

Chinese Informal Word Normalization: an Experimental Study

Aobo Wang¹, Min-Yen Kan^{1,2}

¹Web IR / NLP Group (WING)

²Interactive and Digital Media Institute (IDMI)

Daniel Andrade³, Takashi Onishi³ and Kai Ishikawa³

**Sknowledge Discovery Research Laboratories

**NEC Corporation, Nara, Japan

Introduction

Informal words in microtext

Twitter @xxx

"The song is koo, doesnt really showcase anyones talent though."

koo doesnt | → anyones -

cool

doesn't anyone's

Weibo @vvv

"排n久连硬座都木有了"

排队 [queue] 很久 [long time] 没有 [no]

- Normalization is an important pre-processing step
- -Benefit downstream applications
 - ➤ e.g., translation, semantic parsing, word sense disambiguation

Outline

- Introduction
- Data Analysis
 - Data Annotation
 - Chanels & Motivations
- Related Work
- Methodology
- Experiment Result
- Conclusion

Data Set Preparation

Crawling data from Sina Weibo▶PrEV (Cui et al., 2012)

- Crowdsourcing annotations using Zhubajie

- >informal words
- ➤ normalization
- **≻**sentiment
- **≻**motivation
- 1036 unique informal-formal pairs with informal contexts

Major Channels of Informal Words

Channel (%)	Informal to formal	Translation
Phonetic Substitutions (63)	河蟹 (he2 <u>xie4</u>) → (he2 <u>xie2</u>) 和谐 木有 (<u>mu4</u> you3) → (<u>mei2</u> you3) 没有 <u>bs</u> → (<u>bi3</u> <u>shi4</u>) 鄙视	harmonious no despise
Abbreviation (19)	手游 → 手机 游戏 网商 → 网络 商城	mobile game online shopping mall
Paraphrase (12)	萌 → 可爱 暴汗 → 非常 尴尬	cute very embarrassed

Motivation of informal Words

Motivation	%	Example
To avoid (politically) sensitive words	17.8	"财产公式是一种态度" [property formula indicates the attitude] 公式 [formula] → (gong1 shi4)→公示 [publicity] "财产公示是一种态度" [property publicity indicates the attitude]
To be humorous	29.2	鸭梨 [pear] → (ya1 li2)→ (ya1 li4) 压力 [pressure]
To hedge criticism using euphemisms	12.1	<u>bs</u> → (<u>bi3</u> <u>shi4</u>) 鄙视 [despise]
To be terse	25.4	剧透 → 剧情 透露 [tell the spoilers]
To exaggerate the posts' mood	10.5	暴汗 → 非常 尴尬 [very embarrassed]
Others	5.0	乘早 → 趁早 [as soon as possible]

Outline

- Introduction
- Data Analysis
- Related Work
 - -Li and Yarowsky (2008)
 - -Xia et al. (2008)
- Methodology
- Experiment Result
- Conclusion

- Li and Yarowsky (2008)
 - -Mining informal-formal pairs from the web blog
 - ➤ Query: "GF 网络语言" [internet language]
 - Search Engine
 - ▶ Definition: "GF是女朋友的意思" [GF refers to Girl Friend]
 - Assume the formal and informal equivalents co-occur nearby
 - Works for highly frequent and well defined words.
 - Relies on the quality of search engine
 - Our goal
 - ✓ Relax the strong assumption
 - ✓ React to the evolution of informal words.

- Xia et al. (2008)
 - -Normalize informal words from chats
 - >Extend source-channel model with phonetic mapping rules
 - Only deal with the Phonetic Substitutions channel
 - Manually weighting similarity is time-consuming but inaccurate
 - Our Goal
 - ✓ Deal with three major channels
 - ✓ Learn the similarity automatically

Outline

- Introduction
- Data Analysis
- Related Work
- Methodology
 - -Candidates generation
 - -Candidates classification
- Experiment Result
- Conclusion

Pre-processing

–Mining Informal Language from Chinese Microtext:Joint Word Recognition and Segmentation

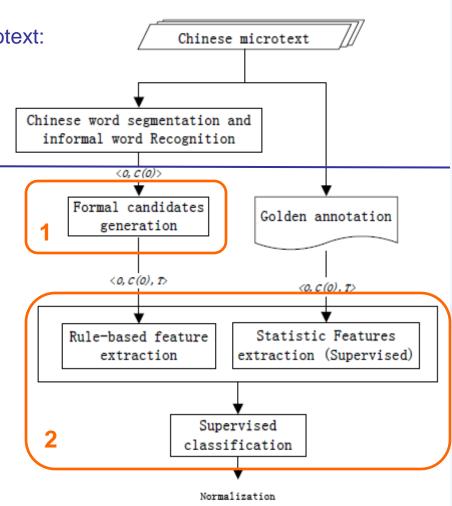
-Wang and Kan, ACL 2013

Normalization

O: observed informal words

C(O): context of the informal words

T: target formal candidates



Step 1: Candidate Generation

 The informal word and its formal equivalents share similar contextual collocations.

```
→ ... 建设 河蟹 社会 ... Observation 社会 ... 建设 和谐 社会 ... Target [build the harmonious society]
```

