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ABSTRACT 
Many applications which use web data extract information from 
a limited number of regions on a web page. As such, web page 
division into blocks and the subsequent block classification have 
become a preprocessing step. We introduce PARCELS, an 
open-source, co-trained approach that performs classification 
based on separate stylistic and lexical views of the web page. 
Unlike previous work, PARCELS performs classification on 
fine-grained blocks. In addition to table-based layout, the 
system  handles real-world pages which feature layout based on 
divisions and spans as well as stylistic inference for pages using 
cascaded style sheets.  Our evaluation shows that the co-training 
process results in a reduction of 28.5% in error rate over a 
single-view classifier and that our approach is comparable to 
other state-of-the-art systems.  

Categories and Subject Descriptors 
I.7.m [Document and Text Processing]: Miscellaneous; H.5.4 
[Information Interfaces and Presentation]: 
Hypertext/Hypermedia. 

General Terms 
Algorithms, Experimentation. 

Keywords 
PARCELS, co-training, lexical and stylistic learners, web page 
division, web page block classification. 

1. INTRODUCTION 
Extracting fields from web data is becoming an increasingly 
important issue, especially in cases where agents need to 
interact, e.g., the Semantic Web. Unfortunately, web pages that 
use different HTML tags may result in similar layouts, and 
semantically similar pages may present information in different 
layouts. Due to this semi-structured nature of web pages and the 
mishmash of HTML coding, retrieving relevant information 
from web pages is a difficult task. 

A possible step towards a solution is web page subdivision and 
block classification, in which a page is first divided into blocks, 
and the blocks classified by some scheme.  Many algorithms 
benefit from using fine-grained blocks rather than uniformly 
processing the entire page.  These include ad blocking, mobile 
device presentation and information extraction. 

We present a PARser for Content Extraction and Layout 
Structure, or PARCELS, a system to perform the division and 
classification tasks using machine learning techniques. Unlike 
previous work, PARCELS uses a co-training model, adopting 
two independent views on block classification: one learner 
based on stylistic information and another based on lexical 
information.  PARCELS is also designed to process real-world 
web page targets, handling more recent features of HTML 
including cascading style sheets (CSS) and non-tabular layout 
(e.g., <SPAN> and <DIV> tags).   

In the following section, we discuss recent work in web page 
division/classification.  Our method is based on co-training, 
which we review in Section 3, along with a description of the 
features used in the stylistic and lexical learners.  In Section 7,  
we present our evaluation of PARCELS and compare it with 
previous work.  We conclude with a discussion of the 
PARCELS software distribution, its associated utilities and 
availability. 

2. RELATED WORK 
The problem of decomposing web pages into blocks for post 
processing has been an area of recent interest in the literature.  
In our understanding of the published work, web page fragments 
[8], blocks [14], elements [16], nodes [9] and shingles all refer to 
the idea of tiling the physical representation of a web page with 
smaller blocks, as in Figure 3.  In this paper, we follow the use 
in [1], using blocks to denote the divisions of a web page into 
semantic regions. These blocks often represent some logical 
division as governed by the application of interest, e.g., an 
advertisement image for ad blocking, or the main contents of a 
page for adaptive content delivery.  

To date, all related approaches that we have examined rely on 
the well-formed tree structure of the target page’s hypertext 
markup.  Although many real-world pages do not have well-
formed markup, this is easily (and often) fixed by first 
canonicalizing the page using a tool such as HTML Tidy1.  
Typically, the canonicalized markup is used to form a 
Document Object Model (DOM) tree.  The tree is then 
                                                                 
1 http://tidy.sourceforge.net/ 
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manipulated directly to search for layout related structures (e.g., 
table cells and paragraph tags) or indirectly through rule-based 
post-processing  [14][9].  PARCELS takes an identical pre-
processing approach by working with the canonicalized DOM 
structure tree. 

To our knowledge, all systems that have tackled the web page 
subdivision problem demonstrate their techniques on pages that 
do not utilize advanced HTML markup, avoiding pages that 
require Cascading Style Sheets (CSS) for correct font display 
and XHTML (e.g., <DIV> and <SPAN> tags) for advanced 
layout.  We have conducted a diachronic survey of online news 
sites, and the results indicate that the use of such technologies is 
gaining popularity and thus important. A web page division 
system geared towards real-world use needs to cope with these 
possibilities.  

