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Language Learning via Singing

SLIONS

• Singing benefits learning foreign languages.

• SLIONS: transforming this idea into practice:

Watching pre-recorded song videos;

Singing songs following the teacher's examples;
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Limitations

Songs suitable for language learning is limited, lacking diversity.

Songs with suitable lyrics may not match users' music preferences.

Lyrics do not match learners' linguistic ability and learning objectives.
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Problem Statement

• Generating novel yet meaningful lyrics that match the users’: 

- language level (mastered vocabulary) and learning objectives (new words);

- music interests (reflected by a MIDI file they prefer).
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Challenges

5Users’ Demands Requirements for Lyrics Challenges
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Melody Identification: 

𝑓6 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑦𝑙𝑙𝑎𝑏𝑙𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 ∈
1.7 × 𝑠𝑑 𝑠 × 𝑡𝑚 𝑏𝑝𝑚

60
,
2.3 × 𝑠𝑑 𝑠 × 𝑡𝑚 𝑏𝑝𝑚

60

𝑀𝑒𝑙𝑜𝑑𝑦 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖



𝑗

𝑤𝑗𝑓𝑗 𝑡𝑟𝑎𝑐𝑘𝑖

Granularity: 1 phrase    Syllable template: [4, 4, 2, 4, 4, 2] 
Music Structure: [ [[0,3],3], [[0,1],2], [[3,4],2] ]

Repeated Phrase Detection and Syllable Pattern Extraction: 

Repeated Phrase 
Detection

Syllable Pattern 
Extraction

Melody 
Identification
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Lyrics Generator: SeqGAN
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SeqGAN

[1] Lantao Yu, Weinan Zhang, JunWang, and Yong Yu. 2017. SeqGAN: Sequence generative adversarial nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).
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Lyrics Generator: SeqGAN
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Two Discriminators:

- Syllable Discriminator

- Text-quality Discriminator
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Lyrics Generator: Syllable Awareness
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Syllable Planning:

Input: How many syllables the remaining sentence should have?

Output: How many syllables the remaining sentence should have after   

picking this word?

I ran away4 3 2

ran away <EOS>3 2 0

Inputs

Word 
Embedding

Bi-LSTM

Outputs

Syllable 
Planning
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Lyrics Generator: SeqGAN
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[1] Lantao Yu, Weinan Zhang, JunWang, and Yong Yu. 2017. SeqGAN: Sequence generative adversarial nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).
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Deep-coupled Music-Lyrics Embedding
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MIDI File Encoding:

Scanning Line:

timestep by timestep

channel by channel

from high to low pitch
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Deep-coupled Music-Lyrics Embedding
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Projecting lyrics features and music features into the same space, so that:

Lyrics and music matched in style have similar embeddings.

Lyrics features: BERT Embedding x Linear Transformation → μ

Music features: Concat (Theme, Sentiment, Genre features) x Linear Transformation → ν

𝐿𝑜𝑠𝑠 =

𝜇


n
𝑚𝑎𝑥 0,𝑚 − μ ∙ ν + 𝜇 ∙ 𝜈𝑛 + 

𝜈


n
𝑚𝑎𝑥 0,𝑚 − ν ∙ μ + 𝜈 ∙ 𝜇𝑛

Training:
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[1] Bei Liu, Jianlong Fu, Makoto P Kato, and Masatoshi Yoshikawa. 2018. Beyond narrative description: Generating poetry from images by multi-adversarial training. In 2018 ACM Multimedia Conference on Multimedia Conference. 783-791..



Deep-coupled Music-Lyrics Embedding
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Input: MIDI file, {a group of candidate generated lyrics}

Output: The candidate having the most similar embedding with the input MIDI file

Generating:

Relevant to Music 
Style

Projecting lyrics features and music features into the same space, so that:

Lyrics and music matched in style have similar embeddings.
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Polisher
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Granularity: 1 phrase    Syllable template: [4, 4, 2, 4, 4, 2] 
Music Structure: [ [[0,3],3], [[0,1],2], [[3,4],2] ]

E.g. “I ran away. I ran away. And you?     I ran away. I ran away. And you?”
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d. Polisher: Application Oriented Constraints Applier
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Grammar Corrector: Grammarly (C) APIs

Keywords Incorporator: 

Substitutes the given keywords to the words having the most similar embeddings regarding 

both semantic meaning and syllable number

Watch

Look

Observe

Hear

E.g. Keyword is “look”

“Watch! the distant hills and listen to the music.”

