

GL-CL_EF: A Global-Local Contrastive Learning Framework for Crosslingual Spoken Language Understanding

ACL 2022 Main Conference

Libo Qin¹, Qiguang Chen¹, Tianbao Xie¹, Qixin Li¹, Jian-Guang Lou², Wanxiang Che¹, Min-Yen Kan³ ¹Harbin Institute of Technology, China; ²Microsoft Research Asia, Beijing, China; ³Department of Computer Science, National University of Singapore

Introduction

- Zero-shot Cross-lingual SLU
 - Model is trained in a source language and directly applied to other target languages.

	out
(b	Multilingual BERT

- Challenges of current methods
 - First Challenge:
 - Current methods perform an implicit alignment process that seems to be a *black box*, which affects the alignment representation and makes it

hard to analyze the alignment mechanism.

• Second Challenge:

• Current methods do not offer cross-lingual transfer between the *varying granularities* of the tasks: the intent detection is *sentence-level* and the slot filling is *token-level*.

* Model

- To solve the first challenge:
 - Exploring contrastive learning (CL) to *explicitly* align representations of similar sentences across different languages.
- To solve the second challenge:
 - We first introduce a *Local module* to learn different granularity alignment representations. *Sentence-level* Local CL Module to align

sentence representation across languages for intent detection.

- *Token-level* Local CL Module to align token representations across languages for slot filling.
- We further propose a *Global module*, as slots and intent are often highly related semantically when they belong to the same query.
 - *Semantic-level* Global CL Module to align representations between a slot and an intent.

The main architecture of GL-CL_EF

Service Experiments

Main Results

Intent Accuracy	en	de	es	fr	hi	ja	pt	tr	zh	AVG
mBERT* (Xu et al., 2020)	-	95.27	96.35	95.92	80.96	79.42	94.96	69.59	86.27	-
mBERT [†] (Devlin et al., 2019)	98.54	95.40	96.30	94.31	82.41	76.18	94.95	75.10	82.53	88.42
Ensemble-Net* (Razumovskaia et al., 2021)	90.26	92.50	96.64	95.18	77.88	77.04	95.30	75.04	84.99	87.20
CoSDA [†] (Qin et al., 2020)	95.74	94.06	92.29	77.04	82.75	73.25	93.05	80.42	78.95	87.32
GL-CLEF	98.77	97.53	97.05	97.72	86.00	82.84	96.08	83.92	87.68	91.95
Slot F1	en	de	es	fr	hi	ja	pt	tr	zh	AVG
Ensemble-Net* (Razumovskaia et al., 2021)	85.05	82.75	77.56	76.19	14.14	9.44	74.00	45.63	37.29	55.78
mBERT* (Xu et al., 2020)	-	82.61	74.98	75.71	31.21	35.75	74.05	23.75	62.27	-
mBERT [†] (Devlin et al., 2019)	95.11	80.11	78.22	82.25	26.71	25.40	72.37	41.49	53.22	61.66
CoSDA [†] (Qin et al., 2020)	92.29	81.37	76.94	79.36	64.06	66.62	75.05	48.77	77.32	73.47
GL-CLEF	95.39	86.30	85.22	84.31	70.34	73.12	81.83	65.85	77.61	80.00
Overall Accuracy	en	de	es	fr	hi	ja	pt	tr	zh	AVG
AR-S2S-PTR* (Zhu et al., 2020)	86.83	34.00	40.72	17.22	7.45	10.04	33.38	_	23.74	-
IT-S2S-PTR* (Zhu et al., 2020)	87.23	39.46	50.06	46.78	11.42	12.60	39.30	_	28.72	-
mBERT [†] (Devlin et al., 2019)	87.12	52.69	52.02	37.29	4.92	7.11	43.49	4.33	18.58	36.29
CoSDA [†] (Qin et al., 2020)	77.04	57.06	46.62	50.06	26.20	28.89	48.77	15.24	46.36	44.03
GL-CLEF	88.02	66.03	59.53	57.02	34.83	41.42	60.43	28.95	50.62	54.09

• Experimental results on BiLSTM and XLM-R

Intent Acc.	en	de	es	fr	hi	ja	pt	tr	zh	AVG
BiLSTM (Hochreiter and Schmidhuber, 1997)	72.56	70.96	70.35	60.05	64.50	64.33	71.75	56.22	60.13	65.65
BiLSTM+GL-CLEF	84.77	74.44	71.09	69.53	65.29	66.14	77.02	63.36	67.08	70.97
XLM-R (Conneau et al., 2020)	98.32	97.19	98.03	94.94	88.91	88.50	96.41	72.45	91.15	93.02
XLM-R+GL-CLEF	98.66	98.43	98.04	97.85	93.84	88.83	97.76	81.68	91.38	94.05
Slot F1	en	de	es	fr	hi	ja	pt	tr	zh	AVG
BiLSTM (Hochreiter and Schmidhuber, 1997)	75.43	15.81	34.97	33.38	5.83	4.98	43.89	9.51	27.51	27.92
BiLSTM+GL-CLEF	87.45	38.40	46.06	46.16	20.28	29.53	59.67	37.25	42.48	45.25
XLM-R (Conneau et al., 2020)	94.58	72.35	76.72	71.81	60.51	9.31	70.08	45.21	13.44	57.38
XLM-R+GL-CLEF	95.88	84.91	82.47	80.99	61.11	55.57	77.27	54.55	80.50	74.81
Overall Acc.	en	de	es	fr	hi	ja	pt	tr	zh	AVG
BiLSTM (Hochreiter and Schmidhuber, 1997)	37.06	0.78	3.08	0.63	0.22	0.00	10.20	0.00	0.03	5.80
BiLSTM+GL-CLEF	61.37	4.60	9.10	4.30	0.34	2.03	16.82	2.80	2.46	11.53
XLM-R (Conneau et al., 2020)	87.45	43.05	42.93	43.74	19.42	5.76	40.80	9.65	6.60	33.31
XLM-R+GL-CLEF	88.24	64.91	53.51	58.28	19.49	13.77	52.35	14.55	52.07	46.35

- 1. Explicit alignment method GL-CL_EF outperforms the implicit alignment method (CoSDA)
- 2. Our framework achieves the state-of-the-art performance

- 2. GL-CL_EF still obtains gains over BiLSTM.
- Paper & Code

Email: lbqin@ir.hit.edu.cn Homepage: http://ir.hit.edu.cn/~lbqin/