Classification of blocks occurs next. In many ways, block 
classification is complementary to the problem of web 
information extraction (IE).  In the latter, the goal is to identify  
blocks of a web page with a particular meaning; in the former, 
the goal is to classify which meaning a particular block has. IE 
techniques, such as wrapper induction, allow a database system 
to extract relational data from an external resource by 
automatically creating the appropriate contextual patterns. 
These patterns often contain structural HTML tags (paragraph 
and list item tags) as well as specific lexical items (e.g., 
“price:”).  Block classification algorithms also take both lexical 
and spatial information into consideration. We feel that 
structural and lexical information both play a large role in block 
classification, although they are largely independent of each 
other. Learning-based block classifiers that use both types of 
features should take advantage of this dichotomy, but to our 
knowledge, they currently do not. 

Regardless of the division and classification approach, the 
comparative evaluation of approaches remains difficult. This is 
because division and block classification algorithms target 
different levels of granularity. A comparison requires a mapping 
of levels across systems.  For example, the block model in [8] 
and [9] feature only a binary classification (relevant or 
irrelevant) whereas [13] makes a case for a three-class model of 
relevance.  Since different applications may have different 
notions of relevance, we believe it is more useful to tackle the 
problem of block classification at a functional level (similar to 
Wong [14]) rather than assigning a numeric score of relevance.  

Given these weaknesses in the current work, our paper makes 
two main contributions: 

1. Our model explicitly takes advantage of the relative 
independence between structural and lexical information.  
We build upon prior work by introducing co-training as an 
additional layer in the classification process to achieve 
greater accuracy. 

2. The division algorithm used in PARCELS explicitly 
handles both advanced markup types, incorporating useful 
CSS / XHTML features into the same generic framework 
for standard web page division, such as the ones based on 
table structures. Proper CSS parsing is non-trivial as 
attributes can be embedded within the tag or encoded 
within a style sheet (either internal or external to the page).   

We also compare our work with a recently published system 
from the latest World Wide Web conference, with control for 
differences in division and block classification schemes. The 
results show our work comparable to the published system.  

3. CO-TRAINING 
Co-training [1], originally conceived for web page 
classification, is an iterative technique that decomposes a 
learning problem into two separate, independent views.  Co-
training is a bootstrapping process that gradually adds self-
labeled data into the supervised training pool. Each view of the 
problem is represented by features that are used to induce a 
simple classifier.  These classifiers are applied to unlabeled 
examples to annotate k examples from the unlabeled pool u.  
The self-labeled examples are added to the training pool for 
subsequent rounds and the two classifiers are re-trained for i 
iterations.  Conditional independence of the views has been 
advised, but recent work by Nigam and Ghani [7] casts some 
doubt on these assumptions.  In the original web page 
classification task, Blum and Mitchell [1] use features derived 
from the anchor text pointing to the target page for one view, 
and words on the target page as the other view.   

To apply co-training to web block classification, we use two 
separate views based on the stylistic and lexical properties of 
blocks, as shown in Figure 1. This approach is motivated by the 
observation that lexical elements alone can often be effective in 
classification.  So can structural elements: Shih and Karger [12]  
argue that the semantic structure of web pages is often obvious 
to users, even when written in an unfamiliar language.  Note that 
the anchor text view used in Blum and Mitchell’s work [1] is 
not helpful in block classification, as links to specific web page 
blocks are uncommon. 
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 Figure 1. Co-training flowchart. 

4. WEB PAGE DIVISION  
We divide HTML tags into two categories for the purpose of 
web page division using the DOM tree.  Structural tags are used 
to define and group semantically-related text, and are 
intermediate nodes in the DOM tree.  They subsume content 
tags which present the actual contents of the page. Tables, 
division and layer tags are thus structural tags whereas font 
formatting and list tags are content tags.  In PARCELS – since 
our goal is fine-grained classification – paragraph, image and 
text that flank a content tag are also structural elements; i.e., 
they result in separate blocks.   

PARCELS first does a pass over all of the leaf content tags, 
which are largely non-overlapping parts of the web page (with 
notable exception of layer tags and dynamic HTML).  Content 



tags are then associated with a proper container (i.e., the closest 
ancestral structural tag).  Leaf content tags that are associated 
with the same container are merged, as long as they are adjacent 
in the DOM tree.  This algorithm is shown in Figure 2. The 
calculation of a proper container makes our approach similar in 
spirit to Yin and Lee [16]. 

Input:  web page w;  
 lists s and c of structural and content tags; 
 maximum depth structural nesting depth d. 
Output:  list of blocks B. 
 
