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Abstract—Web information is increasingly used as evidence
in solving various problems, including record matching. How-
ever, acquiring web-based resources is slow and can incur other
access costs. As such, solutions often acquire only a subset of
the resources to achieve a balance between acquisition cost and
benefit. Unfortunately, existing work has largely ignored the
issue of which resources to acquire. They also fail to emphasize
on the hierarchical nature of resource acquisitions, e.g., the
search engine results for two queries must be obtained before
their TF-IDF cosine similarity be computed. In this paper, we
propose a framework for performing cost-sensitive acquisition
of resources with hierarchical dependencies, and apply it to
the web resource context. Our framework is versatile, and we
show that a large variety of problems can be formulated using
resource dependency graphs. We solve the resource acquisition
problem by casting it as a combinatorial search problem.
Finally, we demonstrate the effectiveness of our acquisition
framework on record matching problems of different domains.

I. INTRODUCTION

There are many real-life problems in which the given
information is either insufficient or incomplete. Therefore,
an increasing number of solutions elect to acquire additional
information from external resources, such as by querying
the web through a search engine, to achieve a better solu-
tion quality. Such works solve problems in vastly different
application areas, and many of these solve problems (or
subproblems) that can be seen as record matching. Examples
include: the matching of entities to concepts in ontology
creation [1], measuring semantic similarity between words
[2], social network extraction [3], record linkage [4], author
name disambiguation in bibliographic citations [5], and web
people search [6]. All of these works demonstrated that
acquiring additional information through a search engine
resulted in increased matching effectiveness. However, ac-
quiring such web information is time consuming due to
slow web accesses and rate limiting by search engines, and
can entail other access costs. This can cause significant
bottlenecks unless web resources are acquired selectively,
yet existing work has ignored this issue to a large extent.
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A way to limit the cost of resource acquisitions is by
blocking, which filters out obvious mismatched record pairs
before performing matching on the remainder (e.g., [7]).
Successful applications of blocking achieve a reasonable
task performance with a greatly reduced number of pair-
wise matchings [8], which can reduce resource acquisitions
significantly. However, blocking techniques are often ad-hoc
and domain-specific, and can be difficult to define properly;
poor blocking decisions can degrade performance [8].

On the other hand, there is also a large pool of work
that formulates such resource acquisition problems into
selective and cost-sensitive acquisition of missing attribute
values in a classification model (e.g., [9], [10]). While such
works provide more principled acquisition algorithms, they
generally assume that each attribute value in each instance
is an independent resource. However, this is not true in the
web resource context, e.g., the hit count (number of web
pages matching a query) for a query a can be a common
attribute value for all pairwise instances that compare a with
another item. Also, such works ignore possible hierarchical
dependencies between resource acquisitions, e.g., acquiring
the hit count of a requires first acquiring the search engine
results of a, and these search engine results can also be used
to generate other attribute values such as similarity metrics
between a and some other query.

Our contributions in this work are as follows: 1) We
propose a framework for performing cost-sensitive resource
acquisition problems with hierarchical dependences, through
the use of a resource dependency graph. Our framework is
versatile and can apply to a large variety of problems, and we
show that a number of problems involving selective resource
acquisitions can be formulated using resource dependency
graphs. 2) Given a resource dependency graph of a record
matching problem, and a benefit function that measures the
goodness of making resource acquisitions, we propose an
algorithm for making resource acquisitions that take the
unique characteristics of such graphs into account. We solve
the problem by applying the widely-studied Tabu search
algorithm [11].

This paper is organized as follows. In Section II, we
first review related work. Section III describes our cost-
sensitive resource acquisition framework and its possible



applications. In Section IV, we propose an algorithm for
solving the resource acquisition problem in the context of
our framework. In Section V, we explain the benefit function
we use for record matching problems. In Section VI, we
evaluate the effectiveness of our acquisition framework,
before concluding the paper.

II. RELATED WORK

Record matching is widely studied and several papers
have surveyed approaches to it (e.g., [7], [12]). Here, we
only focus on related work that utilizes web information
to perform matching tasks. Again this idea is not new and
hence we only survey a representative sample.

