaluated the system both component-wise, as well
as in an end-to-end fashion with cascaded errors. We reported overall system F1 scores of
46.80% for partial matching utilizing gold standard parses, and 38.18% with full automa-
tion. Many downstream NLP applications, such as coherence assessment, summarization,
and question answering, need to analyze relations beyond sentence-level. We believe that
these applications will be able to make use of the output from our discourse parser to
improve their performance.

References

Nicholas Asher and Alex Lascarides. 2003. Logics of Conversation. Cambridge University Press,
Cambridge, England.

Jason Baldridge and Alex Lascarides. 2005. Probabilistic head-driven parsing for discourse structure.
In Proceedings of the Ninth Conference on Computational Natural Language Learning (CONLL
2005), pages 96–103, Ann Arbor, Michigan, USA.

Regina Barzilay and Mirella Lapata. 2008. Modeling local coherence: An entity-based approach.
Computational Linguistics, 34:1–34, March.

Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski. 2001. Building a discourse-tagged corpus
in the framework of Rhetorical Structure Theory. In Proceedings of the Second SIGdial Workshop
on Discourse and Dialogue, Morristown, NJ, USA.

Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi, and Bonnie Webber. 2005.
Attribution and the (non)-alignment of syntactic and discourse arguments of connectives. In Pro-
ceedings of the ACL Workshop on Frontiers in Corpus Annotation II: Pie in the Sky, Ann Arbor,
MI, USA.

David duVerle and Helmut Prendinger. 2009. A novel discourse parser based on Support Vector
Machine classification. In Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP
(ACL-IJCNLP 2009), Singapore.

Robert Elwell and Jason Baldridge. 2008. Discourse connective argument identification with con-
nective specific rankers. In Proceedings of the IEEE International Conference on Semantic Com-
puting (ICSC 2008), Santa Clara, CA, USA.

Katherine Forbes, Eleni Miltsakaki, Rashmi Prasad, Anoop Sarkar, Aravind Joshi, and Bonnie Web-
ber. 2003. D-LTAG system: Discourse parsing with a lexicalized tree-adjoining grammar. Journal
of Logic, Language and Information, 12(3):261–279.

Sucheta Ghosh, Richard Johansson, Giuseppe Riccardi, and Sara Tonelli. 2011. Shallow discourse
parsing with conditional random fields. In Proceedings of the 5th International Joint Confer-
ence on Natural Language Processing (IJCNLP 2011), pages 1071–1079, Chiang Mai, Thailand,
November.

Barbara J. Grosz and Candace L. Sidner. 1986. Attention, intentions, and the structure of discourse.
Computational Linguistics, 12(3):175–204, July.

Barbara J. Grosz, Scott Weinstein, and Aravind K. Joshi. 1995. Centering: a framework for modeling
the local coherence of discourse. Computational Linguistics, 21(2):203–225, June.

Michael A.K Halliday and Ruqaiya Hasan. 1976. Cohesion in English. Longman, London.
Jerry R. Hobbs. 1985. On the coherence and structure of discourse. Technical Report CSLI-85-37,

Center for the Study of Language and Information, Stanford University.

30 Z. Lin et al.

Jerry R. Hobbs. 1990. Literature and cognition. In CSLI Lecture Notes Number 21. CSLI Publica-
tions.

Le Thanh Huong, Geetha Abeysinghe, and Christian Huyck. 2004. Generating discourse struc-
tures for written texts. In Proceedings of the 20th International Conference on Computational
Linguistics (COLING 2004), Morristown, NJ, USA.

Alistair Knott. 1996. A Data-Driven Methodology for Motivating a Set of Coherence Relations.
Ph.D. thesis, Department of Artificial Intelligence, University of Edinburgh.

Alistair Knott and Ted Sanders. 1998. The classification of coherence relations and their linguistic
markers: An exploration of two languages. Journal of Pragmatics, 30(2):135–175.

Alex Lascarides and Nicholas Asher. 1993. Temporal interpretation, discourse relations and com-
monsense entailment. Linguistics and Philosophy, 16(5):437–493.

Alan Lee, Rashmi Prasad, Aravind Joshi, Nikhil Dinesh, and Bonnie Webber. 2006. Complexity
of dependencies in discourse: Are dependencies in discourse more complex than in syntax? In
Proceedings of the 5th International Workshop on Treebanks and Linguistic Theories, Prague,
Czech Republic.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009. Recognizing implicit discourse relations in
the Penn Discourse Treebank. In Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2009), Singapore.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2010. A PDTB-styled end-to-end discourse parser.
Technical Report TRB8/10, School of Computing, National University of Singapore, August.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2011. Automatically evaluating text coherence using
discourse relations. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies (ACL-HLT 2011), pages 997–1006, Portland,
Oregon, USA, June.

Ziheng Lin, Chang Liu, Hwee Tou Ng, and Min-Yen Kan. 2012. Combining coherence models and
machine translation evaluation metrics for summarization evaluation. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics (ACL 2012), Jeju, Korea, July.

William C. Mann and Sandra A. Thompson. 1988. Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243–281.