DOM_tree t := get_DOM_tree(tidy(w)); 
For each leaf node l (of type c) in t { 

Attach l to closest ancestor a (of type s) with max depth d; 
} 
For each intermediate node (of type s) { 
    Block b := Merge all adjacent attached leaf nodes; 

B = B + b; 
} 

Figure 2: Web page division algorithm. 
In HTML, control tags (e.g., tables) can be recursively nested. 
In practice, we rarely see more than four levels of nesting. As 
such, we set a maximum nesting for structural tags, beyond 
which the tags are ignored. This allows deeply-nested text to be 
attached to higher-level ancestors, which we believe is more 
likely to provide coherent meaning. The result of such a division 
process is shown in Figure 3 below. 

 
Figure 3: Web page after division.  Contiguous dark regions 

indicate a single block. 
Our division algorithm is simple and robust, and can be easily 
adapted to divide web pages according to other DOM-based 
methods.  A different inventory of structural and content tags 
can be substituted to result in more coarse-grained blocks for 
comparison. 

5. BLOCK CLASSIFICATION MODEL 
Resulting blocks need to be labeled. The choice of appropriate 
labels is conditioned on the needs of the post-classification 
application and the expected input.  We have chosen to classify 
online news pages by function. In a co-training framework, this 
corresponds to constructing two orthogonal sets of features for 
the separate learners l1 and l2. The choice of labels also 
influences feature design. We first discuss our classification 
scheme, and then turn to the features used in the stylistic and 
lexical learners. 

5.1 News page block classification  
There are three major reasons for our choice of online news as  
input:   
1. Complex design. News sites are highly trafficked as they 

contain important and timely information to users.  As 
such, news sites place an emphasis on the usability and 

density of information on their pages. These requirements 
are manifested in intricate layouts and result in tedious and 
human-incomprehensible HTML. News site layout also 
changes often, making other approaches such as wrapper 
induction particularly fragile.  These qualities make the 
news domain an attractive target: 1) news itself is 
important to extract for information aggregation services, 
and 2) the induced rules may apply to news sites evolving 
over time and to other simpler web page domains. 

2. Mixed levels of granularity.  A highly-structured domain 
such as news allows us to experiment with different 
granularity in classification.  News articles have specific 
features which are fine-grained fields that can be tagged, 
such as the article’s location, publisher and reporter’s 
name.  The articles themselves are often formatted to allow 
easy access to key sections of related news. This 
phenomenon occurs in many well-structured text genres.  
We capture the phenomenon by annotating these mid-level 
tags: subheaders and supporting contents.  Finally, coarse-
grained tags apply to most web sites, as in the 
differentiation between site navigation and article-specific 
content.  We have designed our classification with multiple 
levels of granularity to test PARCELS’ ability to capture 
coarse-grained tags as well as fine-grained ones. 

3. Related work. For the same reasons as the above, much 
previous work has been published on the extraction and 
tagging of news contents.  Working with comparable input 
allows us to compare our methodology with previous 
approaches. 

Label Description 
Main content  Main text of the article 

Title Headline of the article or phrase that 
summarizes the article 

Site links / navigation 
Links to other parts of the web site, 
including navigation bars, but unrelated 
to the article 

Search Text / links related to searching or search 
options 

Links supporting contents 
of article 

Hyperlink placed within the main content 
of the article 

Supporting content  Content related to the main article, (e.g., 
captions, sidebars) 

Supporting Image  Image related to the article’s contents  

Subheader Embedded section headers internal to the 
main article 

Site content Content unrelated to the article (such as 
disclaimers, copyrights) 

Site image Site-specific image unrelated to the 
article 

Advertisement* External site advertisements. Not internal 
(e.g., link to related sections) 

Links to related article* Hyperlinks to other related articles (other 
reports on similar topics)  

Newsletter* Text / links related to newsletters or 
email alerts   

Location* Location where event occurred 
Date / Time of article* Date and time the article was published 
Source station* Source / provider / broadcast station  
Reporter name* Author of the article 

Table 1: PARCELS news domain classification. Fine-
grained classes are marked with the asterisk (*). 