In [1], an ontology building system is created to match
the entities extracted from an input document D to a list of
concepts. For an entity e € D and a concept ¢, the system
submits queries formed by e concatenated with patterns
associated with ¢ to a search engine. Concept ¢ then gets
a vote if the similarity of a retrieved snippet and D exceeds
a threshold. Finally, e will be associated with the concept
with the highest number of votes.

In [2], the semantic similarity between two words a and
b is measured by first obtaining hit counts from the three
queries a, b, and a A b. Using these hit counts, web versions
of similarity metrics can be computed. The values of these
metrics then become attribute values in a test instance which
is classified using a SVM classifier.

In [4], a framework for finding matching entities in an
input list is given. A representative token ¢, is selected from
the input, and then the search engine is queried with the
query e A t. for each entity e in the list. Extensive ex-
perimentation is performed using various similarity metrics
computed from hit counts, snippets, and web pages.

Through these sample works (and many others, e.g., [13],
[3], [14], [6]), a clear pattern can be seen. To perform
record matching, queries of the form a, b, and @ A b are
issued to the search engine for some or all record pairs a
and b in the input. Optionally, these queries can be further
augmented with additional terms or tokens ¢, thus we may
query with a A t instead of just querying a. Then similarity
metrics or other information such as frequency counts may
be extracted from the search engine results, which may be
used standalone or combined to form test instances for a
classifier such as a SVM.

However, obtaining search engine results and download-
ing web page are time consuming processes. Further, certain
search engines perform rate limiting and restrict the number
of queries one may make in one day. For example, Yahoo!
Search has a daily quota of 5,000 queries. However, even
two lists of 100 items each can generate 10,000 pairwise
queries of the form aAb, which requires two days. As such, it
is necessary to acquire web resources in a selective manner.
In our earlier work, we considered an adaptive querying
framework [15] where an algorithm stronger in matching

performance is combined with another algorithm faster in
running time to produce a combined algorithm with good
performance and with reasonable runtime. In the context of
this paper, we can cast these two algorithms as producing
two different attributes for test instances.

A related problem is the cost-sensitive acquisition of
missing attribute values in instances (e.g., [9], [10]), if we
see missing attribute values as a kind of resource. However,
in record matching problems, different instances often share
common attribute values or have attribute values derived
from some common resources, and such works do not
consider this aspect. [16] solved a clustering problem ex-
pressed as a complete graph, where additional web resources
can be acquired and added as additional vertices in the
graph. However, they only considered one kind of additional
resource (search engine results) and did not account for
varying acquisition costs that differing resources may incur.
Further, all of these cost-sensitive acquisition works do not
consider hierarchical dependencies among resources, e.g.,
web page downloads require acquiring search engine results
first. To the best of our knowledge, our work in this paper
is the first to generalize the resource acquisition problem to
handle the conditions modeled in our framework.

III. RESOURCE ACQUISITION FRAMEWORK

In this section, we define our cost-sensitive framework,
which is designed to handle many kinds of resource ac-
quisition problems, including record matching problems
involving web-based resources. Central to our framework is
the notion of a resource dependency graph. We illustrate
how resource dependency graphs can be constructed for
a large variety of problems. We propose an algorithm for
solving the acquisition problem in Section IV.

A. Our Framework

To make our description concrete, we use an instance of
record linkage as a running example. Here, the input are
two lists A and B, and the aim is to determine which
record pairs (a,b) € A x B are matches. As shown
earlier, we may query a search engine with the queries a,
b, or a A b, and obtain raw search engine results which
we denote as search(a), search(b), and search(a A b)
respectively. We can then extract information from these
search engine results, and construct a test instance X, to
be classified as a match or mismatch by a classifier. For
concreteness, we assume that x, ; has four attribute values:
hitcount(a), hitcount(b), hitcount(a A b), and dice(a,b).
The first three are the hit counts returned by the search
engine in search(a), search(b), and search(a A b) for the
respective queries; and the fourth is the Dice coefficient
dice(a,b) == ‘2<hitcountl(a‘/\b) )

itcount(a)+hitcount(b)

In this example, we consider each of search(a),
search(b), search(a A b), hitcount(a), hitcount(b),
hitcount(aAb), and dice(a, b) as a different type of resource
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Figure 1. Structure of example resource dependency graph.

that may be acquired. The acquisition costs of different re-
sources may not be uniform, e.g., querying a search engine to
obtain search(a) takes significantly longer than extracting
hitcount(a) from search(a) after it is acquired. Also, the
classifier may classify an instance correctly with only a
subset of its attribute values acquired. Further, some resource
acquisitions have dependencies, e.g., acquiring hitcount(a)
requires search(a) to be acquired first. These dependencies
can be captured in a resource dependency graph.

