
Parameterized Partial Evaluation

CHARLES CONSEL and SIAU CHENG KHOO

Yale University

Categories and Subject Descriptors: D.3. 1 [Programming Languages]: Formal Definitions and
Theory; D.3.4 [Pro@amming Languages]: Processors; F.3.2 [Logics and Meanings of Pro-

grams]: Specifying and Veriffing and Reasoning About Programs.

General Terms: Languages, Theory

Additional Key Words and Phrases: On-line and off-line partial evaluation, program specializa-

tion w.r.t. symbolic values

1. INTRODUCTION

Besides specializing programs with respect to concrete values, it is often
necessary to specialize programs with respect to abstract values, i.e., static
properties such as signs, ranges, and types. Specializing programs with
respect to static properties is a natural extension of partial evaluation and
significantly contributes towards adapting partial evaluation to larger vari-
eties of applications. This idea was first investigated by Haraldsson [14] and
carried out in practice with a system called Redfun in the late seventies. This
system partially evaluates Interlisp programs. It manipulates symbolic val-
ues such as data types to describe the possible values of a variable and a
processed expression.

Although the work on Redfun certainly started in the right direction, it has
some limitations: (1) the static properties cannot be defined by the user; they
are fixed; (2) the approach is not formally defined: no safety condition for the
definition of symbolic values, no finiteness criteria for fixpoint iteration, etc.;
and (3) because Redfun is an on-line partial evaluator—the treatment of the

This is an expanded version of a paper that appeared in the Proceedings of the SIGPLAN ’91

Conference on Programming Language Design and Implementation. The research was supported

in part by NSF and DARPA grants CCR-8809919 and NOOO14-88-K-0573, respectively. The

second author was also supported by a National University of Singapore Overseas Graduate

Scholarship.
Authors’ addresses: C. Consel, Pacific Software Research Center, Dept. of Computer Science and

Engineering, Oregon Graduate Institute of Science and Technology, 19600 N.W. Von Neumann

Drive, Beaverton, OR 97006-1999; S. C. Khoo, Dept. of Information Systems and Computer

Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511, Republic of
Singapore.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.
@ 1993 ACM 0164-0925/93/0700-0463 $01.50

ACM Transactions OnProgramming Language. and Systems, Vol 15, N.. 3, July 1993, Pages 463-493

464 . C, Consel and S. C. Khoo

program is determined as it gets processed—and consists of numerous sym-
bolic values and program transformations, it is computationally expensive. As
a by-product, Redfun could not be self-applied as noticed in [10, 14], and thus,
the partial-evaluation process could not be improved.

This paper introduces parametrized partial evaluation, a generic form of
partial evaluation parameterized with respect to user-defined static proper-
ties. We develop an algebraic framework to enable modular definition of
static properties. More specifically, from a concrete algebra, an abstract
algebra called a facet is defined; it is composed of an abstract domain—cap-
turing the properties of interest—and a set of abstract primitives that
operate on this domain.

The safety criteria of this abstraction are captured by the notion of facet

mapping. This mapping is defined using abstract interpretation [2, 15]. It
relates two algebras with a suitable abstraction function. However, unlike
abstract interpretation, not only does a facet define primitive functions that
compute static properties, but it also defines ones that use abstract values to
trigger computations at partial-evaluation time.

Furthermore, it is possible to capture the partial-evaluation behavior of
primitive functions as a facet; this is achieved by considering an algebra
whose domain is syntactic terms and operations are primitive functions.

In “conventional” partial evaluation [4], efficiency is achieved by an off-line

strategy that consists of splitting the partial-evaluation process into two

phases: binding-time analysis that statically determines the static and dy-

namic expressions of a program given a knownfunknown division of its

inputs; and specialization which processes a program driven by the binding-
time information and the concrete values. Thus, the binding-time information

of a program can be used for specialization as long as the input values match

the known\ unknown pattern given for binding-time analysis. Besides im-

proving the specialization phase, an off-line partial evaluator enables realis-

tic self-application [16].

Our framework is general enough to capture off-line partial evaluation.

Just as a binding-time analysis is used to compute static\ dynamic properties,

we introduce a facet analysis to statically compute properties. A specialize
can then use the result of facet analysis in the same way that it used the

result of binding-time analysis previously to trigger computations. Because

the facet analysis is performed statically, the specialization phase is kept

simple, as before, in contrast with an on-line strategy that performs every-

thing at once.

Our approach overcomes the limitations (1), (2) and (3) mentioned above.

Let us summarize the new contributions of this paper.

—Facet mapping provides a uniform abstraction methodology for relating
domains and primitive operations at three levels of evaluation: standard
evaluation, on-line and off-line partial evaluation.

—The notion of facet offers a formal framework for introducing user-defined
static properties: a facet is a safe abstraction of a concrete algebra.