After examining over 10 online news sites, we defined 17 tags 
to model observed commonalities, as given in Table 1. As some 
blocks may demonstrate more than one class (e.g., the lead 
paragraph of an article may contain the location where the event 
occurred), we asked annotators to mark the most salient one. 
We labeled 20 documents from 15 different news web sites for 
classifier training, using a visual annotator (part of the 
PARCELS toolkit), giving a total of 1,625 labeled blocks. As 
one might expect, the distribution of the different tags in the 
data set was skewed considerably, with site navigation and main 
content blocks comprising almost 50% of the corpus. Details on 
the distribution of the corpus are given in Table 2. To create the 
unlabeled data set for our experiments, we further downloaded 
50 news documents from 45 news web sites by selecting them 
from sources gathered from the Google News2 service.   

Class label Frequency in 
corpus 

 Class label Freq. in 
corpus 

Site Nav. 479 (29.5%)  Newsletter 30 (1.8%) 

Main Content 309 (19.0%)  Title 20 (1.2%) 

Site Content 150 (9.2%)  Content Image 16 (0.9%) 

Search 141 (8.6%)  Timestamp 14 (0.8%) 

Ads 134 (8.2%)  Reporter 9 (0.5%) 

Related Links 118 (7.2%)  Country 6 (0.3%) 

Site Images 74 (4.5%)  Source 6 (0.3%) 

Supp. Content 63 (3.8%)  Content Link 3 (0.1%) 

Subheaders 53 (3.2%)    

Table 2: Class distribution in the corpus, sorted by 
frequency. 

5.2 Stylistic features 
Stylistic features in PARCELS cover features that encode 
information about the block’s placement on the page and its 
appearance.  Our parser parses the stylistic properties of each 
block of text based on some of the design trends today [6]. We 
cover placement features first.  Unlike some approaches that 
retrieve the x,y location of an element from a browser’s internal 
DOM tree [16], our approach is browser-agnostic.   
Authors of web pages have three major control structures to 
spatially lay out blocks on a stand-alone3 web page: a default 
linear style, tabular formatting and layer formatting. As such, 
PARCELS first attempts to identify the prevalent system used.  
This is done by taking an inventory of tabular and division tags 
present in the topmost levels of the DOM tree. Our data analysis 
shows that <TABLE> and <DIV> tags used close to the root of 
the DOM tree have a strong correlation respectively to tabular 
and layer-based markup. This validates earlier findings [5].  

                                                                 
2 http://news.google.com   
3 Control structures that use multiple web pages, such as frames, 

are beyond the scope of the work presented here. 

Once the layout control system is identified, an appropriate 
subsystem is called to parse the page.  As both tabular and 
division-based layouts degenerate to the simple linear style 
when table, CSS and XHTML tags have been processed, both 
the tabular and division-based parsers internally invoke the 
linear parser for finer- grained blocks within the web page.   

5.2.1 Linear structure 
Paragraph (<p>), header (<h1>-<h6>) and rule tags (<hr>)  
specify the basic unit for a block of text.  Consecutive paragraph 
tags constitute separate blocks for our task, in contrast to earlier 
work which tends to view a span of paragraphs as a single 
block.  The resulting fine-grained blocks are necessary for 
semantic classification. Use of coarser-grained blocks tends to 
conflate many classes. The power of fine granularity 
classification comes with a price: the number of words in an 
average block is much lower than in other division models, 
which affects the classification power of the lexical view in the 
learning model. 

5.2.2 Table Structure 
Tables are the most widely used control structure on the Web.  
Initially introduced to present data in tabular format, the table 
has evolved into a formidable control structure and has been 
extensively analyzed by researchers.   

Hurst and his colleagues have analyzed data tables in scientific 
texts [2][3][4]. We follow their formalism by introducing 
features that model the 1) reading order (or cell flow) of table 
elements, 2) the implied semantics of adjacent data values and 
3) the implied semantics of table cell positions: 

1. Features for cell flow refer to how each cell is positioned 
next to another in their parent table and how each table is 
positioned within the nested parent table. These features  
may provide extra information that help to classify cells 
correctly. 

2. In [3], Hurst implies that the data of neighboring table cells 
can help determine a particular cell’s data type.  As cells of 
the same data type are often closely related, this affects 
how a table as a whole is intended to be read. In 
PARCELS, we model this by introducing a feature that 
groups cells in the same row or column together if they 
have similar data types.  Data type in this context is 
determined by the cell’s type of data and its word density, 
where applicable. Type of data is determined by the text in 
the cell. If the text in a particular cell is all numeric, it 
would be different from another group of cells which are 
words. Similarly, word density refers to the number of 
words that particular cell contains with respect to the whole 
page. It indicates the importance of a cell in terms of word 
density. 