Definition 1. A resource dependency graph is a directed
acyclic graph G = (V, E), where each vertex in the vertex
set V represents a resource, and an edge u — v exists in the
edge set F if resource v must be acquired before resource v
can be acquired. A subset V' of the vertex set V is called a
feasible vertex set if for all vertices v € V', u — v implies
that u € V'. We denote the set of all feasible vertex sets in
the graph G by F(G), with F(G) C 2V.

In other words, a vertex may be acquired only after all
its ancestor vertices are acquired, and a feasible vertex set
can be acquired as it is without violating any acquisition
dependencies.

Resource dependency graphs for record matching prob-
lems exhibit some regularity in its structure, which allows
us to present them in a compact manner using a variant of
the plate notation regardless of the size of the input lists.
The resource dependency graph of our running example is
presented in Figure 1. Here, the dashed box indicates the
vertices that form the attribute values of the test instance
Xa,p,» and the solid box labeled a indicates that the vertices
inside the box are common to all instances involving a, and
likewise for the solid box labeled b. Hence, there are |A|
vertices of the form search(a) as opposed to |A| x |B]
vertices of the form search(a A b). Observe how some
resources are common to multiple instances, e.g., for each
a € A, hitcount(a) is common to |B| test instances.

Definition 2. A resource acquisition problem takes in the
following as input:
o A resource dependency graph G = (V, E).
e An acquisition cost function cost : V. — RTU{0}. We
assume that cost(v) = 0 for any acquired vertex v.
o A benefit function benefit : F(G) — R. We assume

that benefit(()) = 0 and benefit(V') = benefit(V,),
where V,, is the set of unacquired vertices in V.

e A vertex type function type : V. — T, where T is a
finite set of vertex types.

The aim of the resource acquisition problem is to ac-
quire a feasible subset of vertices V' € F(G), with
cost(V') < budget, such that the objective function
obj (V") = benefit(V') — cost(V') is maximized.

In our running example, there are six vertex types,
corresponding to search(a), search(b), search(a A b),
hitcount(a), hitcount(b), hitcount(a A b), and dice(a,b).
Depending on problem requirements, we can scale the
acquisition costs and benefit values appropriately. Because
search engine results take significantly longer to acquire
compared to extracting hit counts, we may set the acquisition
cost of a search(-) vertex to be greater than any other vertex.
Also, as a classifier can only understand and process the
attribute values in test instances, it cannot directly utilize
the raw search engine results search(a), search(b), and
search(a A b) since they are not part of the attribute values.
Therefore, these vertices will have zero benefit value.

In most problems, we can assume that the resource de-
pendency graph and the acquisition cost function are known
and fixed. However, the benefit function is typically only
a heuristic that approximates the true performance metric
of the problem, as knowing the true metric entails knowing
the solution. For example, in a record matching problem,
we may want to minimize the total misclassification cost or
to maximize the F'-measure, but the benefit function may
just return an estimated increase in classification confidence
instead. In this paper, when we devise an algorithm for
solving the resource acquisition problem, we treat the benefit
function as a black box. Nonetheless, applications of our
resource acquisition framework require a benefit function,
and we explain the benefit function we use for record
matching problems in Section V.

B. Applications

As resource acquisition problems can be modeled as
resource dependency graphs, our framework can be applied
to various scenarios. Our framework is not restricted to
classification problems, as long as we have a benefit function
that indicates how useful vertices are. We now suggest
how resource dependency graphs can be constructed for
record matching problems with other types of resources and
attributes, as well as for a clustering variant.

