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Language Learning via Singing
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- Singing benefits learning foreign languages.

4un

« SLIONS: transforming this idea into practice:
Watching pre-recorded song videos;

Singing songs following the teacher's examples;

Dania Murad, Riwu Wang, Douglas Turnbull, and Ye Wang. 2018. SLIONS: A Karaoke Application to Enhance Foreign Language Learning. In 2018 ACM Multimedia Conference on Multimedia Conference. ACM, 1679~
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Problem Statement

« Generating novel yet meaningful lyrics that match the users’
- language level (mastered vocabulary) and learning objectives (new words);

- music interests (reflected by a MIDI file they prefer).
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Music Structure Analyzer
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Repeated Phrase Detection and Syllable Pattern Extraction:

N A - N
ﬁ ==F Py 31 e, Te
¢ = 3 e S ¢
J J

Granularity: 1 phrase Syllable template: [4, 4, 2, 4, 4, 2]
Music Structure: [ [[0,31,3], [[0,11,2], [[3,4],2] ] 7
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Lyrics Generator: SeqGAN
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Two Discriminators:

- Syllable Discriminator

- Text-quality Discriminator

[1] Lantao Yu, Weinan Zhang, JunWang, and Yong Yu. 2017. SeqGAN: Sequence generative adversarial nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).




Lyrics Generator: SeqGAN
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[1] Lantao Yu, Weinan Zhang, JunWang, and Yong Yu. 2017. SeqGAN: Sequence generative adversarial nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).




Lyrics Generator: Syllable Awareness
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Syllable Planning:
Input: How many syllables the remaining sentence should have?
Output: How many syllables the remaining sentence should have after

picking this word?

[1] Lantao Yu, Weinan Zhang, JunWang, and Yong Yu. 2017. SeqGAN: Sequence generative adversarial nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).
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Lyrics Generator: SeqGAN
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[1] Lantao Yu, Weinan Zhang, JunWang, and Yong Yu. 2017. SeqGAN: Sequence generative adversarial nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).

b2. Discriminators as Rewards

Matched +
Generated - — Reward_S

Unmatched -

Paired +
Generated - —Reward_T
Disordered -
Reward
= A * Reward_S

+ (1 —A) * Reward_T

11



Deep-coupled Music-Lyrics Embedding
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Deep-coupled Music-Lyrics Embedding
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Given key words

Relevant to Music
Style

Projecting lyrics features and music features into the same space, so that:
Lyrics and music matched in style have similar embeddings.

Training:

Lyrics features: BERT Embedding x Linear Transformation > p

Music features: Concat (Theme, Sentiment, Genre features) x Linear Transformation = v

Losszzz max(O0m—p -v+u -v,) + ZZ max(O0om—v-pu +v-u,)
n n 13
U v

[11 Bei Liu, Jianlong Fu, Makoto P Kato, and Masatoshi Yoshikawa. 2018. Beyond narrative description: Generating poetry from images by multi-adversarial training. In 2018 ACM Multimedia Conference on Multimedia Conference. 783-791..




Deep-coupled Music-Lyrics Embedding -
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Projecting lyrics features and music features into the same space, so that:
Lyrics and music matched in style have similar embeddings.

Given key words

Generating:

Input: MIDI file, {a group of candidate generated lyrics}
Output: The candidate having the most similar embedding with the input MIDI file
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[11 Bei Liu, Jianlong Fu, Makoto P Kato, and Masatoshi Yoshikawa. 2018. Beyond narrative description: Generating poetry from images by multi-adversarial training. In 2018 ACM Multimedia Conference on Multimedia Conference. 783-791..



