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COLD START PROBLEM 

Solution #1: Wait for ratings to come in. 

Solution #2: Use content-based filtering. 
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Collaborative Filtering Content-based Filtering 

Recommender Systems 
Introduction ›❯ Our Approach ›❯ Experiments ›❯ Results ›❯ Conclusion 

•  Recommends items based on similar content. 

(e.g., genres, textual descriptions) 
•  Con: Lack of diversified recommendations. 

 
Example: a user who has downloaded a 
weather app will receive weather-related 
app-recommendations. 
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“Can we merge information mined 
from social networks to enhance 
(app) recommendations?” 
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“Can we address the cold-start in 
recommender systems by using 
nascent signals in social networks?” 
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We made two observations: 

1.  Apps contain references to their Twitter accounts. 

2.  Early signals about apps can be present in social 
networks, even before ratings are received. 
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Evernote iOS app 
Release Date: 8 May 2012 

May 2012 Jun 2012 Jul 2012 Dec 2012 …

0 ratings 0 ratings 

First few ratings 
start coming in 

118,827 
ratings 

Has an account  
on Twitter  
since Feb 2008 

By May 2012, Evernote’s 
Twitter account already 
had 120,000 followers and 
1,300 tweets. 
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1.  Apps contain references to their Twitter accounts. 

2.  Early signals about apps can be present in social 
networks, even before ratings are received. 
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recommender systems by using 
nascent signals in social networks. 
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We want to estimate the probability that 
“a target user u will like an app a.” 
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p( + | a, u ) p( + | t, u) p( t | a) ∑ = 

“like” app user Twitter-follower 

“Pseudo-documents” & “Pseudo-words” 

Uniform distribution over the 
various Twitter-followers (t) 
following app a. 

t∈T(a) 
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We want to estimate the probability that 
“a target user u will like an app a.” 
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p( + | a, u ) p( + | t, u) p( t | a) ∑ = 

“like” app user 

Uniform distribution over the 
various Twitter-followers (t) 
following app a. 

Probability that the presence 
of Twitter-follower t indicates 
that it is “liked” by user u. 
 
Derived from Pseudo-Documents 
and Pseudo-Words. 

t∈T(a) 
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Dataset 

•  We collected data from the Apple iTunes Store and 
Twitter during September to December 2012. 

•  Stats: 
•  1,289,668 ratings  

•  7,116 apps (with Twitter accounts) 

•  10,133 users. 

•  Restrictions: 
•  Each user must give at least 10 ratings for apps. 

•  Each Twitter ID is related to at least 5 apps. 
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Simulating Cold-Start 

•  10-fold cross validation. 

•  Selected 10% of the apps to be the held out set for  
all users. 

•  Each user has the same within-fold apps. 

•  Guarantee that none of these apps are in the 
training set of any user. 
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Evaluation Metric 

•  Our system outputs M apps for each user, sorted by 
their probability of liking the apps. 

•  Recall@M 

•  Zero ratings are uncertain – it is difficult to accurately 
compute precision. 

•  Since the ratings are true positives, recall is a more 
pertinent measure – it only considers the positively 
rated apps. 
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help educate their parents about the 
variety available.  
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educational iOS apps for kids and 
teenagers. Check out Pirate Trio 
Academy and Geek Kids. 
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Top 5 Twitter Profiles in Latent Group 2. 



Introduction ›❯ Our Approach ›❯ Experiments ›❯ Results ›❯ Conclusion 

RQ3: Do the latent groups make any sense? What can 
we learn from them? 

31/32 

“BeatStudio”, “AmpKit+”, “GuitarStudio”, 
“Everyday Looper”, “Mixr DJ”, etc. 

“Music” 

Derek Jones 
 
Indie music publishing label, studio & 
brand. Blues&Rock, Progressive&Funk, 
Jazz&Fusion, Alternative&Christian, 
Classical, Education & a lot in-between 
too! 
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“Music” 

Chip Boaz 
 
I’m a musician based in the San 
Francisco Bay Area with an interest in 
using my iPad, iPhone, & iPod to make 
music. Follow my iOS adventures. 
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“Music” 

Dave Gibson 
 
Creator of MicroTrack dB, a music 
making app for iOS and Samsung bada. 
Musician, writer, audio engineer and 
synth nerd. 
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“Games”, “Photo & Video” 

“Video games warrior, lover of life, 
eternal student of the universe…” 
 
“I’m a Multimedia developer working at 
Kent State Uni! I also do art services for 
the game industry…” 
 
“Agalog Games is an independent iOS 
game studio…” 
 
“Hi! Samadhi Games LLC is an Indie 
Developer of iOS, Android, etc” 
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•  Alleviate the cold-start in app-recommendation by using 
Twitter profiles of apps + Twitter followers. 

•  By using the feature of Twitter-followers to generate latent 
groups, our method works well – especially in a domain 
with unreliable textual features. 

•  Allows us to map users from the App Store to users in 
Twitter. 

•  Future work: 
•  Explore second-degree relationships on Twitter. 
•  Explore the use of our approach in other domains, such as 

music-recommendation. 
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Thank you 
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•  Ratings lag behind Twitter followers. 

•  Because it takes more effort to post a rating/review 
than to follow a Twitter account. 

•  Monitored a few new apps: 
•  Average # of new ratings/reviews in a week: 4.2 

•  Average # of new Twitter followers in a week: 21.4 

•  We want to recommend ASAP – even if it’s 1 day 
faster. 

 

#extra 