3. The position of table cells is equally important. We have 
created features that encode each cell’s visual position. 
These features enable us to infer the cell’s position with 
respect to any nested table or the parent table itself. Using 
the position of the cells and their stylistic properties, we 
can determine whether a row or a column of cells are 
header cells and such.  Finally, as nested tables are a very 
common phenomenon in this process, we have added an 
additional feature to model cell depth.  



5.2.3 XHTML/CSS Structure 
In contrast to table cells, divisions and spans can be laid out 
independently.  These structures are often used to impose 
logical structure and reading order on the elements of the page.  
CSS tags allow both division and spans to inherit either relative 
or absolute positioning features that also need to be encoded. 
For pages that use these tags, percentages as well as absolute 
pixel settings can be used for setting the height or the width of 
divisions. Absolutie pixel positions need to be converted to 
percentages. This is done by finding the maximal x,y position 
for any cell on the page, and normalizing the position of all 
other cells against this coordinate.   

XHTML also allows the layering of overlapping elements using 
a CSS attribute, z-index. Overlap affects classification as 
content is placed over background images, and advertisements 
occasionally float over the main page.  As such, the z-index is 
also modeled in our layout features. 

5.2.4 Font features 
The textual formatting of text may affect its classification.  For 
each block, we derived features that model its words’ color, 
weight, family, size and hyperlink features. Instead of capturing 
their value directly, we model the relative difference from the 
page’s median values. For example, we target to learn that 
larger fonts than normal (rather than learn that a specific font 
size) indicate subheaders and titles. Learning relative 
differences helps to make the learned model more portable to 
new, unseen web pages. 

5.2.5 Image features 
Web blocks often feature images in the form of either web page 
decorations or content features. We model their sizes (where 
available) and number of images within a block.   

5.3 Lexical Features 
The lexical view receives only the string of tokens present in a 
web page block. PARCELS first calculates low-level features 
based on the words themselves and their statistical properties.  
To model the linguistic and functional properties of the web site, 
PARCELS also calculates high-level features, consisting of the 
part-of-speech (POS), types of hyperlinks and image counts for 
a span of text. 

5.3.1 Low-level features 
We have provided the learner with two basic features to model 
the count and vocabulary of the words present in the text block.  
We first extract text that appears in the browser by extracting 
any  alt text from image tags and then removing any 
remaining HTML tags. The resulting words are stemmed using 
Porter’s stemmer and the stems are used as features for 
classification. Fine-grained classes (e.g., newsletter and search) 
often have a set expression or vocabulary that makes them 
distinguishable.  The weight of each word is set in accordance to 
its TF×IDF (term frequency × inverse document frequency) [10] 
score, in which the IDF component has been pre-computed from 
a separate corpus.  

5.3.2 High-level features 
To perform part-of-speech (POS) tagging, we utilize QTAG4, 
which uses a simplified variant of the common Penn Treebank 
tag set. Ratios of each part of speech tag count relative to the 
total are provided.   This results in 32 POS-related features. For 
certain common POS, we provide aggregate POS features as 
well (e.g., a noun ratio adds the separate plural and singular 
noun ratios together). 
The lexical features include four link-related features: mailto-
links, image-links, text-links and total-links.  mailto-links refers 
to the number of links containing the string “mailto:” which 
implies feedback / email functionality. image-links refers to 
links which point to images (quite distinct from the stylistic 
vector’s image tag count). This can help identify thumbnails that 
point to larger versions.  The remaining links are counted as 
normal text-links.  The sum total of all three link types is given 
in the aggregate feature total-links. 