Term frequencies obtained from web pages. Term
frequencies (TF) and TF-IDF values from web pages are
commonly used in record matching applications. Here, for
a query ¢, we can add two types of resources: webpage(q),
representing the set of web pages that may be downloaded
from the URLs in the top-k search engine results of
search(q); and tf(q), representing the term frequencies of
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Figure 2. Alternative structure of example resource dependency graph.

the terms found in the downloaded web pages webpage(q).
Here, webpage(q) depends on search(q), and ¢ f(q) depends
on webpage(q). The term frequencies in ¢f(-) can then be
used as attribute values in the test instances. If TF-IDF
values are desired instead, then the ¢f(q) vertices can be
replaced by tfidf(q) vertices, with the IDF values pre-
calculated when the classification model is trained. Another
alternative is to compute the cosine similarity between the
term frequency or TF-IDF vectors; such cos(a,b) vertices
can be added to the resource dependency graph easily.

Common n-grams. The queries formed from a list
of records may contain many common contiguous sub-
sequences of tokens, or n-grams. Querying on these n-
grams may return results for most or all of the original
list queries, allowing us to make fewer queries compared
to making the original queries individually [15]. As such,
we may construct a vertex search(g) for each frequently
occurring n-gram g, with additional vertices wvalue(q, g)
for information extracted from search(g) pertaining to the
original query q.

Clustering. Another form of record matching takes in a
list L as input and determines which record pairs (a,b) €
L x L are matches. The resource dependency graph can
be constructed similarly. However, instances in clustering
problems are symmetric, i.e., X, and x; , are equivalent.
Hence, hitcount(a) and hitcount(b) make poor attribute
values since their positions are interchanged in x, ; and Xy 4,
confusing classifiers such as linear SVMs. Instead, we can
consider using the smaller and larger of hitcount(a) and
hitcount(b) as attribute values.

C. Observations on Graph Structure

We make some observations on the structure of resource
dependency graphs for record matching problems involving
web resources.

We first observe that a resource dependency graph for
web resource acquisitions typically has only 2 to 4 levels.
Furthermore, these resource dependency graphs can be col-
lapsed into 2 levels, where the root level mainly consists
of vertices that are costly to acquire with zero benefit
value (e.g., search(-) and webpage(-)); in contrast, the leaf
level mainly consists of vertices that can be acquired very
cheaply if their parent vertices have been acquired (e.g.,
hitcount(-)), and have positive benefit. For example, the

running example of Figure 1 can be remodeled as Figure 2
with little difference. This is because all of hitcount(a),
hitcount(b), hitcount(aAb), and dice(a,b) can be acquired
very cheaply given the search engine results, and thus the
acquisition costs are dominated by search(a), search(b),
and search(a A b). As another example, if the original
graph contains the edges search(a) — webpage(a) and
webpage(a) — tfidf (a), then we can restructure the edges
as search(a) — tfidf(a) and webpage(a) — tfidf(a),
without changing the optimal solution to the problem.

We also observe that the vertex out-degree may vary
widely, leading to bushy topologies. To illustrate this ob-
servation we again consider the resource dependency graph
in Figure 2. A vertex for search(a A b) typically only have
very few child vertices, such as hitcount(a A b). On the
other hand, a vertex for search(a) can have at least O(|B])
descendant vertices such as dice(a,b). An algorithm that
decides which vertices to acquire from the top down would
need to figure out whether a vertex with many descendant
vertices is worth acquiring over another vertex with fewer
descendant vertices. This is because in a typical scenario
where the descendant vertices can consist of several types,
not all descendant vertices are equally good.

These characteristics make challenging resource acquisi-
tion problems. We found that simple algorithms such as
acquiring vertices with the best cost-benefit ratio do not
perform well. Therefore, we need a more sophisticated
acquisition algorithm.

IV. SOLVING THE RESOURCE ACQUISITION PROBLEM
FOR RECORD MATCHING

The resource acquisition problem is essentially a com-
binatorial search problem over all subsets of V. However,
a brute-force enumeration of all feasible subsets of V is
prohibitively expensive even for a moderate-sized graph G.
For example, in the simple resource acquisition graph of
Figure 2, there are 241 x 2181 x 4/A1XIBI pogsible acquisition
decisions, even if we only consider the vertices that are
attribute values in the test instances. Therefore, we need to
employ some form of heuristic search.