—Partial evaluation can now be parametrized with respect to any number

ACM Transactions on Programming Languages and Systems, Vol 15, No. 3, July 1993.

Parameterized Partial Evaluation . 465

of facets, each facet encapsulating properties of interest for any given
application.

—Facet analysis, another novel aspect, allows facet computation to be lifted
from partial evaluation keeping the specialization phase simple (unlike
conventional program transformation systems). Indeed, not only does the
facet analysis statically determine which properties trigger computations,
but it also selects the corresponding reduction operations prior to special-
ization. This makes it possible to achieve self-application and improve the
specialization process.

1.1 Overview

The paper is organized as follows. Section 2 briefly introduces conventional
partial evaluation. Section 3 describes the abstraction methodology used to
define properties of interest. Section 4 presents on-line parameterized partial
evaluation. In particular, Section 4.1 presents the notion of facet together
with examples and Section 4.4 describes the semantics of on-line parametri-
zed partial evaluation. Section 5 presents off-line parameterized partial
evaluation. We introduce the notion of abstract facet in Section 5.1 and
present facet analysis in Section 5.4. Section 6 presents an example of on-line
and off-line parameterized partial evaluation. Section 7 describes the related
work. Finally, in Section 8, this work is put into perspective. The proofs are
given in Appendix A.

1.2 Notation

Most of our notation is that of standard denotational semantics. A domain D
k! a pointed cpo—a chain-complete partial order with a least element LD
(called “bottom”). As is customary, during a computation LD means “not yet
calculated” [15]. A domain has a binary ordering relation denoted by L~ .
The infix least upper bound (lub) operator for the domain D is written LID ; its
prefix form, which computes the lub of a set of elements, is denoted U ~ .
Thus we have that for all d ● D, LD ED d and LD LID d = d. Domain
subscripts are often omitted, as in L u d, when they are clear from context.

A domain D is a lattice if for all x, y = D, x My and x n y exists, where n

is the infix greatest lower bound (glb) operator for D. Any lattice D has a
maximum element T (called “top”) such that for all d = D, d ED TD and
TD n d = d. A lattice D is complete if U X and Fl X exist for every subset
X G D. A domain is flat if all its elements apart from ~ are incomparable
with each other. Analogously, a lattice is fZat if all its elements apart from _L
and T are incomparable with each other.

The notation “d G D = co.“ defines the domain (or set) D with “typical
element” d, where ..0 provides the domain specification usually via some
combination of the following domain constructions: D ~ denotes the domain D
lifted with a new least element -I- . DI + Dz denotes the domain of all
contirzuous furmtiorm from DI to Dz. D1 t Dz and D1 x Dz denote~ the
separated sum and product, respectively, of the domains DI and Dz. DI @ D2
denotes the smashed product of the domains DI and Dz; its elements are

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 3, July 1993.

466 . C. Consel and S. C. Khoo

defined by the function, smashed, such that

smashed D1x DZ+D18DZ

smashed(d, e) = (dl,dz) if (dl # 1~1) and (dz + ~D,)

‘D1@D2 otherwise.

All domain\ subdomain coercions are omitted when clear from context.
The ordering on functions f, f’ = DI + Dz is defined in the standard way:

f~ f’ - (Vd G Dl)f(d) L f’(d). A function f= D, ~ D, is monotonic iff it

satisfies (Vd, d’ = Dl) d c d’ * f(d) E f’(d’); it is continuous if in addition it
satisfies f(U {d,}) = U {f(d,)} for any chain {d, } c D1. A function f ● DI +
Dz is said to be strict if f(l~,) = ~D, . An element d c D is a fixpoint of
f = D + D iff f(d) = d; it is the least fixpoint if for every other fixpoint d’,

we have that d c d‘. The composition of function ~ G DI ~ Dz with ~’ = Dz
~ Dz is denoted by f’ o f.

Angle brackets are used for tupling. If d = (dl, dm) = D1 X . . . X D.,

then for all i ● {1,...,n}, d J, i denotes the ith element (that is, d,) of d. For
convenience, in the context of a smashed product, that is, d ● DI 8 . . . 8 Dn,
d’ denotes the ith element of d. Syntactic objects are consistently enclosed in
double brackets, as in ~ell. Square brackets are used for environment update,
as in enu[d/~x]], which is equivalent to the function Av. if u = Ix] then d else

enu(v). The notation enu[dl/Kx, 1] is shorthand for enu[dl\Kxl],

d~/~z~]], where the subscript bounds are inferred from context. “New”
environments are created by L [d,\Kxl 1]. Similar notations are also used to
denote cache, cache update and new cache respectively.

The paper describes three levels of evaluations: standard evaluation, on-line
partial evaluation and off-line partial evaluation. A symbol s is noted # if it is
used in on-line partial evaluation and S in off-line partial evaluation. Sym-
bols that refer to standard semantics are unannotated. Finally, for generality,
any symbol used in either on-line or off-line partial evaluation is noted ii.