6. CO-TRAINING WITH BOOSTEXTER 
In performing co-training, an appropriate machine learner must 
be selected. In PARCELS, we employ Boostexter [11] as it is a 
multi-class learner that handles both numeric and textual 
features. Boostexter is an ensemble learning method which 
combines a set of weak classifiers to determine an input vector’s 
classification.  In a series of rounds, a new weak learner is 
induced over the training data, in which the tuples that have 
been incorrectly labeled from the previous round are more 
heavily weighted for the current round.  Boostexter’s weak 
learner corresponds to a decision stump, in which a single 
feature is used for discrimination. 
As Blum and Mitchell’s original work [1] is applicable only to 
binary classification problems, we have adapted the original 
algorithm to a multi-class setting.  In the original algorithm, the 
number of self-labeled positive and negative examples that are 
added to the training data is determined by their initial 
distribution in the training data.  This is to prevent skewing  
training data distribution during co-training iterations.  In the 
multi-class problem, we also attempt to do the same, adding 
self-labeled instances from each class in the same proportion as 
in the initial distribution. We round up any fractional values to 
whole tuples, as many of the classes make up a small fraction of 
the corpus, and would otherwise not contribute a self-labeled 
example in subsequent rounds. 
We make one further modification to the co-training algorithm. 
In the original algorithm, the k most confident self-labeled 
examples are replaced by k new examples from the unlabeled 
pool.  As unlabeled data is inexpensive to prepare, we simplify 
the step by replacing the entire unlabeled pool of u examples at 
each round.  Having a fresh set of unlabeled examples is likely 
to improve classifier accuracy (assuming the examples are 
drawn from the same distribution) as self-labeled examples that 
are not chosen at each round are not reconsidered in later 
iterations. 
To create a combined classifier, the confidence of output labels 
of both the stylistic and lexical classifiers are compared, and the 
classifier with the higher confidence is used as the final label. 

                                                                 
4 http://web.bham.ac.uk/O.Mason/software/tagger  



7. EVALUATION 
To assess the performance of PARCELS and validate our 
claims, we have performed the following experiments: 
1. We first assessed the co-trained classifiers with the 

scenario specified in the paper (e.g., using fine-grained 
block division, followed by block classification into the 17 
categories. We compared the performance versus a single 
Boostexter-based classifier which used both the lexical and 
stylistic features together. 

2. To assess how PARCELS performs on web pages that use 
advanced XHTML and CSS tags for layout, we conducted 
a separate evaluation with a corpus of web pages that 
specifically use CSS.   

3. Finally, we compared our work with previous work which 
uses coarser-grained classification.  In particular, we 
compared our work against another news web block 
classification system: Song et al.’s three-level model (i.e., 
unrelated, topically related and important).  

We used the standard measures of error rate to gauge the 
performance of the overall system, and the F1 measure (defined 
as the harmonic mean between precision and recall) to capture 
performance on individual classes. We carried out all 
experiments using five-fold cross-validation, in which five 
independent training and testing splits were used to minimize 
noise. Throughout our evaluations, we determined an optimal 
number of rounds of boosting to be applied through cross-
validation. 

7.1 Basic Performance 
For the first experiment, we assessed the classifiers’ 
performance on the basic data set mentioned in Section 5.1. The 
default hypothesis corresponded to using the most frequent class 
in the training data as the label for every example.  Site 
navigation was the most frequent class, corresponding to 29.4% 
of the training data.  This resulted in a baseline error rate of 
70.6%. Using the single-view model in which all features (both 
stylistic and lexical) were used, the learned Boostexter classifier 
improved the error rate to 35.0% percent. 
Separate stylistic and lexical learners had access to only a subset 
of the combined classifier, and as such, we expected them to 
perform worse. Surprisingly, they both outperformed the single-
view model, achieving 33.2% and 32.5% error for the lexical 
and stylistic classifiers alone (respectively). Also surprisingly, 
the combined classifier (which used the label of the most 
confident classifier) fared worse than either of its component 
classifiers and the single-view model, with a 38.4% error rate. 
As mentioned earlier, co-training allowed us to incorporate self-
labeled examples from unannotated data to improve 
performance on the test set. We used our previously 
downloaded set of 50 web pages for the co-training iterations, 
comprising  slightly over 6,000 separate blocks. In each round, 
300 blocks were self-labeled by the machine learners (this is the 
u parameter, the size of the unlabeled pool), and the 20 most 
confident examples (the k parameter) were added to the training 
data.  These changes contributed at most a 20/1200 = 1.6% 
increase in the size of the training data per round. We co-trained 
for 20 rounds (parameter r) to exhaust the unlabeled data. The 
plot of the error rate versus co-training iterations is shown 