In our heuristic search algorithm, we use F(G), the
set of feasible subsets of the vertex set V/, as our state
space. We denote the current state by V', and set V' = ()
as our initial state. However, the unique structure of the
resource dependency graph and the benefit function in record
matching problems poses special difficulty as it is easy for
the search algorithm to get stuck in the large number of local
maxima, and keep revisiting the states around these maxima.
For example, V' = () is itself a local maxima, and from this
state there is no guidance on which root vertices to add
since typically all root vertices have zero benefit value. For
another example, consider the resource dependency graph
of Figure 2, and consider the state containing a search(a)
vertex. If one of the best vertices to acquire is hitcount(b),



then it is easy for the algorithm to add hitcount(a) into the
current state and get stuck in a local maximum.

A solution must be able to address these topological issues
in our web acquisition dependency graphs. We tackle these
issues as follows: 1) We apply a widely-studied metaheuris-
tic search algorithm known as Tabu search [11]. This search
algorithm avoids revisiting the same states, allowing a better
exploration of the state space. 2) We define a set of legal
moves that are more intelligent. These moves allow the
search algorithm to reach states that includes the leaf vertices
faster. 3) We introduce a surrogate benefit function that
propagates the benefit values from the leaf vertices upwards
to the root vertices. This guides the search algorithm towards
vertices with the highest benefit values.

A. Application of Tabu Search

Tabu search can be seen as a modification of simple
hill climbing to encourage state space exploration, so as to
avoid revisiting states and getting stuck in local maxima. It
has been applied successfully in a number of combinatorial
search problems (see [11] and the references therein). Like
simple hill climbing, Tabu search uses the set of legal moves
to generate neighbors of the current state, and then chooses
the move that leads to the neighboring state with the highest
objective value. However, Tabu search also maintains a list
of prohibited moves called Tabu list. When a move is applied
at some iteration, the move(s) that undo the effect of this
move will be placed in the Tabu list for some number of
iterations known as the Tabu tenure. As an exception, known
as aspiration criterion, a move in the Tabu list is allowed
if the resultant state has an objective value better than the
visited states.

In our application of Tabu search, for better exploration
of the state space, we allow Tabu search to enter a state
whose total cost exceeds the budget, but penalize it heavily.
We use a static Tabu tenure of 7 (used in many other
Tabu search applications), and stop the search when 20
consecutive iterations have occurred without improvement
in the best objective value. We then acquire the vertices in
the state with the highest objective value.

B. Legal Moves

The set of feasible legal moves from a current state V' is
exponential in size. Another key aspect in our design is to
provide a relatively small number of potentially useful legal
moves to reduce the search space in such large resource
dependency graphs. For V' # 0, let D(V') be the set of
children vertices of vertices in V' that are not in V. For
V' =10, we let D(V’) to be the set of root vertices in G
instead. The legal moves in our framework are: 1) Add(v):
For a vertex v € D(V’), add v and all its ancestors to
V'. 2) Remove(v): For a vertex v € V', remove v and all
its descendants from V'. 3) AddType(t): For a vertex type
t € T, construct a maximum subset of vertices U C D (V")

with vertex type ¢, such that the acquisition cost of V', U,
and the ancestors of U does not exceed budget. Then add
all the vertices in U and their ancestors to V.

Note that all of these moves can batch add or remove
multiple vertices in one operation. The aim for defining
the Add(-) and Remove(-) this way is to allow the search
algorithm to reach the vertices with high benefit values more
easily. For example, in Figure 2, if the current state V' has a
vertex search(a), it might be worthwhile to add dice(a, b)
as well, but this move would not be possible if we define
our legal moves to add only one vertex at a time unless
V' already contains search(b) and search(a A b) as well.
Finally, AddType(-) allows as many descendant vertices of
the same type to be added as possible, because it may be
more beneficial to acquire one costly root vertex v and many
cheap child vertices of u, rather than acquiring only u and
one child vertex of u.

As for the Tabu moves, when a move adds a set of vertices
V" to the current state, we add any move that removes any
vertex in V"' to the Tabu list; and when a move removes a
set of vertices V" from the current state, we add any move
that adds any vertex in V" to the Tabu list.

