Topological Ordering of Function Words in Hierarchical Phrase-based Translation

Hendra Setiawan*†(presenter), Min-Yen Kan*,
Haizhou Li ‡, Philip Resnik†
National University of Singapore *, Institute for Infocomm Research ‡, University of Maryland†

Outline

- Problem Statement
- Related Work
- Pairwise Dominance Model
- Experiments
- Discussion

Problem Statement

Hierarchical Phrase-based Translation (Hiero) comes with *one type of non-terminal symbol*, e.g. $X \rightarrow \langle X$ 的发明,inventions of $X \rangle$ thus permits *flexible* topological ordering

Problem Statement

We want to translate:

with:

r1: $X \to \langle$ 电脑和 X_1 , computers and $X_1 \rangle$

r3: $X \to \langle$ 手机, cell phones \rangle

r4: $X \to \langle X_1 \text{ 的 } \xi \text{ H} \text{ , inventions of } X_1 \rangle$

Problem Statement

- There are two possible topological orderings:
 - $r 1 \prec r 2 \prec r 3 \prec (r 4) \prec r 5$ (correct) computers and cell phones are inventions of the
 - last century
 - -(r4) \prec $r1 \prec r2 \prec r3 \prec r5$ (incorrect) inventions of computers and cell phones are the last century
- Standard treatment:
 - n-gram (target) language model

Outline

- Problem Statement
- Related Work
- Pairwise Dominance Model
- Experiments
- Discussion

Related Work

Assume a parse tree: respect the boundary [[[电脑] 和 [手机]] 是 [[上个世纪] 的 [发明]]]

- Constituent feature (Chiang 2005)
- Soft Syntactic Constraint (Marton and Resnik 2008)
- Maximum-Entropy based Soft Syntactic Constraint (Xiong et al. 2009)

Can we go about without parse tree?

Outline

- Problem Statement
- Related Work
- Pairwise Dominance Model
- Experiments
- Discussion

In the paper:

• In this presentation :

Alignment information shall define

[[[电脑] 和 [手机]] 是 [[上个世纪] 的 [发明]]]

Estimating Span Boundary

Use consistent alignment heuristic (Och 2006)

[[[电脑] 和 [手机]] 是 [[上个世纪] 的 [发

How to resolve topological ordering?
 Compare with the span of another anchor
 Larger span ≈ higher in topological ordering

	电 脑	和	手机	是	上 世 纪	的	发明
computers	\bigcirc						
and		\bigcirc					
cell phones			\bigcirc				
are							
inventions							\bigcirc
of							
he last century					\bigcirc		

How about the incorrect topological ordering?

I can spot the difference !!!

Correct versus Incorrect

The intersections are different!

$$d(Y',Y'') = \begin{cases} \text{leftFirst,} & Y' \not\in \operatorname{MCA}(Y'') \land Y'' \in \operatorname{MCA}(Y') \\ \text{rightFirst,} & Y' \in \operatorname{MCA}(Y'') \land Y'' \not\in \operatorname{MCA}(Y') \\ \text{dontCare,} & Y' \in \operatorname{MCA}(Y'') \land Y'' \in \operatorname{MCA}(Y') \\ \text{neither,} & Y' \not\in \operatorname{MCA}(Y'') \land Y'' \not\in \operatorname{MCA}(Y') \end{cases}$$

$$d(\bigcirc, \bigcirc) = \begin{cases} \text{leftFirst,} \\ \text{rightFirst,} \\ \text{dontCare,} \\ \text{neither,} \end{cases}$$

Correct versus Incorrect

$$d(\bullet, \bullet) = \text{leftFirst} \text{ ons are } d(\bullet, \bullet) = \text{rightFirst}$$

$$d(Y',Y'') = \begin{cases} \text{leftFirst,} & Y' \not\in \operatorname{MCA}(Y'') \land Y'' \in \operatorname{MCA}(Y') \\ \text{rightFirst,} & Y' \in \operatorname{MCA}(Y'') \land Y'' \not\in \operatorname{MCA}(Y') \\ \text{dontCare,} & Y' \in \operatorname{MCA}(Y'') \land Y'' \in \operatorname{MCA}(Y') \\ \text{neither,} & Y' \not\in \operatorname{MCA}(Y'') \land Y'' \not\in \operatorname{MCA}(Y') \end{cases}$$

Pairwise dominance model: P(d(Y', Y'')|Y', Y'')

What are Y' and Y''?

Neighboring function words

Outline

- Problem Statement
- Related Work
- Pairwise Dominance Model
- Experiments
- Discussion

Experiments

NIST Chinese to English Translation Task

	MT06	MT08	
baseline	30.58	24.08	
+dom(N=32)	30.43	23.91	
+dom(N = 64)	30.96	24.45	
+dom(N=128)	31.59	24.91	
+dom(N=256)	31.24	24.26	
+dom(N = 512)	31.33	24.39	
+dom(N = 1024)	31.22	24.79	
+dom(N = 2048)	30.75	23.92	

Pairwise dominance model using 128 most frequent words gives statistically significant improvement.

Also in NIST Arabic to English MT Eval!!!

Outline

- Problem Statement
- Related Work
- Pairwise Dominance Model
- Experiments
- Discussion

Discussion

Pairwise Dominace model:

- improves Hiero via lexicalization idea,
- is a bilingual feature,
- is a non-local feature

What's Beyond?

Better anchors

Thank you!

hendra@umiacs.umd.edu

Learned Statistics

V'	V''	left-	right-	dont-	nei-
1	1	First	First	Care	ther
和 (and)	是 (are)	0.11	0.16	0.68	0.05
是 (are)	的 (of)	0.57	0.15	0.06	0.22

Illustration

• Don't care

Experiments

NIST Arabic to English Translation

	MT06	MT08
baseline	41.56	40.06
+dom(N=32)	41.66	40.26
+dom(N = 64)	42.03	40.73
+dom(N = 128)	42.66	41.08
+dom(N=256)	42.28	40.69
+dom(N = 512)	41.97	40.95
+dom(N = 1024)	42.05	40.55
+dom(N = 2048)	42.48	41.47

Topological Ordering

In **non-Hiero** world, derivation tree:

Topological Ordering

In Hiero world, derivation tree:

How about training?

Given f, e, a

$$P(d(Y',Y'') = \texttt{leftFirst}|\ Y',Y'') = \frac{Count(d(Y',Y'') = \texttt{leftFirst})}{\sum_{\forall val} Count(d(Y',Y'') = val)}$$

- What are Y' and Y''?
 Neighboring function words ≈ frequent words
- Why neighboring function words?
 Simplifies decoding (and training too!)

How about training?

Changes to the original Hiero's rules:

Keep the alignment information!

$$X \to \langle X_1$$
的 发明 , inventions of X_1
$$X \to \langle X_1$$
 的 发明 ; inventions of X_1 inventions of X_1

How about decoding?
 It's like computing n-gram language model

How about decoding?
 It's like computing n-gram language model

```
(和/and ... 的/of)
(和/and )(是/are ... 的/of)
(是/are )( 的/of )

电脑 和 手机 是 上个世
counters 的 cellongs are the last century of innovations
```

Don't forget to keep alignment information!