Daniel Marcu. 1997. The Rhetorical Parsing, Summarization, and Generation of Natural Language
Texts. Ph.D. thesis, University of Toronto.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large
annotated corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

George A. Miller. 1995. Wordnet: A lexical database for English. Communications of the ACM,
38(11):39–41.

Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi, and Bonnie Webber. 2004. The Penn Discourse
Treebank. In Proceedings of the 4th International Conference on Language Resources and Eval-
uation (LREC 2004), Lisbon, Portugal.

Eleni Miltsakaki, Nikhil Dinesh, Rashmi Prasad, Aravind Joshi, and Bonnie Webber. 2005. Exper-
iments on sense annotations and sense disambiguation of discourse connectives. In Proceedings
of the Fourth Workshop on Treebanks and Linguistic Theories (TLT2005), Barcelona, Spain, De-
cember.

PDTB-Group, 2007. The Penn Discourse Treebank 2.0 Annotation Manual. The PDTB Research
Group.

Emily Pitler and Ani Nenkova. 2009. Using syntax to disambiguate explicit discourse connectives
in text. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, Singapore.

Emily Pitler, Mridhula Raghupathy, Hena Mehta, Ani Nenkova, Alan Lee, and Aravind Joshi. 2008.
Easily identifiable discourse relations. In Proceedings of the 22nd International Conference on
Computational Linguistics (COLING 2008) Short Papers, Manchester, UK.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009. Automatic sense prediction for implicit discourse
relations in text. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing of the AFNLP (ACL-
IJCNLP 2009), Singapore.

A PDTB-Styled End-to-End Discourse Parser 31

Livia Polanyi. 1988. A formal model of the structure of discourse. Journal of Pragmatics, 12(5–
6):601–638.

Livia Polanyi and Remko Scha. 1984. A syntactic approach to discourse semantics. In Proceedings
of the 10th International Conference on Computational Linguistics (COLING 1984), pages 413–
419. Association for Computational Linguistics.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo, Aravind Joshi, and Bon-
nie Webber. 2008. The Penn Discourse Treebank 2.0. In Proceedings of the 6th International
Conference on Language Resources and Evaluation (LREC 2008).

Rashmi Prasad, Aravind Joshi, and Bonnie Webber. 2010. Exploiting scope for shallow discourse
parsing. In Proceedings of the Seventh International Conference on Language Resources and
Evaluation (LREC-2010), pages 2076–2083, Valletta, Malta, May.

Remko Scha and Livia Polanyi. 1988. An augmented context free grammar for discourse. In
Proceedings of the 12th Conference on Computational Linguistics, pages 573–577. Association
for Computational Linguistics.

Peter Rossen Skadhauge and Daniel Hardt. 2005. Syntactic identification of attribution in the RST
Treebank. In Proceedings of the Recent Advances in Natural Language Processing (RANLP 2005),
Borovets, Bulgaria.

Radu Soricut and Daniel Marcu. 2003. Sentence level discourse parsing using syntactic and lexical
information. In Proceedings of the Human Language Technology Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics (HLT-NAACL 2003), Edmonton,
Canada.

Rajen Subba and Barbara Di Eugenio. 2009. An effective discourse parser that uses rich linguistic
information. In Proceedings of Human Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT
2009), Boulder, Colorado, June. Association for Computational Linguistics.

WenTing Wang, Jian Su, and Chew Lim Tan. 2010. Kernel based discourse relation recognition with
temporal ordering information. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL 2010), Uppsala, Sweden, July.

Bonnie Webber. 2004. D-LTAG: Extending lexicalized TAG to discourse. Cognitive Science,
28(5):751–779.

Bonnie Webber and Aravind Joshi. 1998. Anchoring a lexicalized tree-adjoining grammar for dis-
course. In Coling/ACL Workshop on Discourse Relations and Discourse Markers, pages 86–92.

Bonnie Webber, Markus Egg, and Valia Kordoni. 2011. Discourse structure and language technology.
Natural Language Engineering, pages 1–54.

Ben Wellner. 2009. Sequence Models and Ranking Methods for Discourse Parsing. Ph.D. thesis,
Brandeis University.

Ben Wellner and James Pustejovsky. 2007. Automatically identifying the arguments of discourse
connectives. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007),
Prague, Czech Republic.

Ben Wellner, James Pustejovsky, Catherine Havasi, Anna Rumshisky, and Roser Sauri. 2006. Classi-
fication of discourse coherence relations: An exploratory study using multiple knowledge sources.
In Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue, Sydney, Australia.

Florian Wolf and Edward Gibson. 2005. Representing discourse coherence: a corpus-based analy-
sis. In Proceedings of the 20th International Conference on Computational Linguistics (COLING
2004), Morristown, NJ, USA.

Zhi-Min Zhou, Yu Xu, Zheng-Yu Niu, Man Lan, Jian Su, and Chew Lim Tan. 2010. Predicting
discourse connectives for implicit discourse relation recognition. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics (COLING 2010), pages 1507–1514, Beijing,
China.

