

Comment-based Multi-View Clustering of Web 2.0 Items

Xiangnan He, Min-Yen Kan, Peichu Xie, Xiao Chen

Presenter: Xiangnan He

Web IR/NLP Group (WING)

National University of Singapore

Comment-based Multi-View Clustering

Why clustering?

Clustering benefits:

- Automatically organizing web resources for content providers.
- Diversifying search results in web search.
- Improving text/image/video retrieval.
- Assisting tag generation for web resources.

Comment-based Multi-View Clustering

Why user comments?

- Comments are rich sources of information:
- Textual comments.
- Commenting users.
- Commenting timestamps.
- Example:

Comments are a suitable data source for the categorization of web sources!

Figure YouTube video comments

Comment-based Multi-View Clustering

Why user comments?

- Comments are rich sources of information:
- Textual comments.
- Commenting users.
- Commenting timestamps.
- Example:

Figure YouTube video comments

Comments are a suitable data source for the categorization of web sources!

Previous work – Comment-based clustering

- Filippova and Hall [1]: YouTube video classification.
 - Showed that although textual comments are quite noisy, they provide a useful and complementary signal for categorization.
- Hsu et al. [2]: Clustering YouTube videos.
 - Focused on de-noising the textual comments to use comments to cluster.
- Li et al. [3]: Blog clustering.
 - Found that incorporating textual comments improves clustering over using just content (i.e., blog title and body).
- Kuzar and Navrat [4]: Blog clustering.
 - Incorporated the identities of commenting users to improve the content-based clustering.
- [1] K. Filippova and K. B. Hall. Improved video categorization from text metadata and user comments. In SIGIR, 2011.
- [2] C.-F. Hsu, J. Caverlee, and E. Khabiri. Hierarchical comments-based clustering. In SAC, 2011.
- [3] B. Li, S. Xu, and J. Zhang. Enhancing clustering blog documents by utilizing author/reader comments. In ACM-SE, 2007.
- [4] T. Kuzar and P. Navrat. Slovak blog clustering enhanced by mining the web comments. In WI-IAT, 2011.

Previous work – Comment-based clustering

- Filippova and Hall [1]: YouTube video classification.
 - Showed that although textual comments are quite noisy, they provide a useful and complementary signal for categorization.
- Hsu et al. [2]: Clustering YouTube videos.
 - Focused on de-noising the textual comments to use comments to cluster.
- Li et al. [3]: Blog clustering.
 - Found that incorporating textual comments improves clustering over using just content (i.e., blog title and body).
- Kuzar and Navrat [4]: Blog clustering.
 - Incorporated the identities of commenting users to improve the content-based clustering.
- [1] K. Filippova and K. B. Hall. Improved video categorization from text metadata and user comments. In SIGIR, 2011.
- [2] C.-F. Hsu, J. Caverlee, and E. Khabiri. Hierarchical comments-based clustering. In SAC, 2011.
- [3] B. Li, S. Xu, and J. Zhang. Enhancing clustering blog documents by utilizing author/reader comments. In ACM-SE, 2007.
- [4] T. Kuzar and P. Navrat. Slovak blog clustering enhanced by mining the web comments. In WI-IAT, 2011.

Previous work - Comment-based clustering

- Filippova and Hall [1]: YouTube video classification.
 - Showed that although textual comments are quite noisy, they provide a useful and complementary signal for categorization.
- Hsu et al. [2]: Clustering YouTube videos.
 - Focused on de-noising the textual comments to use comments to cluster.
- Li et al. [3]: Blog clustering.
 - Found that incorporating textual comments improves clustering over using just content (i.e., blog title and body).
- Kuzar and Navrat [4]: Blog clustering.
 - Incorporated the identities of commenting users to improve the content-based clustering.
- [1] K. Filippova and K. B. Hall. Improved video categorization from text metadata and user comments. In SIGIR, 2011.
- [2] C.-F. Hsu, J. Caverlee, and E. Khabiri. Hierarchical comments-based clustering. In SAC, 2011.
- [3] B. Li, S. Xu, and J. Zhang. Enhancing clustering blog documents by utilizing author/reader comments. In ACM-SE, 2007.
- [4] T. Kuzar and P. Navrat. Slovak blog clustering enhanced by mining the web comments. In WI-IAT, 2011.

