
Experiments
● We use 5 domains from

the MultiWOZ dataset.
● At each iteration we

leave one domain out
and:

● We repeat experiments
with both original and
augmented samples.

● We use TRADE and
TOD-BERT models for
experiments.

Introduction
● Few-shot domain

adaptation of DST
models is a crucial
problem because it is
common that new
business models prefer
dialogue agents over
static websites to serve
customers.

● We propose a
dataset-level
augmentation for
few-shot domain
adaptation, unlike
previous datum level
methods.

N-Shot Learning for
Augmenting
Task-Oriented Dialogue
State Tracking

Taha Aksu, Zhengyuan
Liu, Min-Yen Kan, Nancy
F. Chen

Intuition
● We use belief states of

task-oriented dialogues
as blueprints and mingle
turns between dialogues
to construct new
synthetic dialogues.

Methodology
1. Assign a dialogue

function to each turn
pair in the dialogue.

2. Break down each
dialogue pair by pair
into pieces storing
with their dialogue
functions.

3. Combine these
pieces generating
new dialogues while
making sure
consecutive pairs
have complementary
functions.

Augmenting Task-Oriented
Dialogues at the dataset-level
outperforms some
learning-based methods on
few-shot domain adaptation.

Next
Belief
State

Belief
State

Belief
State

Past Belief
State

New
Synthetic
Dialogue

 Original Dialogue
U → Hi , I am looking for a train
that is going to Cambridge and
arriving there by 20:45, is there
anything like that?
A → There are many trains like
that. Where will you be departing
from?
U → I am departing from
Birmingham New Street.
A → Can you confirm your
desired travel day?
U → I would like to leave on
Wednesday.
A → Okay, we have a ticket that is
fit, should I book it?
U → Yes, please.

 Turn-pair template
De-lexicalized Turns:
A → There are many trains like that.
Where will you be departing from?
U → I am departing from
[train-departure].
Turn-pair Function
BS: {train-dest, train-arv_time,
train-dep}
Past BS: {train-dest, train-arv_time}
Next BS:{train-dest, train-arv_time,
train-dep, train-day}

Main Findings
→ Augmenting TODs on a dataset level
rather than on a datum level harbors better
performance for n-shot fine tuning.
→ Exploiting the organized structure in a
TOD’s belief state is an effective way to
assign functions to turns and thus break
down dialogues into smaller pieces.
→ Augmentation is only one way to utilize
this break-down and we hope to see further
studies that apply it to other aspects of TODs
such as intent recognition, response
generation, etc.

○ Train on the other
four domains.

○ Finetune and test on
the left-out domain.

Rest. Attr. Train

JA SA JA SA JA SA

BM 0.12 0.54 0.18 0.54 0.22 0.49

BM+ 0.21 0.77 0.43 0.74 0.61 0.91

5S

Orig. 0.12 0.58 0.25 0.59 0.25 0.66

CoCo 0.13 0.62 0.24 0.58 0.27 0.69

Ours 0.13 0.62* 0.26 0.61 0.31 0.77*

10S

Orig. 0.13 0.63 0.30 0.63 0.37 0.81

CoCo 0.16 0.67 0.31 0.64 0.39 0.82

Ours 0.16* 0.70* 0.32* 0.66* 0.39 0.83

TRADE Few-shot Experiments

→ First two rows: zero shot (lower bound), 1% fine
tuning (upper bound). Consecutive sections show
5 and 10 shot fine tuning with original shots,
CoCo augmentation and our augmentation
respectively.

Effect of Augmentation Ratio

→ Our framework outperforms base fine-tuning
steadily, and the amount of synthetic data affects the
results proportionally.

Connect with the
first author!

taksu@u.nus.edu

Scan the QR code to view
all figures/tables and the
paper.

Active
Slot
F1

Unseen
Values

Seen
Values

All

Orig. 0.1 e-3 0.24

Aug. 0.2 e-3 0.28

Rest.

Orig. 1.5 e-3 0.20

Aug. 2.3 e-3 0.26

Active
Slot
F1

Rest. Hotel

5S

Full 0.183 0.255

SR 0.157 0.250

10S

Full 0.198 0.258

Sr 0.237 0.243

How Does Augmentation Improve
Performance?

→ Our framework helps
to exploit slots that have
a bounded value pool
with less unique values
and also slots with more
frequent unseen
values.

→ Template
generation improves
results compared
against only
surface realization
in most cases.