↓

“Look! the distant hills and listen to the music.”

Grammatically 
Correct

Given key words

Grammar Corrector: https://github.com/grammarly/gector
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Experiment: Objective Evaluation

𝑁𝑜𝑣𝑒𝑙𝑡𝑦 − 𝑛 = Τ𝑚𝑛_𝐼𝐹 𝑚
𝑛 How often the generator uses infrequent words/phrases?

𝐷𝑖𝑠𝑡 − 𝑛 = Τ𝑚𝑛_𝑈 𝑚
𝑛 Info Density: How many unique words/phrases are used?

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒
The music-lyrics relevance calculated by the deep-coupled 

embedding model.

𝐵𝐿𝐸𝑈

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
− 𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑
𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛

Whether the generated lyrics is singable? 

Containing keywords and matching vocabulary constraints?

Text quality.
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Experiment：Subjective Evaluation

Participants: 60 native English speakers

Platform: Amazon MTurk

Procedures:

(1) A participant reads the lyrics generated from the same music by the 5 compared

models and rates the lyrics on a 0-5 scale regarding their fluency, coherence,

meaningfulness and poetic aesthetics respectively.

(2) A participant listens to a singing sample synthesized with the music and lyrics

generated by the 5 models, and rates the lyrics on a 0-5 scale regarding the syllable

alignment to the melody and their relevance respectively.
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Experiment: Results
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a. Objective 
Evaluation

Novelty-2 Novelty-3 Dist-1 Dist-2 BLEU-1 BLEU-2 BLEU-3 Relevance Overall
App 

Satisfaction

MT 0.390 0.190 9.16e-2 0.254 0.22 1.09e-2 3.71e-7 66.52 0.538 N

ED 6.02e-3 1.07e-3 4.81e-2 0.980 0.03 2.55e-5 1.53e-6 60.67 0.187 N

SeqGAN 5.21e-2 8.5e-2 0.132 0.417 0.17 9.61e-3 5.25e-4 68.22 0.554 N

PRE-M2L-B 0.410 0.213 6.82e-3 0.135 0.26 1.40e-2 3.30e-4 66.13 0.590 Y

POST-M2L 1.97e-4 0.0 0.164 0.363 1.92e-3 3.53e-6 ~0.0 59.03 0.159 N

POST-M2L-S 8.09e-2 0.330 0.115 0.251 3.91e-2 3.47e-3 4.31e-4 68.84 0.482 Y

POST-M2L-T 0.224 0.144 0.150 0.473 3.67e-2 2.28e-3 6.61e-5 74.82 0.464 Y

POST-M2L-B 0.169 0.158 0.108 0.406 0.21 1.08e-2 3.36e-4 70.59 0.601 Y

b. Subjective 
Evaluation

Fluency Coherence Meaningfulness Aesthetics
Syllable 

Alignment
Relevance Overall

MT 2.43 2.40 2.60 2.47 2.87 2.87 2.61

ED 2.87 2.83 2.6 2.87 3.43 2.77 2.90

SeqGAN 2.83 2.80 2.63 2.67 3.23 3.00 2.86

PRE-M2L-B 3.67 3.38 3.46 3.40 4.00 3.67 3.59

POST-M2L-B 4.37 4.47 4.37 4.17 4.53 4.50 4.40



Demo: Auto Mode & Interactive Mode

Input MIDI: Imagine.mid Keywords: [“know”, “see”] Interactive Mode
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Automatic mode: Generating the whole piece of lyrics

Interactive mode: Generating sentence by sentence. The user chooses one sentence from top 5 candidates.



Summary

First attempt to generate lyrics that match both the style

and syllable pattern of multi-channel music.

Utilize a SeqGAN based generator to generate meaningful

and coherent lyrics approaching human songwriting.

Propose Polisher module to constrain lyrics generation with

mandatory keywords and a vocabulary set.
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Thank you!

AI-Lyricist: Generating Music and Vocabulary Constrained Lyrics

Xichu Ma, Ye Wang, Min-Yen Kan, Wee Sun Lee

Sound & Music Computing Lab, NUS 
https://smcnus.comp.nus.edu.sg/