Polisher

Keywords Grammar Music Structure
Incorporator Third Draft Corrector Second Draft Applier |
Lyrics Lyrics
o _ _ _ _ _ _ _ _ _ _ dPolisher: Application Oriented Constraints Applier
Grammatically
Correct
Given key words Music Structure Applier: Copy the generated lyrics to every repeated music sections.
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Granularity: 1 phrase Syllable template: [4, 4, 2, 4, 4, 2]
Music Structure: [ [[0,3]1,31, [[0,11,2], [[3,4],2] ]

E.g. “lran away. | ran away. And you?

| ran away. | ran away. And you?”
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Key Words

Polisher

Keywords Grammar Music Str'ucture
Incorporator Third Draft |  Corrector Second Draft Applier |
Lyrics ) Lyrics )

d. Polisher: Application Oriented Constraints Applier |

Grammar Corrector: Grammarly (C) APIs

Keywords Incorporator:
Substitutes the given keywords to the words having the most similar embeddings regarding

both semantic meaning and syllable number

E.g. Keyword is “look”
“Watch! the distant hills and listen to the music.”

l
% “Look! the distant hills and listen to the music.”
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Grammar Corrector: https://github.com/grammarly/gector



Experiment: Objective Evaluation

Novelty —n = mn_IF/mn How often the generator uses infrequent words/phrases?

Dist —n = mn_u/mn Info Density: How many unique words/phrases are used?

The music-lyrics relevance calculated by the deep-coupled

Relevance
embedding model.
BLEU Text quality.
Application Whether the generated lyrics is singable?
— oriented Containing keywords and matching vocabulary constraints?
g key g y

Satisfaction
17



Experiment: Subjective Evaluation

Participants: 60 native English speakers

Platform: Amazon MTurk

Procedures:

(1) A participant reads the lyrics generated from the same music by the 5 compared
models and rates the lyrics on a 0-5 scale regarding their fluency, coherence,

meaningfulness and poetic aesthetics respectively.

(2) A participant listens to a singing sample synthesized with the music and lyrics
generated by the 5 models, and rates the lyrics on a 0-5 scale regarding the syllable

alignment to the melody and their relevance respectively.
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Experiment: Results

;V(:l’izct::‘: Novelty-2  Novelty-3 Dist-1 Dist-2 BLEU-1 BLEU-2 BLEU-3 Relevance Overall Sati‘:fzf o
MT 0.390 0.190 9.16e-2 0.254 0.22 1.09e-2 3.71e-7 66.52 0.538 N
ED 6.02¢-3 1.07e-3 4.81e-2 0.980 0.03 2.55e-5 1.53e-6 60.67 0.187 N
SeqGAN 5.21e-2 8.5e-2 0.132 0.417 0.17 9.61e-3 5.25e-4 68.22 0.554 N
PRE-M2L-B 0.410 0.213 6.82e-3 0.135 0.26 1.40e-2 3.30e-4 66.13 0.590 Y
POST-M2L 1.97e-4 0.0 0.164 0.363 1.92¢-3 3.53e-6 ~0.0 59.03 0.159 N
POST-M2L-S  8.09e-2 0.330 0.115 0.251 3.91e-2 3.47e-3 4.31e-4 68.84 0.482 Y
POST-M2L-T 0.224 0.144 0.150 0.473 3.67e-2 2.28e-3 6.61e-5 74.82 0.464 Y
POST-M2L-B 0.169 0.158 0.108 0.406 0.21 1.08e-2 3.36e-4 70.59 0.601 Y
b. Subjective Fluency Coherence Meaningfulness Aesthetics Syllable Relevance Overall
Evaluation Alignment
MT 2.43 2.40 2.60 2.47 2.87 2.87 2.61
ED 2.87 2.83 2.6 2.87 3.43 2.77 2.90
SeqGAN 2.83 2.80 2.63 2.67 3.23 3.00 2.86
PRE-M2L-B 3.67 3.38 3.46 3.40 4.00 3.67 3.59
POST-M2L-B 4.37 4.47 4.37 4.17 4.53 4.50 l 4.40 I




Demo: Auto Mode & Interactive Mode
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Input MIDI: Imagine.mid

Keywords: [ “know” , “see” ]

Automatic mode: Generating the whole piece of lyrics

Interactive Mode

Interactive mode: Generating sentence by sentence. The user chooses one sentence from top 5 candidates.




Summary

First attempt to generate lyrics that match both the style
and syllable pattern of multi-channel music.

Utilize a SeqGAN based generator to generate meaningful
and coherent lyrics approaching human songwriting.

Propose Polisher module to constrain lyrics generation with
mandatory keywords and a vocabulary set.
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