
Experiments
● We use 5 domains from 

the MultiWOZ dataset.
● At each iteration we 

leave one domain out 
and:

● We repeat experiments 
with both original and 
augmented samples.

● We use TRADE and 
TOD-BERT models for 
experiments.

Introduction
● Few-shot domain 

adaptation of DST 
models is a crucial 
problem because it is 
common that new 
business models prefer 
dialogue agents over 
static websites to serve 
customers.

● We propose a 
dataset-level 
augmentation for 
few-shot domain 
adaptation, unlike 
previous datum level 
methods.
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Intuition
● We use belief states of 

task-oriented dialogues 
as blueprints and mingle 
turns between dialogues 
to construct new 
synthetic dialogues.

Methodology
1. Assign a dialogue 

function to each turn 
pair in the dialogue.

2. Break down each 
dialogue pair by pair 
into pieces storing 
with their dialogue 
functions.

3. Combine these 
pieces generating 
new dialogues while 
making sure 
consecutive pairs 
have complementary 
functions.

Augmenting Task-Oriented 
Dialogues at the dataset-level 
outperforms some 
learning-based methods on 
few-shot domain adaptation.
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        Original Dialogue 
U → Hi , I am looking for a train 
that is going to Cambridge and 
arriving there by 20:45, is there 
anything like that?
A → There are many trains like 
that. Where will you be departing 
from?
U → I am departing from 
Birmingham New Street.
A → Can you confirm your 
desired travel day?
U → I would like to leave on 
Wednesday.
A → Okay, we have a ticket that is 
fit, should I book it?
U → Yes, please. 

   Turn-pair template
De-lexicalized Turns:
A → There are many trains like that. 
Where will you be departing from?
U → I am departing from 
[train-departure].
Turn-pair Function
BS: {train-dest, train-arv_time, 
train-dep}
Past BS: {train-dest, train-arv_time}
Next BS:{train-dest, train-arv_time, 
train-dep, train-day}

Main Findings 
→ Augmenting TODs on a dataset level 
rather than on a datum level harbors better 
performance for n-shot fine tuning.
→ Exploiting the organized structure in a 
TOD’s belief state is an effective way to 
assign functions to turns and thus break 
down dialogues into smaller pieces.
→ Augmentation is only one way to utilize 
this break-down and we hope to see further 
studies that apply it to other aspects of TODs 
such as intent recognition, response 
generation, etc.

○ Train on the other 
four domains.

○ Finetune and test on 
the left-out domain.

Rest. Attr. Train

JA SA JA SA JA SA

BM 0.12 0.54 0.18 0.54 0.22 0.49

BM+ 0.21 0.77 0.43 0.74 0.61 0.91

5S

Orig. 0.12 0.58 0.25 0.59 0.25 0.66

CoCo 0.13 0.62 0.24 0.58 0.27 0.69

Ours 0.13 0.62* 0.26 0.61 0.31 0.77*

10S

Orig. 0.13 0.63 0.30 0.63 0.37 0.81

CoCo 0.16 0.67 0.31 0.64 0.39 0.82

Ours 0.16* 0.70* 0.32* 0.66* 0.39 0.83

TRADE Few-shot Experiments

→ First two rows: zero shot (lower bound), 1% fine 
tuning (upper bound). Consecutive sections show 
5 and 10 shot fine tuning with original shots, 
CoCo augmentation and our augmentation 
respectively.

Effect of Augmentation Ratio

→ Our framework outperforms base fine-tuning 
steadily, and the amount of synthetic data affects the 
results proportionally.
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Active
Slot
F1

Unseen
Values

Seen
Values

All

Orig. 0.1 e-3 0.24

Aug. 0.2 e-3 0.28

Rest.

Orig. 1.5 e-3 0.20

Aug. 2.3 e-3 0.26

Active
Slot
F1

Rest. Hotel

5S

Full 0.183 0.255

SR 0.157 0.250

10S

Full 0.198 0.258

Sr 0.237 0.243

How Does Augmentation Improve
Performance?

→ Our framework helps 
to exploit slots that have 
a bounded value pool 
with less unique values 
and also slots with more 
frequent unseen 
values.

→ Template 
generation improves 
results compared 
against only 
surface realization 
in most cases.


