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Introduction 
Basic Recommendation Systems 
• Collaborative Filtering (CF) 

- User’s ratings 
• Content-based Filtering (CBF) 

- Contents of items 
 

We have proposed mobile app recommendation systems:  
• Twitter followers (TWF) [Lin et al., SIGIR’13] 
• Version sensitive recommendation (VSR) [Lin et al. SIGIR’14] 
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Twitter Followers (TWF) [Lin et al., SIGIR’13] 
Pseudo-documents and pseudo-words 



Version Sensitive Recommendation (VSR)  
[Lin et al., SIGIR’14] 
Relationship between version of apps and users 
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Introduction 
How about unifying  
the followings? 
 
• Collaborative filtering (CF) 
• Content-based filtering (CBF) 
• Twitter followers (TWF) 
• Version sensitive 
  recommendation (VSR) 

To achieve this,  
1. Unify the strengths of the 
four recommender techniques.  

 
2. Propose a set of specific 
features (in the app domain)  
for the unifying framework. 

 
3. Perform in-depth analysis  
of these features and  
uncover interesting 
connections. 
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Methodology 
Feature set 
1. The app’s marketing-related metadata (M) 
2. The user’s history-related information (H) 
3. The recommendation scores of different  
    recommender systems (R) 
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App’s metadata 
User’s history 

Recommendation scores 

Each app’s feature vector  Xu,a  is composed of  
the above three types of information.  

Xu,a = {XM
a, XH

ua, XR
ua} 



(xu,a , r) 

App  
features (M) 

User  
features (H) 

Recommender  
scores (R) 

Feature set 
 

Rating r given by user u 

User information is  
extracted from ratings. Namely,  
“user u gave the rating r to app a. 
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Enrich the app features by including 
•  # of versions,  
• # of Facebook likes,  
• # of Twitter followers 8 



(xu,a , r) 
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Feature set 
 User’s History-Related Information (H)  
 

The number of times that apps in 
genre g were consumed by user u.  
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(xu,a , r) 

App  
features (M) 

Rating r given by user u 

User  
features (H) 

Recommender  
scores (R) 

Feature set 
 Recommendation Scores from Different  
Recommender Techniques (R)  
 

rec-score i) rec-score ii) rec-score iii) rec-score iv) 

Include the recommendation scores from  
the individual recommendation algorithms:  
  i) Collaborative filtering (CF) 
 ii) Content-based filtering (CBF) 
iii) Twitter followers (TWF) 
iv) Version sensitive recommendation (VSR) 
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Combining App Features 
 

Employ Gradient Tree Boosting (GTB) to train the model 
(via “scikit-learn”). 

Training Phase:  Test Phase:  
• Give  
      - feature vector “Xu,a “ 
      - rating “r”  
     to GTB 
 
• GTB constructs an ensemble of  
     decision tree learnners 

• Given a (testing )  
     feature vector (i.e., Xu,a ),   
     the learned model  
     predicts “r” 
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Experiments 
Experimental Data 
   After retaining only unique users who give  
   at least 30 ratings, we obtain the following data: 
  

 - 33,802 apps 
 - 16,450 users 
 - 3,106,759 ratings 
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Collected from  
   - iTunes App Store 
   - App Annie  
   - Twitter 
   - Facebook    

Among about 33.8K apps,  
• 7,124 (21.1%) have Twitter accounts 
• 9,288 (27.5%) have Facebook accounts,  
• 10,520 (31.1%) have at least 5 versions.  
• 678 (2%) have both Twitter and Facebook accounts.  



: App metadata 

: Version information 

: Rating information 
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Experiments 
Comparative Approaches 
• Individual recommendation techniques 

i) Collaborative filtering (PMF) [Salakhutdinov and Mnih, ICML’08’] 

ii) Content-based filtering (LDA) [Blei et al., JMLR’03] 

iii) Twitter followers (TWF) [Lin et al., SIGIR’13] 

iv) Version sensitive recommendation (VSR) [Lin et al., SIGIR’14] 

     with   
• Hybrid recommendation techniques 

- GTB(R) 
- GTB(H, R) 
- GTB(M, R) 
- GTB(M, H, R) 

• Evaluation measure: Recall@50 
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M: App’s Marketing-related metadata 
H: User’s history-related information 
R: Recommendation score 

Xu,a = {XH
ua} 



Comparison of Individual and Hybrid Systems 
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Comparison of Individual and Hybrid Systems 
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Individual Techniques 
• “Content-based filtering (LDA)” 
     gives the best.  
• Most of apps do not have enough 
        - Ratings 
        - Twitter accounts 
        - Version information 