2. PRELIMINARIES

In this section we examine conventional partial evaluation for strict func-
tional programs. For conciseness we only consider first order programs in this
paper.

Let us first examine Figure 1 that displays the standard semantics for a
first order functional language. As is customary, we will omit summand
projections and injections. Domain Values is a sum of the basic semantic
domains (we only consider the integer and boolean domains in this paper).
Function X maps a constant to its semantic value; function 2P defines the
usual semantic operations for primitive operators. Domain FunEnv maps
function names to their meaning. The meaning of a program is the meaning
of fl. We assume all functions (and primitive operations) have the same arity.

Figure 2 defines the semantics of a simple partial evaluator for programs
written in our language. It is based on existing approaches ([4, 22, 7], for
example). The figure only highlights aspects of the semantics relevant to later

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No. 3, July 1993.

Parameterized Part[al Evaluation . 467

1. Syntactic Domains
c E Const Constants
zEvar Variables
p6Po Primitive Operators
fEFn Function Names
eeExp Expressions

e ..—..— clz$lp(el,em)lf(el ,.. .,en)lijelezes

Prog ::= {f, (zl,..., z~) = ei} (fl is the main function)

2. Semantic Domains
b ~ Values = Int + Bool
P E Env = Var d Values
El c FunEnv = Fn a Values” ~ Values

3. Valuation Functions

EProg : Prog + Values

E : Exp ~ Env e FunEnv ~ Values
K : Const ~ Values

Kp : PO + Valuesn ~ Values

Fig. 1. Standard semantics of a first order language.

discussion. For example, we omit details about treatment of function callsl

(unfolding and suspension). Because this treatment vastly differs from one

partial evaluator to another, it is abstracted from the semantics by function

APP.

Domain Sf defines a cache that keeps the specialization patterns of each
function and maps these patterns to the corresponding specialized functions.
Essentially, this achieves instantiation and folding as in [5], and ensures
uniqueness of specialized functions (i.e., there exists exactly one specialized
function in the cache for each suspended function call.) To keep track of each
specialization, partial evaluation is single-threaded with respect to the cache,
as is done customarily. This causes the evaluation order of the language to be
explicit. Function MkProg constructs a residual program from the specialized
functions contained in the cache.

1Note that unfolding a function call consists of replacing the call by the result of partially
evaluating the function body, in an environment binding the parameters to the value of the
arguments. Suspending of a function call consists of replacing it by a run-time call to a variant of
the called function. This variant is produced by specializing the function with respect to the
value of the static arguments.

ACM Transactions on Programming Languages and Systems, Vol. 15, No 3, July 1993.

468 . C. Consel and S. C. Khoo

1. Syntactic Domaius
(defined m Figure 1)

2. Semantics Domains

P E Env = Var * Exp

m c FnEnv = Fn -+ Exp” -+ (Exp x Sf)
u c Sf = (Fn x Const”) + Exp

3. Valuation Functions
SPfp,og : Prog ~ Input + Progl

S’PS : Exp + En. -+ FnEnv - Sf + (Exp x Sf)
sKp : po ~ Exp” + Exp

hfk Prog : Sf - Prog (omitted)

SP&F,og [{ f,(zl, ... zn) = e,)] (ii,...,in) =
MkPrOg (SP& [fl(zl,... ,Zn)] (-L[tk/~zk]]) m 1.)12

whemra m = l-[(A(I#II,... ,#m, r) . SPCS [et] (J-[dk/[~kll) w u)/[~111

sP& [c] p m a = ([c], u)

sP& [Zj p co u = (; ~z],’a)

SP&~(el,)]pm ama = (SKP ~] (e:,... ,e~), on)

where (e;, u1) =

(e;, an) = SP& [en] p w u..l

s~P bl(el)..”jen) = ~(etc Const) --+ K-’ (Kp~] ((K CI),,(K em))), ~(.,,,e~)]
,=1

Fig. 2. Simple partial evaluation semantics.

Because partial evaluation is a source-to-source program transformation, it
operates on expressions. The set of expressions forms a flat domain, denoted
by Exp.

Domain FnEnv recursively defines the meaning of each function. The
monotonic function % 1 maps a value (e.g., integer and Boolean) back to its
textual representation (Exp).

Partial evaluation subsumes standard evaluation. This is reflected, for
inst ante, in the treatment of the primitive functions: when a primitive is

called with constant arguments, its standard semantics is invoked. In gen-
eral, an expression is completely evaluated when it solely depends on avail-
able data. Lastly, notice that in partial evaluation the primitive operators
compute new values; in dealing with properties, we will want them to play a

similar role.
With this preliminary material in hand, we are now ready to introduce

parameterized partial evaluation.

