

N-Shot Learning for Augmenting Task-Oriented Dialogue State Tracking

Taha Aksu^{1,2}, Zhengyuan Liu^{2,3}, Min-Yen Kan¹, and Nancy F.Chen²

Web IR / NLP Group (WING), National University of Singapore
Institute for Infocomm Research, A*STAR
CNRS@CREATE

ACL, 22-27 May 2022

Introduction

Dialogue State Tracking (DST)

- Extract **key attributes** of users preferences.

Low Resource Domain Adaptation in DST

- Crucial because: New business models → new DST agents in new domains.
- Challenging because: New domains → new slot labels and values with less data.

Data Augmentation for TODs

- Augmentation is good to address lack of data.
- TODs harbor even more potential for augmentation.

U0: I would like a British food restaurant in the centre.

BS: {restaurant-food: British}

Sure, there are 7 restaurants that meet your needs. 4 are moderate and 3 are expensive. Do you have a preference?U1: Only the best for my family ... we'll take the

expensive one. Book us a table for 5 at 14:00 on Thursday.

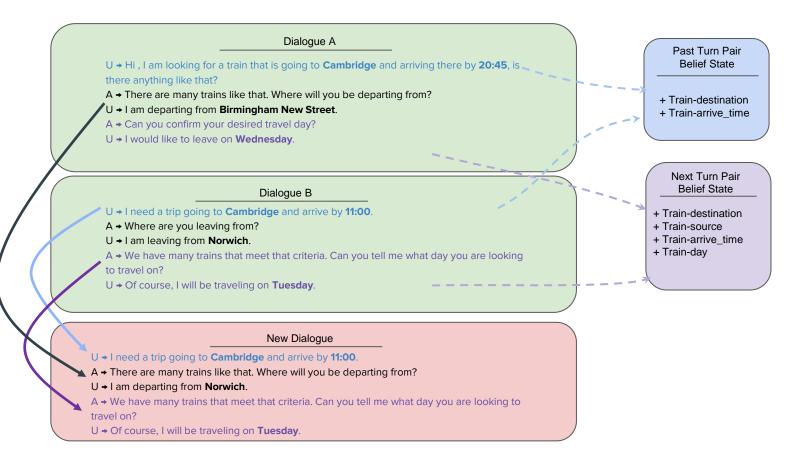
BS: {restaurant-food: British, restaurant-pricerange: expensive, restaurantbookpeople: 5,

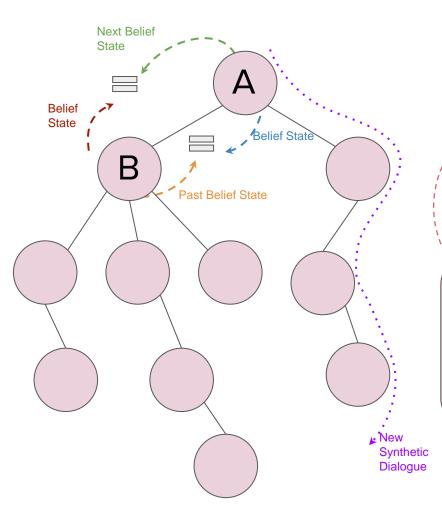
restaurant-booktime: **14:00**, restaurant-bookday: **Thursday**}

S2: I'm sorry I am having difficulty making a reservation for you. Shall we try another time or restaurant type?

U2: Let's try Italian instead. BS: {restaurant-food: Italian}

Intuition





Turn-pair template

De-lexicalized Turns:

- A There are many trains like that . where will you be departing from?
- $U \rightarrow I$ am departing from [train-departure].

Turn-pair Function

BS: {train-destination, train-arrive_time, train-departure}

Past BS: {train-destination, train-arrive_time}

Next BS:{train-destination, train-arrive_time, train-departure, train-day}

Experiments and Results

MultiWOZ dataset – with 5 domains over 10k dialogues.

- Leave one domain out train on rest then fine tune and test on the left out domain.
- During **fine tuning** use 5/10 shots or augmented dialogues from the same shots.
- We report results with both **TRADE** and TOD-BERT.

	Hotel		Taxi		Restaurant		Attraction		Train	
	Joint	Slot	Joint	Slot	Joint	Slot	Joint	Slot	Joint	Slot
1. Base Model (BM) trained on other 4 domains	0.12	0.64	0.60	0.73	0.12	0.54	0.18	0.54	0.22	0.49
2. BM fine tuned with 1% data (84 samples)	0.21	0.76	0.61	0.75	0.21	0.77	0.43	0.74	0.61	0.91
5-Shot Augmentation on Target Domain										
3. BM fine-tuned with 5 samples	0.12	0.65	0.59	0.75	0.12	0.58	0.25	0.59	0.25	0.66
4. BM fine-tuned with augmented samples	0.12	0.67*	0.58	0.75	0.13	0.62*	0.26	0.61	0.31*	0.77*
10-Shot Augmentation on Target Domain										
5. BM fine-tuned with 10 samples	0.14	0.68	0.60	0.76	0.13	0.63	0.30	0.63	0.37	0.81
6. BM fine-tuned with augmented samples	0.15	0.69	0.60	0.76	0.16*	0.70*	0.32*	0.66*	0.39	0.83

Experiments and Results

MultiWOZ dataset – with 5 domains over 10k dialogues.

- Leave one domain out train on rest then fine tune and test on the left out domain.
- During **fine tuning** use 5/10 shots or augmented dialogues from the same shots.
- We report results with both **TRADE** and TOD-BERT.

CoCo \rightarrow learning based augmentation model.

- CoCo: Trained on the whole training set of MultiWOZ.
- Our model utilizes only the shots provided.

	Hotel		Taxi		Restaurant		Attraction		Train	
	Joint	Slot	Joint	Slot	Joint	Slot	Joint	Slot	Joint	Slot
5 Shot Augmentation on Target Domain										
BM fine-tuned with CoCo	0.12	0.66	0.60	0.75	0.13	0.62	0.24	0.58	0.27	0.69
BM fine-tuned with our framework	0.12	0.67	0.58	0.75	0.13	0.62	0.26	0.61	0.31	0.77
10 Shot Augmentation on Target Domain										
BM fine-tuned with CoCo	0.15	0.68	0.61	0.75	0.16	0.67	0.31	0.64	0.39	0.82
BM fine-tuned with our framework	0.15	0.69	0.60	0.76	0.16	0.70	0.32	0.66	0.39	0.83

Conclusion

- TOD Augmentation framework
 - dataset level modifications.
 - rather than on **datum/sample level**.
- Organized structure in a TODs belief state is an effective way to
 - assign **functions** to turn pairs.
 - break down dialogues to pieces.
- Augmentation 🖂
 - Intent recognition ?
 - Response generation **?**

Thanks for listening!

Please reach out to me for further discussion and questions:

- Website: <u>https://cuthalionn.github.io/</u>
- Email: <u>taksu@u.nus.edu</u>

Scan to read the paper!