Inspiration from Previous Work

Both textual comments and identity of the commenting users contain useful signals for categorization.

But no comprehensive study of comment-based clustering has been done to date.

We aim to close this gap in this work.

Problem Formulation

How to combine three heterogeneous views for better clustering?

Experimental evidence

Table 1. Clustering accuracy (%) on the Last.fm and Yelp datasets

	Last.fm			Yelp		
Method	Des.	Com.	Usr.	Des.	Com.	Usr.
K-means (single view)	23.5	30.1	34.5	25.2	56.3	25.0
K-means (combined view)	40.1 (+5.6%)*			58.2 (+1.9%)		

- 1. On a single dataset, different views yield differing clustering quality.
- 2. For different datasets, the utility of views varies.
- 3. Simply concatenating the feature space only leads to modest improvement.

11

4. Same trends result when using other clustering algorithms (e.g., NMF)

Clustering: NMF (Non-negative Matrix Factorization)

Clustering: NMF (Non-negative Matrix Factorization)

Each entry W_{ik} indicates the degree of item i belongs to cluster k.

Multi-View Clustering (MVC)

- Hypothesis:
 - Different views should admit the same (or similar) underlying clustering.
- How to implement this hypothesis under NMF?

Existed Solution 1 – Collective NMF (Akata et al. 2011)

In 16th Computer Vision Winter Workshop, 2011.

• Idea:

- Forcing W matrix of different views to be the same.

Drawback:

Too strict for real applications(theoretically shown to be equal to NMF on the combined view).

Existed Solution 2 – Joint NMF (Liu et al. 2013)

In Proc. of SDM 2013.

• Idea:

- Regularizing W matrices towards a common consensus.

• Drawback:

- The consensus clustering degrades when incorporating low-quality views.

Proposed Solution - CoNMF (Co-regularized NMF)

• Idea:

- Imposing the similarity constraint on each pair of views (pair-wise co-regularization).

Advantage:

- Clustering learnt from each two views complement with each.
- Less sensitive to low-quality views.

CoNMF – Loss Function

Pair-wise co-regularization:

$$J_{1} = \sum_{s=1}^{n_{v}} \lambda_{s} ||V^{(s)} - W^{(s)}H^{(s)}|| + \sum_{s,t} \lambda_{st} ||W^{(s)} - W^{(t)}||,$$

$$s.t. \quad W^{(s)} \ge 0, H^{(s)} \ge 0.$$

NMF part (combination of NMF each individual view)

Co-regularization part (pairwise similarity constraint)

Pair-wise CoNMF solution

Alternating optimization:

Do iterations until convergence:

- Fixing W, optimizing over H;
- Fixing *H*, optimizing over *W*;
- Update rules:

$$H^{(s)} \leftarrow H^{(s)} \odot \frac{W^{(s)T}V^{(s)}}{W^{(s)T}W^{(s)}H^{(s)}},$$

$$W^{(s)} \leftarrow W^{(s)} \odot \frac{\lambda_s V^{(s)}H^{(s)T} + \sum_{t=1}^{n_v} \lambda_{st}W^{(t)}}{\lambda_s W^{(s)}H^{(s)}H^{(s)T} + \sum_{t=1}^{n_v} \lambda_{st}W^{(s)}}$$

NMF part: equivalent to original NMF solution.

New! Co-regularization part: capturing the similarity constraint.