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No 3, July 1993,

Parameterized Partial Evaluation . 469

3, THE ABSTRACTION METHODOLOGY

This section presents a general methodology to introduce abstract values in

the partial-evaluation process. Sections 4 and 5 describe, respectively, how to

instantiate this methodology for on-line and off-line partial evaluation, and

provide examples for each instantiation.

In optimizing compilation, static properties are introduced to reason about

a program prior to its execution. Computation of static properties is then

defined by abstract versions of primitive functions. This structure

(clornain/operations) naturally prompted us to use an algebraic approach to

model static properties. In fact, a concrete algebra corresponds to the notion

of senzczntic algebra as defined in denotational semantics (e.g., [20]).

Definition 1 (Semantic Algebra). A semantic algebra, [D; O], consists of a

semantic domain D, and a set of operations O.

The operations of a semantic algebra are assumed to be monotonic.

Our approach consists of defining, from the semantic algebra, an abstract

algebra composed of an abstract domain—capturing the properties of

interest—and the set of abstract primitives operating on this domain. Using

abstract interpretation [2, 15], this can be formally achieved by relating the

two algebras with an abstraction function. Because we aim at addressing

both on-line and off-line partial evaluation, a given algebra maybe defined at

three different levels—listed in increasing abstractness: standard semantics,

on-line partial evaluation and off-line partial evaluation. These levels respec-

tively define semantic algebras, facets, and abstract facets.

The rest of this section describes a general methodology to relate these

different levels. In essence, this amounts to relating two algebras. To investi-

gate this, we first discuss how to relate the domains and their operations in

Sections 3.1 and 3.2, respectively. Then, this is formalized in Section 3.3

where the notion of relating two algebras is precisely defined together with

safety criteria.

3.1 Relating Domains

Domains can be related using an abstraction function [9]. Such a function is

strict and monotonic; it maps an initial domain into an abstract domain.

As a simple example, say we wish to introduce some symbolic computations

on signs abstracted from the integer algebra [D; O]. To do so we first have to

define an abstraction of the int~ger domain that captures the sign pr~perties.

A natural abstract domain is D = { L , pos, zero, neg, T}. Domains D and D
are related by the following abstraction function.

&fi D+fi

a!~(x) = lb if d=lD

pos if d>O

zero if d=O

neg if d<O

This example is further developed in Section 4.1.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 3, July 1993

470 . C. Consel and S. C. Khoo

Technically, note that to facilitate the proof of Properties 4 and 7, abstrac-

tion functions are required to be L -reflecting [1] (i.e., let f A + B, fa = LB
-CZ=lA).

3.2 Relating Operations

In abstracting one algebra from another, not only do we want to relate a

domain to an abstract domain but we also want to relate the operators to

their abstract versions. More precisely, we want to formulate the safety

condition of an approximation to an operator.

Essentially, relating two operators consists of relating their graphs. To this

end, we distinguish two classes of operators. The first class is composed of

operators closed under the carrier of the algebra. That is, for an algebra

[A; 01, we say that p e O is closed if and only if p: A + A. Thus, the abstract

version of a closed operator will be passed abstract value to compute new

ones; this corresponds to an abstract primitive in abstract interpretation.

The second class of operators consists of those whose codomain is different

from the carrier; they are referred to as open. Intuitively, abstract versions of

open operators will use abstract values to perform actual computations.

Interestingly, we can relate this division to optimizing compilation where,

typically, a phase collects properties and another triggers optimizations using

these properties.

For convenience, given an algebra [A; O], 00 and 0, will denote the set of

open and closed operators, respectively.

This division suggests that since an abstraction function relates the carri-

ers of two algebras, it can also be used to relate an operator and its abstract

version when this operator is closed under the carrier. However, this does not

apply to open operators since their domain differs from their codomain. Since

an operator may be defined at three different levels (standard semantics,

on-line and off-line partial evaluation), its corresponding codomain will then

have three different definitions: in the standard semantics, an operator

belongs to a semantic algebra; both open and closed operators produce basic

values (domain Values). In on-line partial evaluation, an operator belongs to

a facet; when it is open it produces a constant provided it is called with

appropriate values (see Section 4). In off-line partial evaluation, an operator

belongs to an abstract facet; when the operator is open it mimics the facet

operator and thereby produces a binding-time value (i.e., Static or Dynamic)

(see Section 5).

Thus, in order to relate an open operator to its abstract version, we have to

relate their codomains. To do so let us define the abstraction functions

relating the three levels of definition of domain Values.

From standard semantics to on-line partial evaluation, we need to map

basic values into their textual representation; this mapping is defined as

follows.

+ Values + Values

?(x) == 1- if x = lvalUc~

71X otherwise.

ACM Transactions on Pro~amming Languages and Systems, VO1 15, No 3, July 1993,

Parametenzed Partial Evaluation . 471

Because Values is a sum of basic domains it is more convenient to define +

as a family of abstraction functions indexed by the basic domain. That is, for

each basic domain D, there is an abstraction function +D: D + values
defined. To keep the notation simple, we omit the indexing of function +.