C. Surrogate Benefit Function

We now turn to the question on choosing a legal move
from the current state V’. Many of the root vertices share
the same acquisition cost and have zero benefit, giving no
guidance on which root vertices lead to the best leaf vertices.
Therefore, from the leaf vertices, we propagate benefit
values upwards from vertices to edges and from edges to
vertices, eventually reaching the root vertices. This allows
us to define a surrogate benefit function and a surrogate
objective function that we use to select the best legal move.

Definition 3. Let 0 < A\ < 1 be a propagation factor and
0 < B <1 be an aggregation factor. For a vertex v € V,
let pa(v) and ch(v) be the parent and child vertices of v
respectively. We define the following recursively:

The propagated benefit of a vertex v € V is:

prop-benefit(v) = benefit(v)+max-pb(v)+ B-rest-pb(v)
where:

maz-pb(v) = ug%a)prop-benefit(v —u)

rest-pb(v) = Z prop-bene fit(v — u) — max-pb(v)
u€ch(v)
The propagated benefit of an edge u — v € E is:
A - (prop-benefit(v) — cost(v))
[pa(v)|
The propagation factor A controls how much of the benefit
value is propagated upwards, and the aggregation factor 3

controls the balance of aggregating from only the child
with the maximum benefit value versus aggregating from

prop-benefit(u — v) =



all children. Empirically, we determined that A\ = 0.5 and
B = 0.1 are effective, but we note that our search algorithm
is not very sensitive to changes in these values.

Definition 4. Suppose the current state is V' € F(G). Let
V" C V\ V' be a set of vertices such that V' UV" € F(G)
is a feasible subset. Let E’ be the set of edges v — u with
ve V" and u e V\ (V' UV"). Then the surrogate benefit
function of adding V' to the current state V' is:

surr-benefit(V', V") = Z prop-bene fit(v — u)

v—=uel’

Our surrogate benefit function surr-bene fit(V’, V') has
two arguments instead of just a single V' argument. This
allows the function to “forget” the propagated benefit values
of V" when the Tabu search moves to the new state V' UV"
when the actual benefit value of V" is zero.

Definition 5. Suppose the current state is V' € F(G). The
surrogate objective function of adding a set of vertices
V" C V\ V' to the current state V', such that the new state
V'UV" € F(G) is also a feasible vertex set, is defined
as surr-obj(V', V") = surr-benefit(V', V") — cost(V").
The surrogate objective function of removing a set of
vertices from the current state is defined similarly.

In the current state V', the Tabu search algorithm selects
a legal move that adds or removes the vertices V'’ with the
maximum surr-obj (V’, V") from the moves that are either
non-Tabu or pass the aspiration criterion. When the search
process terminates, we acquire the vertex set V'’ with the
maximum objective value obj(V', V"),

V. BENEFIT FUNCTION FOR RECORD MATCHING

To apply our resource acquisition framework to record
matching problems, we need a benefit function. Here, a
test instance X, is constructed for each pair of records a
and b. We assume that the classification of test instances
are independent of each other, which importantly allows
us compute the benefit function for a set of vertices V’
from the expected decrease in misclassification costs for the
corresponding test instances. For a test instance x and a
subset A’ of its missing attribute values, we use F[mc(x)]
and E[mc(x+ A’)] to denote the expected misclassification
costs of x before and after acquiring A’ respectively. Hence,
E[me(x)] — E[me(x + A’)] is the expected decrease in
misclassification cost of x for acquiring A’.

Definition 6. Let G be a resource dependency graph and V'
be a feasible subset of vertices in G. Let I(V’) be the set
of test instances that contain one or more vertices in V' as
attribute values, and let A(V’,x) denote the attribute values
of the test instance x that are contained in V’. Then the
benefit of V' is defined as:

benefit(V') = Z E[me(x)] — E[me(x + A')]
xeI(V')

In this paper, we used a linear SVM classifier because
it is shown to be effective in many related works. To
compute the quantities F[mc(x)] and E[mc(x+ A’)] for the
SVM classifier, we applied the method given in [17]. The
advantage of the method in [17] over other cost-sensitive
acquisition methods such as [9] and [10] is that it can
compute E[me(x + A’)] efficiently for an arbitrary subset
A’ of missing attribute values in any test instance x.

In our evaluation, we used this benefit function to evaluate
our resource acquisition algorithm.

