Exploring Question-Specific Rewards for Generating Deep Questions

Yuxi Xie¹ Liangming Pan²,⁴ Dongzhe Wang³
Min-Yen Kan² Yansong Feng¹,⁵

¹Wangxuan Institute of Computer Technology, Peking University
²School of Computing, National University of Singapore, Singapore
³Zhuiyi Technology
⁴NUS Graduate School for Integrative Sciences and Engineering
⁵The MOE Key Laboratory of Computational Linguistics, Peking University
Introduction

Challenges in Question Generation

- **Exposure Bias**
 - *Inconsistency* between training objectives and targets
 - Hard to measure the *global quality* of the generated questions
Introduction

Challenges in Question Generation

- **Evaluation**
 - Current n-gram based evaluation metrics cannot properly evaluate a question
 - Problems in Fluency, Relevance and Answerability still remain unsolved

Lawrence Ferlinghetti is an American poet, he wrote a short story named what?

Lawrence Ferlinghetti is an American poet, he is a short story written by who?

What mine was operated at an earlier date, Kemess Mine or Colomac Mine?

Between Kemess Mine and Colomac Mine, which mine was operated earlier?
Introduction

Reinforcement Learning in Question Generation

- **Decouple** the training procedure from the ground truth data
 - the space of possible questions can be better explored
- **Allow to target on specific properties** we want the question to exhibit during training
 - e.g. relevant to a specific topic or answerable by the document

- **How to define robust and effective QG-specific rewards** requires further investigation
 - optimizing the reward scores does not always lead to higher question quality in practice
Methodology

Three Research Questions to Answer

• Does optimizing RL rewards really improve the question quality from the human standard
• Which reward is more effective in improving the question quality
• How the rewards interfere with each other when jointly optimized
Methodology

Relevance Discriminator

• **Discriminator initialization**
 • BERT-based Sentence Classifier

• **Training datasets**
 • Positive: G.T. document + question
 • Negative
 • Basic: *question* swap
 • Ghost entity: *entity* swap between different samples
 • Logic correctness: *entity* swap within the same sample
Experiments

Automatic Evaluation

- Optimizing a single reward alone (F, R, A) improves the BLEU score and its corresponding reward score.
- The three rewards are correlated. One improves, the other two also increase.
- Jointly training multiple rewards in general leads to better performance.
- The increase in rewards do not correlate well with improvement on automatic metrics.

<table>
<thead>
<tr>
<th>Model</th>
<th>Rewards</th>
<th>BLEU1</th>
<th>BLEU4</th>
<th>METEOR</th>
<th>ROUGE-L</th>
<th>R-FLU</th>
<th>R-REL</th>
<th>R-ANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1. Baseline</td>
<td></td>
<td>33.68</td>
<td>13.46</td>
<td>21.39</td>
<td>35.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S1. F</td>
<td>✓</td>
<td>37.59*</td>
<td>15.22*</td>
<td>19.49*</td>
<td>35.08*</td>
<td>+1.48*</td>
<td>+0.49*</td>
<td>+0.03</td>
</tr>
<tr>
<td>S2. R</td>
<td>✓</td>
<td>36.33*</td>
<td>14.83*</td>
<td>20.63*</td>
<td>35.58*</td>
<td>+1.06*</td>
<td>+0.61*</td>
<td>+0.04</td>
</tr>
<tr>
<td>S3. A</td>
<td>✓</td>
<td>36.40*</td>
<td>13.95*</td>
<td>18.73*</td>
<td>34.07*</td>
<td>+1.30</td>
<td>+0.18*</td>
<td>+0.21*</td>
</tr>
<tr>
<td>E1. F + R</td>
<td>✓ ✓</td>
<td>37.82*</td>
<td>15.30*</td>
<td>19.95*</td>
<td>35.48*</td>
<td>+1.30*</td>
<td>+0.60*</td>
<td>+0.03</td>
</tr>
<tr>
<td>E2. R + A</td>
<td>✓ ✓</td>
<td>35.77*</td>
<td>14.46*</td>
<td>20.53*</td>
<td>35.26</td>
<td>+0.78</td>
<td>+0.49*</td>
<td>+0.36*</td>
</tr>
<tr>
<td>E3. F + A</td>
<td>✓ ✓</td>
<td>38.30*</td>
<td>14.99*</td>
<td>18.02*</td>
<td>34.50*</td>
<td>+1.71*</td>
<td>+0.40*</td>
<td>+0.51*</td>
</tr>
<tr>
<td>E4. F + R + A</td>
<td>✓ ✓ ✓</td>
<td>37.97*</td>
<td>15.41*</td>
<td>19.61*</td>
<td>35.12</td>
<td>+1.57*</td>
<td>+0.61*</td>
<td>+0.49*</td>
</tr>
</tbody>
</table>

Table 1: The QG performance evaluated by automatic metrics when separately or jointly optimizing for various rewards. The last three columns show the change of reward scores compared with B1, where R-FLU is the fluency, R-REL the relevance, and R-ANS the answerability rewards. * denotes that the increase/drop in performance compared with B1 is statistically significant for $p < 0.01$.
Experiments

Automatic Evaluation

- If judging by *automatic evaluation metrics*, we find that optimizing QG-specific rewards is effective in generating deep questions, compared with other strategies.
- However, does optimizing rewards really improve the question **quality** as expected?