- -Search for formal candidates from Google Web1T Corpus
 - ➤ Generate lexicon patterns from context (*C(O)*)

- ➤ Use patterns as queries to search for candidates (T)
- ><0, C(0), T>

Step 1: Candidate Generation

-<0, C(0), T>

	建 设	河蟹	社会	0	[build the harmonious society]
I	建 设	和谐	社会	T1	
l	走向	中国	社会	T2	
	建 设	未来	社会	T3	

-Noise filtering

- ➤ Rank the candidates by word trigram probability
- ➤ Keep the top N=1000 candidates

Channel	Loss Rate (%)
Phonetic Substitution	14
Abbreviation	15
Paraphrase	17

Step 2: Candidates Classification

–Feature Extraction F(<O, C(O), T>)

Rule-based
O contains valid Pinyin script
O contains digits
O is a potential Pinyin acronym
T contains characters in O
The percentage of characters common be- tween O and T

Statistical
N-Gram Probabilities
Pinyin Similarity
Lexicon and Semantic Similarity

Pinyin Similarity

$$PYSim(T|O) = \prod PYSim(t_i|o_i)$$

$$PYSim(t_i|o_i)) = \mu P(py(t_i)|py(o_i)) + \lambda P(ini(t_i)|py(o_i)) + \eta P(fin(t_i)|py(o_i))$$

pinyin script of character (t) initial part of py(t) initial part of py(t)

Lexicon and Semantic Similarity

$$\hat{T} = \underset{T}{\arg \max} P(T|O) = \underset{T}{\arg \max} P(O|T)P(T)$$

$$P(O|T) = \prod_{i} P(o_i|t_i)$$

-Extend the Source-Channel model with POS mapping model

$$P(O|T) = \prod P'(o_i|t_i)$$

$$P'(o_i|t_i) = \alpha P(o_i|t_i) + \beta P(o_i|pos(t_i), pos(o_i))$$

- -Use synonym dictionaries to further address the data sparsity
 - ➤TYC Dict datatang.com
 - ➤ Cilin HIT IR lab

Outline

- Introduction
- Motivation
- Related Work
- Methodology
- Experiment Result
 - -E1: Informal words Normalization
 - -E2: Formal domians synonym acquisition
- Conclusion

E1: Informal word Normalization

- Data from all the channels are merged together
- -5-fold cross validation
- -Weka 3
- ✓ Decision Tree performs best

Classifier	Pre	Rec	F_1
SVM	.646	.273	.383
LR	.567	.340	.430
DT (C4.5)	.886	.443	.590

Table 4: Performance comparison using different classifiers.

- -Final loss rate 64.1%
- -Less than 70% estimated in Li and Yarowsky (2008)

E1: Informal word Normalization

- Phonetic Substitution Channel is relatively easy
- Semantic similarity is difficult to measure

Channel	System	Pre	Rec	F ₁
Phonetic Substitution	OurDT LY Top1 LY Top10	.956 .754 .906	.822 —	883
Abbreviation	OurDT LY Top1 LY Top10	.807 .118 .412	.665	729 —
Parapharse	OurDT LY Top1 LY Top10	.754 — —	.331	460

Loss comparison with Li and Yarowsky (2008)

E1: Informal word Normalization

- The sparsity is lessened with synonym dictionaries
- The upper-bound performance is still significantly higher

Feature set	Pre	Rec	F_1
w/o	.886	.443	.590
W	.895	.583	.706
w + channel	.915	.638	.752

Table 6: Performance over different feature sets. "w" ("w/o") refers to the model trained with (without) features from formal synonym dictionaries. "channel" refers to the model trained with the correct channel given as an input feature.

E2: Formal Domain Synonym Acquisition

- -Trained with Cilin and Weibo data
- -Tested with TYC Dict
- -The contexts are extracted from Chinese Wikipedia

-Performance

- >F₁ 69.9%
- ➤ Precision 94.9%
- ➤ Recall 55.4%

Conclusion

- Informal words are created through three major channels with different motivations
- Propose a two-stage candidate generation-classification method for normalization
- It can also be applied to synonym acquisition task in the formal domain

Thank You