Normalization Problem

Although the update rules guarantee to converge, but:

- **1. Comparable problem:** W matrices of different views may not be comparable at the same scale.
- **2. Scaling problem** (c > 1, resulting to trivialized descent):

$$H^{(s)} \leftarrow cH^{(s)}, \quad W^{(s)} \leftarrow \frac{1}{c}W^{(s)}$$

CoNMF loss function:

$$J_1 = \sum_{s=1}^{n_v} \lambda_s ||V^{(s)} - W^{(s)}H^{(s)}|| + \sum_{s,t} \lambda_{st} ||W^{(s)} - W^{(t)}||,$$

$$s.t. \quad W^{(s)} \ge 0, H^{(s)} \ge 0.$$

Normalization Problem

Although the update rules guarantee to find local minima, but:

- 1. Comparable problem: W matrices of different views may not be comparable at the same scale.
- **2. Scaling problem** (c > 1, resulting to trivialized descent):

Address these 2 concerns by incorporating normalization into the optimization process:

- Normalizing W and H matrices per iteration prior to update:

$$W^{(s)} \leftarrow W^{(s)}Q^{(s)-1}, \quad H^{(s)} \leftarrow Q^{(s)}H^{(s)}$$

where Q is the diagonal matrix for normalizing W (normalization-independent: any norm-strategy can apply, such as L_1 , and L_2)

Discussion – Alternative solution

- Alternative solution Integrating normalization as a constraint into the objective function (*Liu et al. SDM 2013*):
 - Pros: Convergence is guaranteed.
 - Cons:
 - Complex optimization solution becomes very difficult.
 - Dependent the solution is specific to the normalization strategy (i.e. need to derive update rules for different norm strategies)
- Our solution Separate optimization and normalization:
 - Pros:
 - 1) Simple Standard and elegant optimization solution derived.
 - 2) Independent any normalization strategy can apply.
 - Cons: Convergence property is broken.

K-means based Initialization

- Due to the non-convexity of NMF objective function, our solution only finds local minima.
- Research on NMF have found proper initialization plays an important role of NMF in clustering application (*Langville et al. KDD 2006*).
- We propose an initialization method based on K-means:
 - Using cluster membership matrix to initialize W;
 - Using cluster centroid matrix to initialize H;
 - Smoothing out the 0 entries in the initialized matrices to avoid the shrinkage of search space.

Experiments

Datasets

- 1. Last.fm: 21 music categories, each category has 200 to 800 items. In total, about 9.7K artists, 455K users and 3M comments.
- 2. Yelp: a subset of the Yelp Challenge Dataset (7 categories out of 22 categories), each category has 100 to 500 items.

Table 2 Dataset Statistics (filtered, # of feature per view)

Dataset	Item #	Des.	Com.	Usr.
Last.fm	9,694	14,076	31,172	131,353
Yelp	2,624	1,779	18,067	17,068

Experiments

Baseline Methods for Comparison

Single-view clustering methods (running on the combined view):

- 1. K-means
- 2. SVD
- 3. NMF

Multi-view clustering methods:

- **4.** Multi-Multinomial LDA (MMLDA, Remage et al. WSDM 2009): extending LDA for clustering webpages from content words and Delicious tags.
- **5. Co**-regularized **S**pectral **C**lustering (**CoSC**, *Kumar et al. NIPS 2011*): extending spectral clustering algorithm for multi-view clustering.
- **6. Multi**-view **NMF** (**MultiNMF**, *Liu et al. SDM 2013*): extending NMF for multi-view clustering (consensus-based co-regularization).

For each method, 20 test runs with different random initialization were conducted and the average score (**Accuracy** and F1) is reported.

Results I

Preprocessing

• Question: Due to the noise in user-generated comments, how to preprocess the views for better clustering?

Table 3 K-means with different preprocessing settings (Accuracy, %)

View	Description	Comment words	Users		
0. Random		6.6			
1. Original	11.8 (+5.3%)	9.3 (+3.3%)	8.4 (+2.2%)	1. Filtering improves	
2. Filtered	15.3 (+4.5%)	9.4 (~)	8.6 (~)	performance and efficiency.	
3. L ₁	15.2 (~)	19.0 (+9.7%)	7.9 (~)	 2. L₂ is most effective in lengt normalization for clustering. 3. TF.IDF is most effective for text-based features. 	
4. L ₁ -whole	14.5 (~)	9.7 (~)	8.5 (~)		
5. L ₂	15.9 (~)	26.9 (+17.5%)	34.5 (+25.9%)		
6. L ₂ (tf)	16.8 (~)	25.9 (~)	34.7 (~)		
7. L ₂ (tf.idf)	23.5 (+7.6%)	30.1 (+3.2%)	34.5 (~)		
8. Combined		40.1 (+5.6%)			

Results II

Performance Comparison

Effectiveness of CoNMF:

Performs best in both datasets.