32 Z. Lin et al.

Orders for

durable goods

were

up

0.2 % to

$ 127.03 billion

U

after

*-1 rising

3.9 %

the month before

.

NNS IN

JJ NNS

VBS

RB

CD NN TO

$ CD CD

-NONE-

IN

-NONE- VBG

CD NN

DT NN RB

.

NP

NP

PP

NP

NP

QP

NP

PP

ADVP

ADVPNP

NPNP

VP

S

NP

PP

VP

S

Fig. 10. The constituent parse tree for Example 20.

A Features for the Classifiers in Step 1

Here are the features extracted from the Explicit relation in Example 20 for the classifiers
in Step 1 of the parser. The constituent parse of Example 20 is shown in Figure 10.

(20) Orders for durable goods were up 0.2% to $127.03 billion after rising 3.9% the
month before.

(Temporal.Asynchronous – wsj 0036)

A.1 Features for the Connective Classifier

− C POS = IN
− prev + C = billion after
− prev POS = CD
− prev POS + C POS = CD IN
− C + next = after rising
− next POS = VBG
− C POS + next POS = IN VBG
− path of C’s parent→ root = IN ↑ PP ↑ VP ↑ S
− compressed path of C’s parent→ root = IN ↑ PP ↑ VP ↑ S

A.2 Features for the Argument Position Classifier

− C string = after

A PDTB-Styled End-to-End Discourse Parser 33

− position of C in the sentence = middle
− C POS = IN
− prev1 = billion
− prev1 POS = CD
− prev1 + C = billion after
− prev1 POS + C POS = CD IN
− prev2 = 127.03
− prev2 POS = CD
− prev2 + C = 127.03 after
− prev2 POS + C POS = CD IN

A.3 Features for the Argument Node Identifier

In the parse tree (Figure 10) for Example 20, we need to identify the Arg1 and Arg2 nodes
from the 18 internal nodes (except POS nodes). Here we list the features used to label the
S node that covers the Arg2 span.

− C string = after
− C’s syntactic category = subordinating
− numbers of left siblings of C = 0
− numbers of right siblings of C = 1
− the path P of C’s parent→ N = IN ↑ PP ↓ S
− the path P and whether the number of C’s left sibling is greater than one

= IN ↑ PP ↓ S and no
− the relative position of N to C = right

A.4 Features for the Explicit Classifier

− C string = after
− C’s POS = IN
− C + prev = billion after

B Features for the Attribution Span Labeler in Step 3

The following shows features extracted from Example 21 for the attribution span labeler.
The constituent parse of Example 21 is shown in Figure 11.

(21) ... averages,” declared San Francisco batting coach Dusty Baker after game two.
“I’d ...

− lowercased verb in curr = declared
− lemmatized verb in curr = declare
− the first term of curr = declared
− the last term of curr = .
− the last term of prev = ”
− the first term of next = “

34 Z. Lin et al.

SINV

“

“

S

NP

PRP

I

VP

VBP

believe

PP

IN

in

NP

NP PP

DT NN IN NP

the law of NNS

averages

,

,

”

”

VP

VBD S

declared -NONE-

T-1

NP

NNP

San

NNP NN NN NNP NNP

Francisco batting coach Dusty Baker

PP

IN NP

after NN CD

game two

.

.

Fig. 11. The constituent parse tree for Example 21.

− the last term of prev + the first term of curr = ” declared
− the last term of curr + the first term of next = . “
− the position of curr in the sentence = middle
− VP→ VBD S
− VBD→ declared
− NP→ NNP NNP NN NN NNP NNP
− NNP→ San
− NNP→ Francisco
− NN→ batting
− NN→ coach
− NNP→ Dusty
− NNP→ Baker
− PP→ IN NP
− IN→ after
− NP→ NN CD
− NN→ game
− CD→ two

A PDTB-Styled End-to-End Discourse Parser 35

Table 10. Syntactic categories from Knott (1996) for 100 discourse connectives in PDTB.

Syntactic category Discourse connectives

Discourse adverbial accordingly, additionally, afterwards, also, alternatively, as a result,
as an alternative, as well, besides, by comparison, by contrast,
by then, consequently, conversely, earlier, either..or, except, finally,
for example, for instance, further, furthermore, hence, in addition,
in contrast, in fact, in other words, in particular, in short, in sum,
in the end, in turn, indeed, instead, later, likewise, meantime,
meanwhile, moreover, nevertheless, next, nonetheless,
on the contrary, on the other hand, otherwise, overall, previously,
rather, regardless, separately, similarly, simultaneously, specifically,
still, thereafter, thereby, therefore, thus, ultimately, whereas

Coordinator and, but, else, if..then, neither..nor, nor,
on the one hand..on the other hand, or, plus, then, yet

Subordinator after, although, as, as if, as long as, as soon as, as though, because,
before, before and after, for, however, if, if and when, insofar as,
lest, much as, now that, once, since, so, so that, though, till, unless,
until, when, when and if, while

C List of discourse connectives and their syntactic categories

Table 10 shows the list of all discourse connectives in the PDTB and their corresponding
syntactic categories from Knott (1996).