Domain Values consists of the set of constants denoted by Const, aug-

mented with elements L _——_ and T m; these two elements are respec-
Value.9

tively weaker and stronger than all the elements of Const. For convenience,

we assume the functions defined on Const to be also defined on Values (e.g.,

function %); this domain is further discussed in Section 4.

To investigate the relation between on-line partial evaluation and off-line

partial evaluation, recall that conventional off-line partial evaluation consists

of a binding-time analysis and a specialize. The binding-time domain, noted

Values, is composed of the set {Static, Dynamic} lifted with a least elementz

L —. This domain forms a chain, with ordering L m L Static L

Dy%$%ic, and abstracts the on-line partial-evaluation process in the following

way.

? Values + VZGQ

1 Values?(x) = — if x=L=

Static if x G Const

Dynamic otherwise.

This reflects the fact that an expression is static if it partially evaluates to a

constant.

3.3 Relating Algebras

Given this preliminary discussion, we can now formalize the notion of algebra

abstraction.

Let ~‘ = { ~B, : B, + B,} be a family of abstraction functions, [A O] and

[A’; O’] be two algebras and aA: A + A’ be an abstraction function. Then,

aA: [A, O] - [A’; O’] is called a facet mapping with respect to a‘, and is

defined as follows:

Definition 2 (Facet Mapping). a~: [A; O] -+ [A’; O’] is a facet mapping

with respect to a‘ = {aB;: B, + B,} if and only if

(1) A’ is a complete lattice of finite height;3

(2) ‘alp’ = O’, p’ is monotonic;

(3) If p = O is a closed operator, then p‘: A’ + A’ is its corresponding

abstract version;

2 Note that this three-point domain refines the usual two-point domain {StatZc, Dynamic} in that

it allows us to detect functions in a program that are never invoked, and simple cases of
nontermi nating computations. Without the value L -, these cases would be considered as

Static.

3 Notice that with a lattice of infinite height, a widening operator can be used to find fixpoints in
a finite number of steps (see [9]).

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 3, July 1993

472 . C. Consel and S, C, Khoo

(4) If p E O is an open operator with functionality A + B,, where B, is some

domain different from A, then p‘: A’ + B, is its corresponding abstract

version;

(5) Vp G O and its corresponding abstract version p‘ G O’

a~fOpLp’Oa*! if p is a closed operator

Q’op Ep’. aA, if p is an open operator with functionality A + B,.

Notice that Condition 1 ensures termination in computing abstract values.

Also, for simplicity, we only consider a limited form of heterogeneous algebra

(conditions 3 and 4): only the codomain of an operator can be different from

the carrier of the algebra. Finally, Condition 5 defines the safety criteria of an

approximation to an operator.

Given a facet mapping, we can succinctly describe the relationship between

the components of two algebras by a logical relation [19, 15].

Definition 3 (Logical Relation L .A,). A facet mapping aA: [A; O] +
[A’; O’] with respect to a‘ = { aB; : B, + B,} induces a logical relation Em., as

follows.

(1) ‘da ● A, Va’ G A’: a ~~~, a’ - a~,(a) q, a’;

(2) Let p = O and p‘ G 0’ be closed operators. Then, P Ea., P‘ = ~a G A,

Va’ G A’: a La., a’ * p(a) c.,, p’(a’);

(3) Let p ~ O and p‘ G O’ be ‘open operators and p: A + B, for some

domain B,. Then, p c .,, p’@Va~A, Va’~A’:a c a’ * p(a) L.j

p’(a’) where Vb ● B, Vb’ ● B’: b L., b’ = a~,(b) ~~, jy~’

Using this logical relation, we can reformulate the safety criteria expressed

by Condition 5 of Definition 2 as follows.

PROPERTY 1. Let a~: [A; O] + [A’; O’] be a facet mapping with respect to

a’ = { a~i: B, + B,}, Vp G O and its corresponding abstract version p r ● O’,

P EaA, P’.

Facet mapping provides a uniform abstraction methodology for introducing

static properties, in the form of abstract algebras, at both the online and

offline levels of partial evaluation. In the following two sections, we instanti-

ate facet mapping to introduce static properties at these two levels. Each

instantiation is illustrated by an example.

4. ON-LINE PARAMETERIZED PARTIAL EVALUATION

This section presents online parameterized partial evaluation. We first define

the notion of facet by instantiating the abstraction methodology described in

Section 3. We then describe online parameterized partial evaluation.

4.1 Facets

A facet captures symbolic computations performed in online partial evalua-

tion. As a result, while a closed operator will compute new abstract values, an

open operator will produce constants when provided with appropriate ab-

stract values. Formally:

ACM Transactions on Programming Languages and Systems, Vol 15, No. 3, July 1993

Parameterized Part[al Evaluation . 473

.D~fhzition 4 (Facet). A facet for a semantic a~ge~ra [D; O] is an algebra
[D; O] defined by a facet mapping &b: [D; O] - [D; O] with respect to ?.

