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Background



Architecture of Task-oriented Dialogue
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• SLU
• Slot filling -> sequence labeling
• Intent detection -> classification task
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Motivation



• Progress
• With the success of Deep Learning technique, remarkable progress has been made in spoken

language understanding.

• Problems
• Rely on a considerable amount of labeled data, which is only available on the English data 

set[1]

• Hard to scale to other low-resource languages
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[1] Qin et al. CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot Cross-Lingual NLP (IJCAI2020)
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Zero-shot SLU have gained increasing attention
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Multilingual BERT
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I want to watch sports movie
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③ Qin et al. CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot Cross-Lingual NLP. (IJCAI2020)

Multilingual BERT

Training Zero-shot Testing

Output
スポーツ映画を見たい

Multilingual BERT

Output

我想看体育电影

Multilingual BERT

Output

English
Japanese

Chinese

No Alignment Signal

Multilingual BERT



12
Qin et al. CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot Cross-Lingual NLP. (IJCAI2020)
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Challenges of CoSDA-ML
• First Challenge

• Such implicit alignment process seems to be a black box, which not only seriously affects the 
alignment representation but also makes it hard to analyze the alignment mechanism.

• Second Challenge
• Simply relying on shared parameters does not distinguish between the varying granularities 

of the tasks: the intent detection is sentence-level and the slot filling is token-level, which 
does not offer fine-grained cross-lingual transfer for token-level slot filling.
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GL-CLEF: A Global–Local Contrastive Learning Framework for Cross-
lingual Spoken Language Understanding

• To solve the first challenge
• We employ contrastive learning (CL) to explicitly align representations of similar sentences across

different languages.

• The key insight in GL-CLEF is to encourage representations of similar sentences to be more 
similar than negative example pairs via contrastive learning.
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GL-CLEF: A Global–Local Contrastive Learning Framework for Cross-
lingual Spoken Language Understanding

• To solve the second challenge
• We first introduce a Local module in GL-CLEF to learn different granularity alignment 

representations (i.e., sentence-level Local intent CL and token-level local slot CL).
• To be specific, sentence-level local intent CL and token-level local slot CL are introduced for aligning similar 

sentence and token representations across different languages for intent detection and slot filling, respectively.

• We further propose a Global module named semantic-level global intent–slot CL to bring the 
representations of slot and intents within a sentence closer together.
• We further argue that slot and intent are highly correlated and have similar semantic meanings in a sentence
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Positive and Negatives samples of CL

• Positive Samples Generation
• We employ CoSDA-ML to generate multi-lingual code-switched data, which is considered as the

positive samples.

• Negatives Samples Generation
• Other different queries in a batch can be considered as negative samples.
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Models



Overall Framework
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Sentence-level Local Intent CL

• A sentence-level local intent CL loss is introduced to explicitly encourage the model to align 
similar sentence representations into the same local space across languages for intent detection.

20

sports
watch

movie

Sentence-level Intent Local CL

运动

watch

movie

hCLS+

hCLS to

listen

music

hCLS-

运动

watch

movie

hCLS+
运动

watch

movie

hCLS+

to

listen

music

hCLS-

to

listen

music

hCLS-
to

listen

music

hCLS- to

listen

music

hCLS-

Anchor utterance

Positive Sample

Negative Sample

Positive SamplePositive SamplePositive SamplePositive Sample

Negative Sample
Negative Sample

Negative Sample
Negative Sample

运动

watch

movie

hCLS+

运动

watch

movie

hCLS+



Token-level Local Slot CL

• We propose a token-level local slot CL loss to help the model to consider token alignment for slot 
filling, achieving fine-grained cross-lingual transfer. In this situation, token-level CL is applied to 
all tokens in the query.
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Semantic-level Global Intent-slot CL

• Further, we introduce a semantic-level global intent-slot CL loss to model the semantic interaction 
between slots and intent, which may further enhance cross-lingual transfer between them.
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Training

• The overall objective in GL-CLEF is a tuned linear combination of the individual losses:

where 𝐿𝐿! denotes intent detection loss; 𝐿𝐿" is slot filling loss; 𝐿𝐿#! denotes sentence-level local intent CL loss; 𝐿𝐿#" denotes token-level local slot CL 
loss; 𝐿𝐿$!" denotes semantic-level global intent-slot CL loss and  𝜆𝜆∗ are tuning parameters for each loss component. 
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Experiments



Datasets
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• Multi-ATIS++
• 9 languages including English (en), Spanish (es), Portuguese (pt), German (de), French (fr), 

Chinese (zh), Japanese (ja), Hindi (hi), and Turkish (tr).



Main Results

Our framework achieves the state-of-the art performance by beating CoSDA-ML
with 10.06% performance
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Ablation Analysis

All components contribute a lot for the final performance
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Visualization Analysis

GL-CLEF successfully pulls representations closer across different languages.
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Conclusion

• We introduced a global-local contrastive learning (CL) framework (GL-CLEF) to explicitly 
align representations across languages for zero-shot cross-lingual SLU.

• Besides, the proposed Local CL module and Global CL module achieves to learn different 
granularity alignment (i.e., sentence-level local intent alignment, token-level local slot 
alignment, semantic-level global intent-slot alignment).

• Experiments on MultiATIS++ show that GL-CLEF obtains best performance and 
extensive analysis indicate GL-CLEF successfully pulls closer the representations of 
similar sentence across languages.
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