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Contact

Modern Natural Language Processing (NLP) models 
are known to be sensitive to input perturbations and 
their performance can decrease when applied to 
real-world, noisy data. However, it is still unclear why 
models are less robust to some perturbations than 
others. In this work, we test the hypothesis that the 
extent to which a model is affected by an unseen 
textual perturbation (robustness) can be explained 
by the learnability of the perturbation (defined as 
how well the model learns to identify the 
perturbation with a small amount of evidence). We 
further give a causal justification for the learnability 
metric. We conduct extensive experiments with four 
prominent NLP models -- TextRNN, BERT, RoBERTa
and XLNet -- over eight types of textual 
perturbations on three datasets. We show that a 
model which is better at identifying a perturbation 
(higher learnability) becomes worse at ignoring such 
a perturbation at test time (lower robustness), 
providing empirical support for our hypothesis.

Abstract

Motivation. Learnability is motivated by concepts 
from the causality literature. In fact, learnability is the 
causal effect of perturbation (treatment) on model 
predictions (outcome), which is often difficult to 
measure due to the confounding latent features. 
A Causal Explanation for Random Label
Assignment. Why do we assign random labels before 
perturbations? Because randomization decouples the 
effects of perturbation and other confounding latent 
features (Figure 2). As a result, we can directly 
calculate the causal effect from the observed 
outcome, which is exactly the difference of model 
accuracy on the perturbed and unperturbed test sets 
with random labels.
Learnability is a Causal Estimand. We further identify 
learnability as a causal estimand, Average Treatment 
Effect (ATE), which is a measure used to compare 
treatments in randomized experiments. 

Introduction

Learnability: We want to compare perturbations in 
terms of how well the model learns to identify them 
with a small amount of evidence. We cast learnability 
estimation as a perturbation classification task, where 
a model is trained to identify the perturbation in an 
example. We define that the learnability estimation 
consists of three steps:
1. Assigning random labels. We randomly assign 

pseudo labels to each training example regardless 
of its original label.

2. Perturbing with probabilities. We apply the 
perturbation to each training example in one of 
the pseudo groups.

3. Estimating model performance. We train a model 
on the randomly labeled dataset with perturbed 
examples. The perturbation learnability is the 
difference of accuracies on perturbed and 
unperturbed test set with random pseudo labels.

We propose hypotheses for RQ1 and RQ2:
•  Hypothesis 1 (H1): A model for which a 

perturbation is more learnable is less robust against 
the same perturbation at the test time.

•  Hypothesis 2 (H2): A model for which a 
perturbation is more learnable experiences bigger 
robustness gains with data augmentation along such 
a perturbation.

Learnability Hypothesis

Experimental Settings. To test the learnability, 
robustness and improvement by data augmentation 
with different NLP models and perturbations, we 
experiment with four modern and representative 
neural NLP models: TextRNN, BERT, RoBERTa and 
XLNet. We use three common binary text 
classification datasets --- IMDB movie reviews 
(IMDB, Yelp polarity reviews (YELP), Quora Question 
Pair (QQP) --- as our testbeds. We select eight 
character-level or word-level perturbation methods 
in existing literature (Figure 1) that simulate 
different types of noise an NLP model may 
encounter in real-world situations.
Empirical Findings. For RQ1, we observe a negative 
correlation between learnability and robustness 
(Figure 3a), validating Hypothesis 1. For RQ2, we 
find that data augmentation with a perturbation the 
model is less robust to has more improvement on 
robustness (Figure 3b), validating Hypothesis 2. 
Combining these two findings (Figure 3c), we 
further show that data augmentation is only more 
effective at improving robustness against 
perturbations that a model is more sensitive to.

Experiment & Result

This work provides an empirical explanation for why 
NLP models are less robust to some perturbations 
than others. The key to this question is perturbation 
learnability, which is grounded in the causality 
framework. We find that learnability, which
causally quantifies how well a model learns to 
identify a perturbation, is predictive of the model 
robustness to the perturbation. We also show that 
data augmentation is only more effective at 
improving robustness against perturbations that a 
model is more sensitive to.

Conclusion

A robust NLP model should not be easily fooled by 
slight noise in the text. Given the difference of 
robustness between models and perturbations, it is 
a natural question why models are more sensitive to 
some perturbations than others. It is crucial to avoid 
over-sensitivity to input perturbations, and 
understanding why it happens is useful for revealing 
the weaknesses of current models and designing 
more robust training methods. To the best of our 
knowledge, a quantitative measure to interpret the 
robustness of NLP models to textual perturbations 
has yet to be proposed. To improve the robustness 
under perturbation, it is common practice to 
leverage data augmentation. Similarly, how much 
data augmentation through the perturbation 
improves model robustness varies between models 
and perturbations. In this work, we aim to 
investigate two Research Questions (RQ):

• RQ1: Why are NLP models less robust to
some perturbations than others?

• RQ2: Why does data augmentation work 
better at improving the model robustness to some
perturbations than others?

Causal Explanation

Figure 2. A causal graph explanation for decoupling perturbation and 
latent feature with randomization. P is the perturbation and T is the 
latent feature. L is the original label and  Y is the predicted label.

Figure 3. Linear regression plots of learnability vs. robustness vs. 
post data augmentation Δ on IMDB dataset. Each point in the plots 
represents a model-perturbation pair. ρ is Spearman correlation. * 
indicates high significance (p-value < 0.001).

Setup: As a pilot study, we consider the task of 
binary text classification. 
Perturbation: A transformation that injects a specific 
type of noise into a piece of text (Figure 1).
Robustness: We apply the perturbations to the test
set and measure the robustness of the model
to a perturbation as the decrease in accuracy.
Post Augmentation Δ: We simulate the data 
augmentation process by appending perturbed data 
to the training set. We calculate the improvement in 
performance after data augmentation as the 
difference of test accuracies.

Setup and Terminology

Figure 1. An example sentence with different types of perturbations.
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