We refer to D as the facet domain and O as the set of facet operators. The
use of facet mapping in the definition ensures the following property about
the open operators of a facet.

PROPERTY 2. ForAany open operator p G O of arity n, Vc/l,..., cf. = D and

Vd, ~ D, ifd, E% d, Vi = {1,..., n}, then~(cfl,..., ci?~) ● Const Ap(dl,..., d,)

L -fi(~I,...,dJ = ?(p(dl,..., d~)).

In essence, this property states that if an open operator of a facet yields a

constant for some abstract values, this constant is the same as that produced

by the concrete operator called with the corresponding concrete values. Notice

that this equality only holds if the call to the concrete operator terminates.

The concrete values d, are those related to the abstract values ~, under the
logical relation Lab .

However, for some values, an open operator of a facet may not yield a
constant. Indeed, it may be passed abstract values too coarse to be of any use.
This is illustrated in the example below.

As an example of a facet, say we wish to define a Sign facet from an
integer algebra. The set of static properties would be { L , pos, zero, neg, T}.

Assume that the operators of this algebra are {+, <}. Then + would be a
closed operator: it operates on two sign values to compute a new one.
However, < is an open operator: it uses the abstract value of its arguments
to trigger computation whenever possible (e.g., -? (zero, pos) = Ktrue]).

Example 1. Sign information forms a facet for semantic algebra [D; O] =
[Int; {+, <}].

(1) b = {1 , pos, zero, neg, T} with
V~Gfi.lC~~T

(2) The abstraction function is

&fi D+fj
&D(d) = lb ifd=l~

pos ifd>O

zero ifd=O
neg ifd<O

(3) O=~Ou OCwhere 60={ -?}and~C= {$}

(4) Facet operators

ACM Transactions on Programming Languages and Systems, Vol 15, No. 3, July 1993.

474 . C. Conseland S. C. Khoo

< :DXD~Values
A

l)v(d2=l)+~m>

pos) ~ (ct2 ● {neg, zero}) ~ ~f?dsel,

zero) ~ (c12 = pos) ~ Ktruel,

zero) ~ (iz ● {neg, zero}) ~ Ifdse],

neg) A (~A2 c {pos, zero}) ~ ~truell, T=

We can now explain further our approach and examine how the notion of
facet achieves the parameterization of partial evaluation.

4.2 Product of Facets

Essentially, parameterized partial evaluation differs from the conventional
partial evaluation in two aspects: it collects facet information and propagates
the results of facet computations to all relevant facets. While the latter aspect
is described explicitly in the new partial-evaluation model presented in
Section 4.4, the former is captured by the notion of the product of facets

defined in this section.
A product of facets captures the set of facets defined for a given semantic

algebra. It consists of the product of facet domains and the set of facet
operators. In particular, for each operator p, a product operator, noted tiP,
triggers each facet operator j31 with the corresponding abstract values. If p is

a closed operator, the product operation yields a product of abstract values.
Otherwise, it produces either a constant, L m or T ~, depending on

the abstract values available.

Definition 5 (Product of Facets). Let 6,:[D;O] ~ [D,; O,] fori c {1,..., nz}

be the set of facet ~m~ppings defined for a semantic algebra [D; O]. Its product
of facets, noted [~; O], consists of two components:

(1)

(2)

A domain k =Dl 8... Q D~ x 11~=ID,; it is a smashed product of the
facet domains;

A set of product opera~ors ~ such that ‘ifp ● O and its corresponding
product operator &P ● Q,

(a)

(b)

if p G O is a closed operator, then
p: D’-D ,*and
fi:~n+~

;P A A

= A(i$l,..., 8n)” Hp=lj[(s; ,...,8;);
‘P

otherwise, p = O is an open operator
p: D’ ~ D’ for some domain D’, and

A.: tin + Values

ACM TransactIons on Programming Languages and Systems, Vol. 15, No. 3, July 1993

Parameterized Partial Evaluation . 475

Domain ~ is partially ordered componentwise. The smashed product
construction is used for this domain to ensure the notion of consistency
explained below.

Although facets of a product are defined independently, the facet values, to
which a program is specialized, must have some consistency. This notion of
consistency can be motivated by the following example. Suppose that two
facets are defined for the integer algebra: one facet describes the sign of an
integer value (see Example 1), and the other indicates whether the value is
odd or even. Then, a value such as (zero, odd) should not be considered as a
valid facet value, since zero is an even number. Formally:

Definition 6. Let [@;&] be a product of facets of an algebra [D; O]; ~ E@

is consistent if and only if

fi(d=Dld~&t)$‘ is neither the empty set nor { L}.
~=1

Each set of concrete values corresponds to a particular facet property; it is
defined by the logical relation La, . Notice that by definition of the relation
E.—C!,, the above intersection will at least yield the singleton { L}; thus such
singleton set must not imply consistency. In essence, the above definition
ensures that a product of abstract values represents an actual subdomain
of D.