Results III

Consensus - Vs. Pairwise Regularization

Parameter Study

Figure 4: Evaluation on λ_{st} while holding $\lambda_s = 1$ for all views.

- CoNMF is stable across a wide range of parameters.
- > Due to the normalization, we suggest that all regularization parameters are set to 1 when no prior knowledge informs their setting.

Discussion I

Users view utility

Question: Which users are more useful for clustering?

Figure 5: Accuracy and running time of NMF on the users view

• Conclusion:

- 1. Active users are more useful for clustering.
- 2. Filtering out less active users improves performance & efficiency.
- 3. When the filtering is set too aggressively, performance suffers.

Discussion II

Comment-based Tag Generation

Table 5 Leading words of each cluster (drawn from H matrix of the comment words view)

Last.fm			
Cluster	Top words		
Ambient	ambient, beauti, relax, wonder, nice, music		
Blues	blue, guitar, delta, guitarist, piedmont, electr		
Classical	compos, piano, concerto, symphoni, violin		
Country	countri, tommi, steel, canyon, voic, singer		
Hip hop	dope, hop, hip, rap, rapper, beat, flow		
Jazz	jazz, smooth, sax, funk, soul, player		
Pop punk	punk, pop, band, valencia, brand, untag, hi		

Yelp			
Cluster	Top words		
Active life	class, gym, instructor, workout, studio, yoga		
Arts & Enter.	golf, play, cours, park, trail, hole, theater, view		
Health & Med.	dentist, dental, offic, doctor, teeth, appoint		
Home services	apart, compani, unit, instal, rent, mainten		
Local services	store, cleaner, cloth, dri, shirt, custom, alter		
Nightlife	bar, drink, food, menu, beer, tabl, bartend		
Pets	vet, dog, pet, cat, anim, groom, puppi, clinic		

Conclusion and Future Work

- Major contribution:
 - Systematically studied how to best utilize user comments for clustering Web 2.0 items.
 - ✓ Both textual comments are commenting users are useful.
 - ✓ Preprocessing is key for controlling noise.
 - Formulated the problem as a multi-view clustering problem and proposed pair-wise CoNMF:
 - ✓ Pair-wise co-regularization is more effective and robust to noisy views.
- Future work:
 - Can commenting timestamps aid clustering?

Thanks!

QA?

Previous work – Multi-View Clustering (MVC)

- Three ways to combine multiple views for clustering
 - Early Integration:
 - First integrated into a unified view, then input to a standard clustering algorithm.
 - Late Integration:
 - Each view is clustered individually, then the results are merged to reach a consensus.
 - Intermediate Integration

Previous work – Multi-View Clustering (MVC)

- Three ways to combine multiple views for clustering
 - Early Integration:
 - Late Integration:
 - Intermediate Integration:
 - Views are fused during the clustering process.
 - Many classical clustering algorithms have extensions to support such multi-view clustering (MVC)
 e.g. K-means, Spectral Clustering, LDA
 - ➤ We propose a method to extend NMF (Non-negative Matrix Factorization) for multi-view clustering

Convergence after normalization

Without normalization:

- In each iteration, the update rules decrease objective function J_1 .
- Naturally converge, but may sink into non-meaningful corner cases.

• With normalization:

- In each iteration, J_i is changed before update rules.
- The update rules decrease J_I with the normalized W and H (normalized descent).
- Not naturally converge (fluctuate in later iterations), but the normalized descent is more meaningful than purely decreasing J_{I} without normalization.