below in Figure 4.  In the figure, the leftmost values correspond 
to the performance without co-training (round 0), and are the 
same as those mentioned in the above paragraph. 
Similar to [1], we see that over a number of iterations, co-
training did improve the performance of the classifier. All three 
learners benefited from the co-training process.  The reduction 
in error rate for the classifiers was 35.8%, 6.1% and 34.8% for 
the lexical, stylistic and combined classifiers, respectively 
(averaged over five folds of cross validation). This result 
validates our hypothesis that co-training does improve learner 
performance in the domain of web block classification.  The 
combined classifier achieved a 28.5% reduction in error rate in 
comparison with the single-view model. The lexical classifier 
exhibited both the smoothest and the best percentage 
improvement.  We believe that this is due to the variety of 
different vocabulary exhibited on the web pages for each of the 
categories.  The self-labeled data gathered from the stylistic 
learner may be able to help the lexical learner pinpoint key 
words that are discriminative.  
How does PARCELS do on individual classes? We investigated 
the results on the combined classifier. In short, it performed 
satisfactorily on major classes, but disappointingly, it did not 
achieve our goal of fine-grained classification at any level. 
PARCELS is able to detect main content, site navigation and 
search bars well, but fails to annotate any of the fine-grained 
classes.  
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Figure 4: Error rate per co-training iteration for the 

learners with five-fold cross validation, for i=20, k=20, 
u=300. 

Table 3 shows the effect of co-training on per-class detection.  
While co-training helped to improve the performance of the 
common classes, the performance of the smaller classes 
decreased.   

Iteration 1  Iteration 20 

Label F1  Label F1 

Main Content .829  Main Content .892 

Site 
Navigation 

.705  Site Navigation .816 

Search .509  Search .703 

Site Content .282  Site Content .148 

Related Links .276  Related Links .071 

Site Image .195    

Content Image .118    

Table 3: Per-class F1 performance of the combined classifier, 
at iteration 1 (left column) and iteration 20 (right column).  

All other classes obtained an F1 of 0. 



We feel that the performance of PARCELS on coarse-grained 
tags is acceptable and serves as a  motivation for us to further 
our work. PARCELS’ failure to detect fine-grained classes 
forces us to re-evaluate our approach to fine-grained class 
detection.  Perhaps part of the cause for the failure is the 
relatively small number of examples of fine-grained classes in 
the corpus. It is also likely that the feature set currently in 
PARCELS is better suited for coarse-grained classes. We 
hypothesize that contextual features (i.e., features of 
neighboring blocks) and higher-level lexical features (e.g., 
named entities for location and reporter name) would assist in 
the detection of these classes. Further modeling of features 
similar to those used in wrapper induction (i.e., encoding of the 
XPath to the block) may also help address this limitation. 

7.2 XHTML/CSS Performance 
To assess PARCELS’ performance on XHTML / CSS-based 
data, we performed a separate experiment using data gathered 
from news sites using XHTML and CSS-based layout. This 
corpus was smaller, comprising a total of five documents that 
were also manually annotated. This process resulted in 499 
labeled blocks, with a distribution as shown in Table 4. We also 
downloaded a set of six unlabeled documents, resulting in 800 
unannotated blocks to be used for unsupervised co-training.  
Main content was the most frequent class, corresponding to 
17.6% of the training data, and a baseline error of 83.4%. Using 
the single-view model in which all features (both stylistic and 
lexical) were used, the learned Boostexter classifier improved 
the error rate to 33.3%. 

Class label 
 

Freq. in 
corpus 

 Class label 
 

Freq. in 
corpus 

Main Content 88 (17.6%)  Search  12 (2.4%) 
Site Content 80 (16.0%)  Supp.Content 12 (2.4%) 
Site Nav. 70 (14.0%)  Content Img. 6 (1.2%) 
Related Links 66 (13.2%)  Title 4 (0.8%) 

Subheaders 39 (7.8%)  Newsletter 4 (0.8%) 
Content Links 33 (6.6%)  Reporter 3 (0.6%) 
Site Images 30 (6.0%)  Country 1 (0.2%) 
Ads 30 (6.0%)  Source 0 (0.0%) 
Timestamp 21 (4.2%)    

Table 4: Class distribution in the XHTML/CSS corpus. 
The separate stylistic and lexical engines performed worse than 
the single-view model before co-training, achieving error rates 
of 39.7% and 39.5% respectively for the stylistic and lexical 
views. The combined classifier again did poorer than either of 
its component classifiers, achieving an initial error rate of 
42.3%. Using parameters similar to those in Section 7.1 to 
achieve the same 1.6% increase in training data size per 
iteration, co-training assisted in improving the overall accuracy 
of the separate learners but did not improve over the single-view 
model. One possible reason is that we simply did not have 
sufficient unlabeled data for co-training to work in this scenario. 
In the previous experiment, unlabeled data outnumbered labeled 
training data in a 4:1 ratio, whereas only a 2:1 ratio was 
achieved in this experiment. This is due to the difficulty in 
finding web sites that currently use the XHTML/CSS model for 
layout. We conjecture that a larger corpus of unlabeled data may 

reduce the error rate. Figure 5 shows the effect of co-training on 
error rate over nine iterations. 
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Figure 5: Error per co-training iteration for XHTML/CSS 

only data, where i=9, k=10 and u=70. 