Technically, note that the smashed product construction is used to conve-
niently eliminate inconsistent values such as (L , odd).

We assume that a program is always specialized with respect to consistent
products of facet values. By definition of a facet, the consistency property is
preserved by the open and closed operators. This property contributes to the
correctness of the following lemma, which states that if there is more than
one facet that produce concrete values, those values are equal.

LEMMA 3. Let [~; ~] be a product of fa~ets ~nd pfi ● O be an open

ope~ator. If 3j, k = {1,...,m} (j # k) and 81,..., 6. =9 suchfi that Aboth

:J(tiJ,” ””, $;) ● Const and fi~(i$~,.””, $:) = Const, then ~,(i$~,”””, 8:) =

pk(8t2”””, aj).

Last, we show, below, a property about the product operators.

PROPERTY 4. All operators defined in the product of facets, [~; f)], are

monotonic.

We have seen how properties of interest can be formally introduced via a
facet and described how facets could be combined to form a product of facets.
Let us now explore the generality of the approach. In particular, we want to
examine how partial evaluation of primitive operations can itself be captured
by a facet.

4.3 Partial-Evaluation Facet

So far, we have used the notion of facet to introduce symbolic computations
drawn from a semantic algebra defined in the standard semantics. In fact,

ACMTransactionsonProgrammingLanguagesandSystems,Vol. 15,No.3,July 1993.

476 . C. Consel and S, C, Khoo

the same notion can also be used to define a facet that captures the tradi-
tional partial-evaluation behavior of primitives. It is called the partial-

evaluation facet. More specifically, for a given semantic algebra, the corre-
sponding partial-evaluation facet will define its standard semantics whenever
it is passed constant arguments. The partial-evaluation facet is defined as
follows.

Definition 7 (Partial-Evaluation Facet). The partial-evaluation facet of a
semantic algebra [D; O] is defined by the facet mapping 6-: [D; 0] ~

—,.
[Values; O].

In fact, the abstraction function ilm corresponds to the abstraction

function ?~ defined for domain D and taken from the family of abstraction
functions + given in Section 3.2. This function maps a value into its textual
representation (that is, a constant).

PROPERTY 5. The partial-evaluation facet (Definition 7) is a facet.

Notice that, just as any other facet operator, a partial-evaluation facet
operator produces value T _ when it is passed to values that are too

coarse (that is, nonconstant values).
We can now define the semantics of parameterized partial evaluation.

4.4 Semantics of On-line Parameterized Partial Evaluation

Since this semantics aims at defining partial evaluation, we assume that the
partial-evaluation facet always exists. Thus, because a partial-evaluation
facet is defined for each semantic domain, it will be assigned to the first
component of every product of facets. A sum of these products of facets is

noted S’47; each summand correpsonds to a semantic algebra.
Figure 3 displays the parameterized partial-evaluation semantics. For

simplicity, we assume that every product of facets contains m facets (includ-
ing the partial-evaluation facet). Also, we assume that user-supplied facets
are globally defined, that is, the corresponding abstraction functions and
product operators are globally defined.

The skeleton of this semantics is the same as the traditional par-
tial-evaluation semantics displayed in Figure 2. This is not surprising,
since introducing facets essentially enriches the semantic algebras of this
semantics.

For a product of facets ~, 15D[denotes the ith abstraction function. Besides
computing facet values, the partial evaluator has to construct the residual

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No. 3, July 1993

Parameterized Partial Evaluation . 477

1. Semantic Domains

~ES—DC~@,’- ‘where Dj = (D,l Q -.. Q D,~) and s is the number of bassc dOmains

,=1

e’ G Exp
p E Env = var - (Exp X S-D)

w E FnEnv = Fn - (Expn x S-D” x sf) ~ (Exp X S-D X Sf)
a C Sf = (Fn x Expn x S—P”)-+ Exp

2. Valuation Functions
P&Prog : Prog * Exp” b S-D” + Prog ~
F& : Exp + Env - FnEnv - Sf - (Exp x S-D x Sf)
2P : Po a Exp” - S-D” + sf - (Exp X S-D X Sf)

PfProg [{ f,(zl,z”) = e$}](ej,..., e~)(i, in), in) =

(Mkl%og a) whererec (-, a) = P& [fl(zl,... ,zn)~(l[(e~, ~,)/[z,]]) m 1

w = l[(~((ej, .-. ,e~), (6,,... , 6n), 0) . P& [et] [(e’, ~k)/[zk]] = U)/[f,]