VI. EVALUATION

We evaluated our algorithm on three datasets in two
different domains. The first two datasets, SL-GENOMES!
and SL-DBLP?, are record linkage problems whose input
lists SF and LF are short forms and long forms respectively.
The aim is to match short forms sf € SF (e.g., “WI-IAT”)
to their long forms [ f € LF (e.g., “International Conference
on Web Intelligence and International Conference on Intel-
ligent Agent Technology”). The size of SL-GENOMES is
307 x 307 while the size of SL-DBLP is 906 x 920. The third
dataset, AUTHOR-DBLP, is an author name disambiguation
task whose input are Lq,...,L,, where each L; is a list
of publication records containing the author name s; which
may represent one or more individuals. The clustering-
style task here is to determine which pairs of publication
records (a,b) € L; belongs to the same individual. This
dataset is created by randomly selecting 352 author names
from DBLP?. These are important problems with real-world
applications, and where useful information is scattered all
over the web.

The characteristics and resource dependency graphs of
these datasets are shown in Table I and Figure 3 respectively.
We use Google SOAP Search API and retrieved the top-10
results for each query. For SL-GENOMES and SL-DBLP,
each query is made up of a short form or a long form plus
a few domain specific keywords to promote results of that
domain. For AUTHOR-DBLP, each query is the title of a
publication record. Each dataset is split into equal training
and testing halves; the training half is used to train the SVM
and the resource dependency graph is built on the testing half
and evaluated. During training, five-fold cross-validation is
performed to find the optimal SVM regularization parameter.
Some of vertex labels in Figure 3 are self-explanatory;
others need a bit of explanation: e.g., minhitcount(a,b)
and mazhitcount(a,b) are the minimum and maximum
of hitcount(a) and hitcount(b) respectively; cosine(a,b)

_hitcount(anb) ; snippetcount(a — b) and
\/hztcount(a)hztcount b)

snippetcount(a + b) are the number of snippets in
search(a) and search(b) containing b and a respectively;

Uhttp://www.ornl.gov/sci/techresources/Human_Genome/acronym.shtml
Zhttp://dblp.uni-trier.de/db/conf/indexa.html
3http://dblp.uni-trier.de/xml/



Table I
THE EVALUATION DATASETS.

Dataset SL-GENOMES SL-DBLP AUTHOR-DBLP

Test instances 23,409 213,444 27,046

Matching pairs 307 926 20,582

Vertices (unacquired) 117,657 1,069,068 275,220

Edges 140,760 1,281,588 595,012

Misclassification cost 50 / 500 50/ 1,500 1,000 / 200
search(sf) search(/f) search(sf A If)

hitcount(sf) hitcount(/f)

of \b/f

snippetcount(sf > If)

hitcount(sf A If)  cosine(sf, If)

snippetcount(sf < If)

instance Xy,

search(a A b) search(a) webpage(a)

A

I
minhitcount(a, b) minsnippetcount(a, b) N minwebpagecount(a, b) i

maxhitcount(a, b)/ maxsnippetcount(a, b) maxwebpagecount(a, b) 3

hitcount(a A b) snippettfidf(a, b) webpagetfidf(a, b)

dice(a, b) coauthors(a, b) titletfidf(a, b)

instance X,

Figure 3.  Structure of resource dependency graphs for SL-GENOMES
(top), SL-DBLP (top), and AUTHOR-DBLP (bottom). Dotted vertices
indicate pre-acquired vertices before starting the acquisition algorithm.

snippett fidf (a,b) is the TF-IDF cosine similarity between
the tokens of the snippets in search(a) and search(b);
and coauthors(a,b) is the number of common coauthors
between two publication records a and b. Other vertices are
defined in an analogous manner. For AUTHOR-DBLP, all
coauthor(-,-) and titlet fidf (-, ) vertices were pre-acquired
prior to executing the acquisition algorithm. Note that SL-
DBLP has over 1 million vertices and 1 million edges.
For our experiments, we set the acquisition costs of each
search(-), webpage(-), and other unacquired vertex to 10,
100, and 1 respectively.
We evaluated our algorithm against five baselines:

o Random. This algorithm acquires vertices at random
until the budget is reached.

o Least cost. This algorithm acquires the least cost
vertices until the budget is reached.

o Best benefit. This algorithm acquires the vertices with
the best benefit until the budget is reached.

o Best cost-benefit ratio. This algorithm acquires the

vertices with the best benefit to cost ratio until the
budget is reached.

o Best type. This algorithm acquires the maximum num-
ber of vertices of one type not exceeding the budget
that maximizes the objective value.