<table>
<thead>
<tr>
<th>Model</th>
<th>Features</th>
<th>AE</th>
<th>LF</th>
<th>CP</th>
<th>CV</th>
<th>SA</th>
<th>RL</th>
<th>BLEU1</th>
<th>BLEU4</th>
<th>Meteor</th>
<th>Rouge-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3. NQG++ (Zhou et al., 2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.31</td>
<td>11.50</td>
<td>16.96</td>
<td>32.01</td>
</tr>
<tr>
<td>B4. Zhao et al. (2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.36</td>
<td>11.85</td>
<td>17.63</td>
<td>33.02</td>
</tr>
<tr>
<td>B5. Zhao et al. (2018) + ans, cov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.74</td>
<td>13.48</td>
<td>18.39</td>
<td>34.51</td>
</tr>
<tr>
<td>B6. CGC-QG (Liu et al., 2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.18</td>
<td>14.36</td>
<td>25.20</td>
<td>40.94</td>
</tr>
<tr>
<td>B7. SG-DQG (Pan et al., 2020)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.55</td>
<td>15.53</td>
<td>20.15</td>
<td>36.94</td>
</tr>
<tr>
<td>E4. Ours (F + R + A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.97</td>
<td>15.41</td>
<td>19.61</td>
<td>35.12</td>
</tr>
</tbody>
</table>

Table 2: Performance comparison. For all baselines, we use the reported performance from Pan et al. (2020). Legend: **AE**: answer encoding, **LF**: linguistic features, **CP**: copying mechanism, **CV**: coverage mechanism, **SA**: gated self-attention, **RL**: reinforcement learning.
Experiments

Human Evaluation

- Human ratings do not correlate well with automatic evaluation metrics
- Optimizing the relevance reward (S2) alone leads to an improvement of the human ratings for fluency, relevance, and answerability.
- Optimizing for answerability (S3) has a negative effect.

Conclusion: If we want to know whether a certain reward has an effect or not, judging from automatic metrics maybe deceiving.

BUT, why relevance works, but answerability fails?

<table>
<thead>
<tr>
<th>Model</th>
<th>Flu. (1-5)</th>
<th>Rel. (1-3)</th>
<th>Ans. (0-1)</th>
<th>Cpx. (1-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1. Baseline</td>
<td>3.98</td>
<td>2.77</td>
<td>0.67</td>
<td>1.59</td>
</tr>
<tr>
<td>S1. F</td>
<td>4.07</td>
<td>2.78</td>
<td>0.61</td>
<td>1.50</td>
</tr>
<tr>
<td>S2. R</td>
<td>4.24</td>
<td>2.83</td>
<td>0.70</td>
<td>1.51</td>
</tr>
<tr>
<td>S3. A</td>
<td>3.82</td>
<td>2.63</td>
<td>0.46</td>
<td>1.55</td>
</tr>
<tr>
<td>E4. F+R+A</td>
<td>4.10</td>
<td>2.72</td>
<td>0.53</td>
<td>1.52</td>
</tr>
</tbody>
</table>

Table 3: Human evaluation results for different methods. Flu., Rel., Ans., and Cpx. denote the Fluency, Relevance, Answerability, and Complexity, respectively.
Experiments

Consistency between Rewards & Human Judgement

- the relevance rating has strong correlations with both the fluency rating and the answerability rating, compared with a relatively weak correlation exists between the fluency and answerability.

- the relevance reward has strong correlations with all three ratings
- the answerability reward has poor correlation with fluency and relevance.
Experiments

Consistency between Rewards & Human Judgement

- Relevance Reward: good correlation
- Fluency Reward: normal correlation
- Answerability Reward: bad correlation

Conclusion: how well the reward score correlates with the human judgement is a good way to know whether a certain reward works or not.
Experiments

Meso Analysis - Fluency

- sometimes the fluency reward is consistent with the human judgement on fluency
- the LM tends to assign low rewards to the questions with rare or unseen entities
- the lack of commonsense knowledge is another problem of the LM
Experiments

Meso Analysis - Relevance

- **two aspects** for the **relevance discriminator**
 - **ghost entity**
 - **logical inconsistency**
- **it is difficult** for the **model to assign a proper relevance score** when the question is asking about an **unmentioned aspect** of something in the document
 - **potential solution**: a good **answerability discriminator**
Experiments

Meso Analysis - Answerability

- most of the questions with high rewards are asking what year (the text highlighted in pink)
- when the question requires the QA model to conduct reasoning such as comparison and to utilize world knowledge, the QA model tends to give a low answerability reward
- to improve the answerability via a QA-based reward, it is crucial to address the QA model’s bias in prediction and improve its reasoning ability
Q & A

THANK YOU FOR WATCHING