7.3 Comparative Performance 
Song et al. [13] have also tackled a similar problem of web page 
block division and classification. Their final experiments 
classified blocks into a three-level model of block importance. 
The first level was used to annotate noisy information: 
advertisement, copyright and page decorations. The middle 
level (denoted as Level 2/3 in their paper) encompassed “useful 
information but not very relevant to the topic of the page”, as 
well as other “relevant information to the theme of the page but 
not with prominent important”. This included site navigation, 
related topics and topic indices. The final level labeled the most 
prominent parts of a page, such as headlines and main content.  
For comparison, we modified our block segmentation algorithm 
to segment the page into a larger granularity similar to the 
original VIPS algorithm [18] used by Song et al. VIPS uses 
visually coherent parts in the page that sometimes are not 
possible to model using dominating nodes in the DOM tree. As 
a result, we could not divide the web page with the same model 
as theirs, but instead approximated their division algorithm by 
setting our system to create coarser-grained divisions.  

Importance Level Frequency in corpus 
Level 1 (least important) 118 (65.9%) 
Level 2 43 (24.0%) 
Level 3 (most important) 18 (10.1%) 
Table 5: Class distribution in the corpus using the three-

level annotation model of Song et al. [13]. 
After segmentation, we re-annotated our training data according 
to their three-level system. The distribution of the three classes 
is shown in Table 5. With the annotated data set, we assessed 
the classifiers’ performance. The default hypothesis, which 
predicted Level 1 resulted in a baseline error of 34.1%. The 
single-view model using both stylistic and lexical features 
achieved an error rate of 19.5%, in comparison to Song et al.’s 
approach, which achieved an error rate of 14.1%, 18.9% and 
16.2% using  different machine learning models. As such, we 
believe our system is comparable, as we did not tune our system 
over through the application of different machine learners. 
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Figure 6:Error per co-training iteration on the three-level 

annotation model, using i=20, k=4 and u=40. 
Co-training seems to be ineffective in this final scenario. We 
followed the same experimental procedure as in the previous 
experiments, keeping the ratio of self-labeled examples added to 
the training data pool balanced. However, the learners did 
benefit from the results of the co-training process. After 20 
rounds of co-training that exhausted the unlabeled data set, we 
saw no apparent gain in performance; rather, the error rate 
increased.  While the combined learner started with an error rate 
of 21.1% and ended with 17.6% error, the general trend over the 
iterations did indicate significant performance improvement. We 
plan on conducting further analysis to pinpoint the cause.  

8. CONCLUSIONS AND FUTURE WORK 
We have demonstrated PARCELS5, an open-source, trainable 
system for web page division and block classification.  We used 
a co-training model to leverage unlabeled data for partially 
unsupervised learning, and showed that it improves performance 
for our main task of block classification, achieving an overall 
error rate reduction of 28.5% over a single-view learner which 
used both stylistic and lexical features together in its feature set. 
Having separate co-trained learners improved performance on 
the basic stylistic and lexical learners for our fine-grained block 
division model.  However, co-training failed to improve results 
over the single-view learner in our extended experiments.  At 
this point, we have some plausible explanations why the co-
training model did not improve upon the basic system, and plan 
to test these hypotheses in our on-going work.   
Current work in PARCELS includes improving the quality of 
features used in classification.  We plan to add modules to 
handle link structure [15] and common cross-document structure 
[8][17] to improve performance. Complex web sites often use 
content management systems that generate templatized HTML 
that is structurally common between web pages. Our planned 
module comprise of another view that models the web page in 
the context of its immediate community of pages.  
Our current version of PARCELS is unable to perform fine-
grained classification, in which specific fields, such as reporter’s 
name, location and date/time are to be annotated. This tells us 
that our current framework is unsuited for information 
extraction use.  We plan to focus on the annotation of these 
classes by using more powerful features such as those based on 
XPath, and using a machine learner that is more effective in 
modeling minority classes in multi-class scenarios (e.g., cost 
factor settings in SVM). 

                                                                 
5 http://parcels.sourceforge.net/  
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