We evaluated each algorithm by starting with a resource
dependency graph with no vertices acquired, executing the
algorithm for 200 iterations, each time with a budget of 100
for SL-GENOMES and SL-DBLP and 1,000 for AUTHOR-
DBLP. Each execution generates a data point, consisting of
the cumulative acquisition cost of all the vertices acquired
so far and the misclassification cost of all the instances.
All data points for each algorithm are then plotted in a
chart of total misclassification cost against total acquisition
cost, enabling us to compare the performance between the
different algorithms. We also include in these charts a line
labeled Manual, which estimates the best possible perfor-
mance for a manual process, given the knowledge of which
attribute value acquisitions will allow which test instances
to be correctly classified by the SVM classifier. This manual
process yields one data point, which we join with the point
where no resource acquisitions have taken place. Naturally,
this manual process outperforms any automated algorithm.

The results are shown in Figure 4. It is desirable for
an algorithm to incur less misclassification cost using less
acquisition cost. These results show that our algorithm
consistently and significantly outperforms all the baseline
algorithms evaluated against in all the three datasets. From
these charts, we also note that the baselines perform quite
differently, which gives strong evidence that the three
datasets have quite different characteristics. Each dataset
has some resources that are more useful than others, and
different datasets favour the acquisition of different kinds
of resources. For example, the least cost algorithm is the
second-best in SL-GENOMES and much of SL-DBLP, but
is tied with best benefit as the worst algorithm in AUTHOR-
DBLP. On the other hand, while the best type algorithm is
the second-best in AUTHOR-DBLP and a small part of SL-
DBLP, it is the second-worst algorithm in SL-GENOMES.
Despite the differences in dataset characteristics, our algo-
rithm incurs the least misclassification cost over the entire
range of acquisition costs plotted in all three charts.

Next, we consider how much our algorithm improves over
the second-best algorithm, by considering the difference in
misclassification cost between the second-best algorithm and
the manual process and the difference in misclassification
cost between our algorithm and the manual process. We
compute the average improvement in the difference when
our algorithm is used instead of the second-best. This aver-
age is computed using interpolated misclassification costs for
different acquisition costs, for acquisition costs in intervals
of 1,000. Our algorithm makes an average improvement of
more than 49%, 29%, and 74% over the second-best algo-
rithm for SL-GENOMES, SL-DBLP, and AUTHOR-DBLP
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Figure 4. Experimental results for SL-GENOMES (left), SL-DBLP (middle), and AUTHOR-DBLP (right).

respectively. The significant improvements demonstrate the
effectiveness of our algorithm over the baselines.

We now examine the search engine queries (i.e., acquisi-
tion of search(-) vertices) issued by our algorithm. For this,
we consider the test instances that are correctly classified
when our acquisition algorithm is used, and compare it
with acquiring all the attribute values of these instances.
For all three datasets, we found that our algorithm acquires
less than 10% of the search(-) vertices, saving more than
90% of the search engine queries. This is because each
search(a) or search(b) vertex services a large number of
test instances, whereas each search(a A b) vertex services
only a single test instance. As most of the instances do not
require the information in search(a A b) to be classified
correctly, our algorithm mostly made search engine calls of
the form search(a) or search(b), resulting in significantly
less queries being made. This is important not only for
saving time, but also allows more work to be done with the
search engine in the face of daily quotas or rate limiting.

VII. CONCLUSION

In this paper, we introduced a hierarchical cost-sensitive
resource acquisition framework, which models dependen-
cies in resource acquisitions through a resource acquisition
graph. Our resource acquisition framework is versatile, ap-
plicable to many different problems, as long as a benefit
function can be supplied. We showed that resource acqui-
sition graphs for record matching problems involving web
resources have a challenging structure. This requires us to
devise a search algorithm that can answer these challenges.
Our evaluation on a short form to long form matching
problem and an author name disambiguation problem shows
that our acquisition algorithm significantly outperforms a
number of baseline algorithms.
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