Comparison of Individual and Hybrid Systems 
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Hybrid Techniques 
• Hybrid > Individual 
• More components gives  
     better recall.  
• Significant improvement  
     by adding metadata “M” 
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Ablation Testing for Hybrid Recommendation 
Feature Recall@50 

GTB(M, H, R) 0.403 

GTB(M, H, R), excluding TWF 0.363 

GTB(M, H, R), excluding VSR 0.346 

GTB(M, H, R), excluding collaborative filtering (PMF) 0.292 

GTB(M, H, R), excluding content-based filtering (LDA) 0.237 

TWF 0.082 

VSR 0.141 

Collaborative filtering (PMF) 0.094 

Content-based filtering (LDA) 0.225 
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Improve by  
16.5% 
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Improve by  
11.0% 



Ablation Testing Using Sufficient Twitter Information 

Feature Recall@50 

GTBTWF(M, H, R) 0.446 

GTBTWF(M, H, R), excluding VSR 0.412 

GTBTWF(M, H, R), excluding collaborative filtering (PMF) 0.390 

GTBTWF M, H, R), excluding content-based filtering (LDA) 0.386 

GTBTWF(M, H, R), excluding TWF 0.338 
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Ablating Twitter information results in largest dip,  
indicating Twitter followers are important by using  
full twitter information.  



Ablation Testing Using Sufficient Version Information 

Feature Recall@50 

GTBVSR(M, H, R) 0.418 

GTBVSR(M, H, R), excluding TWF 0.396 

GTBVSR(M, H, R), excluding content-based filtering (PMF) 0.361 

GTBVSR(M, H, R), excluding VSR 0.344 

GTBVSR(M, H, R), excluding collaborative filtering (PMF) 0.335 
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Although VSR does not displace CF, it still results in  
the second largest dip in recall scores.  



Feature Importance 
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Genre:
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important.   
• When the “average rating” is high,  
     it is highly possible that the app is  
     downloaded. 



Feature Importance 

25 WING, NUS 
 

0 10 20 30 40 50 60 70 80 90 100

Average Rating
(all versions)

Price

No. of Ratings

Genre:
"Games"

No. of Twitter
followers

Average Rating
(current version)

No. of Versions

No. of Facebook
"Likes"

Genre:
"Entertainment"

Genre:
"Social Networking" • “Price” (free vs. paid) important.   

• Due to the trend of freemium apps,  
     it becomes popular (90%of app store).  
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indicates a strong social reach.   
• Also an indicator that our TWF-based 
     recommender systems can be helpful.  
• This is also true for # of Facebook 

“Likes.” 



Feature Importance 

28 WING, NUS 
 

0 10 20 30 40 50 60 70 80 90 100

Average Rating
(all versions)

Price

No. of Ratings

Genre:
"Games"

No. of Twitter
followers

Average Rating
(current version)

No. of Versions

No. of Facebook
"Likes"

Genre:
"Entertainment"

Genre:
"Social Networking" • The number of versions is important.  

• It indicates that our VSR-based 
     recommender systems can be helpful.  



Feature Importance 

29 WING, NUS 
 

0 10 20 30 40 50 60 70 80 90 100

Average Rating
(all versions)

Price

No. of Ratings

Genre:
"Games"

No. of Twitter
followers

Average Rating
(current version)

No. of Versions

No. of Facebook
"Likes"

Genre:
"Entertainment"

Genre:
"Social Networking" • Top genres = {Games, Entertainment,  

 Social networking} 



Feature Importance 

30 WING, NUS 
 

0 10 20 30 40 50 60 70 80 90 100

Average Rating
(all versions)

Price

No. of Ratings

Genre:
"Games"

No. of Twitter
followers

Average Rating
(current version)

No. of Versions

No. of Facebook
"Likes"

Genre:
"Entertainment"

Genre:
"Social Networking" • Top genres = {Games, Entertainment,  

 Social networking} 

Gaming 

Social 
Networking 

Entertainment 



Feature Importance 

31 WING, NUS 
 

0 10 20 30 40 50 60 70 80 90 100

Average Rating
(all versions)

Price

No. of Ratings

Genre:
"Games"

No. of Twitter
followers

Average Rating
(current version)

No. of Versions

No. of Facebook
"Likes"

Genre:
"Entertainment"

Genre:
"Social Networking"

Gaming 

Social 
Networking 

Entertainment 



Conclusion 
• Employ GTB to integrate the features for the unifying 

recommendation techniques.  
• Observe interesting correlations between important 

feature components and studies from third-party app 
analytics 

• Our studies indicate that mobile app recommendation 
systems need to  
- Further focus on user and trend analysis in social networks 
- Treat genre information with more importance 
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Thank you very much! 
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