Pt[c]ptaa=t[c]u

P& [z] p u u = (.’,;, a) w~re (e’, F) = p [z]-

P& ~(el,. ... em)]pzaa = Kp~](ej,. ... e~)(61,. ... F.) on

where (e!,l, ul) = P& [e,] p m u

(e~,;n, un) = P& [e.] p w U.–1

P& [ifej .2 e3] p ma = (e; G Const) + (K e;) + ‘P& [e2] p maI, P& [e3] p c2JaI,

([tf ej ej ej],j, 03)

where (ej,~,az) = P& [ez] p w al

~:,63LCT3) ~ P& [m] p f= m

6=62U63

where (ej,~l, al) = Pt [e,] p m u

P15 [f(el,. ... en)] p w u = APP [f] (ej,.l.,e~) (~1,.., in) CT. m

where (e~,6,, a,) = Pt[el]pwa

Fig. 3. On-line parameterized partial evaluation.

ACM Transactions on Programming Languages and Systems, Vol. 15, No 3, July 1993

478 . C. Consel and S. C. Khoo

program and collect the specialized functions. This triple forms the codomain

of the partial-evaluation function and is defined as Exp x S= X Sf. Closed
and open operators are respectively noted p‘ and p”.

Notice that when an expression partially evaluates to a constant—because
the expression is either afi constant or a primitive called with appropriate
values—functions % and %P propagate this value to all facets in a product by
invoking their corresponding abstraction function.

The following theorem asserts that any constant produced by partially
evaluating a primitive call is always correct with respect to the standard
semantics, modulo termination.

THEOREM 1. Let [~; 6] be a product of facets (including the partial-

euaiuati:n facet) for an algebra [D; 01. Let c = (Y% KP(X1, ”””, x.)] L

[([~t 1> l)/’K~l 11 ~FnEnL) ~~f)~ 1, and AU= (%~p(xl,””., x.)]L [d,/Dx,ll
L ~~E~U) where d, = n~=l{d G D I d E&;, d:}, for i = {1,...,n}. Then,

(c ● Const)andu+~*c = ?(u).

Finally, let us point out that on-line partial evaluation as defined in Figure
3 provides a less complete treatment of conditional expressions than the one
described in Redfun [14]. Indeed, Redfun is able to extract properties from
the predicate of a conditional expression. Then, these properties and their
negation are propagated to the consequent and alternative branches, respec-
tively. This is somewhat similar to constraints in logic programming. We are
currently investigating this issue to possibly incorporate the notion of con-
straints in our approach.

5. OFF-LINE PARAMETERIZED PARTIAL EVALUATION

As discussed earlier, in an on-line strategy all decisions about how to process
an expression are made at partial-evaluation time. This makes it possible to
determine precise treatment based, for example, on concrete values. How-
ever, this is computationally expensive because the partial evaluator must
analyze the context of the computation—the available data—to select the
appropriate program transformation. This operation is repeatedly performed
when processing recursive functions.

In conventional partial evaluation efficiency is achieved by an off-line

strategy which splits the partial-evaluation phase into binding-time analysis
and specialization. In particular, the binding-time analysis only computes the
static\ dynamic property. In off-line parameterized partial evaluation, we
generalize the binding-time analysis to facet analysis: a phase that statically
computes facet information. Consequently, the task of program specialization
reduces to following the information yielded by the facet analysis.

To present off-line parameterized partial evaluation, we follow the ap-
proach used in defining on-line parameterized partial evaluation: we intro-
duce the concept of abstract facet in Section 5.1, describe the product of
abstract facets in Section 5.2, define the binding-time facet in Section 5.3, and
last, describe facet analysis in Section 5.4.

ACM Transaci,]ons on Programmmg Languages and Systems, Vol. 15, No 3, July 1993

Parameterized Partial Evaluation . 479

5.1 Abstract Facets

To lift facet computation from partial evaluation, we need to define a suitable
abstraction of this process. In particular, we need to define an abstraction of a
facet that enables facet computation to be performed prior to specialization.
The resulting facet is called an abstract facet and is defined in this section.

Not surprisingly, an abstract facet has the same structure as a facet. In
particular it has two classes of operators: open and closed. Similar to a facet,
a closed operator of an abstract facet is passed abstract values and computes
new ones. As for an open operator, it mimics the corresponding facet operator:
it uses abstract values to produce binding-time values. More precisely, in-
stead of a constant it produces the binding-time value Static, and instead of
T - it produces Dynamic.

Just as a facet is defined from a semantic algebra, an abstract facet is
defined from a facet. Formally:

Definition 8 (Abstract Facet). ~AA abstrzjct$acet [D; O] of a facet [D; O] is
defined by a facet mapping &D: [D; O] ~ [D; O] with respect to ;.

This definition leads to the following property about open operators.

This property states that, when an open operator of an abstract facet maps
some properties into the value Static, the open operator of the corresponding
facet will yield a constant value at specialization time, modulo termination.

As an example of an abstract facet, say we wish to define a Sign abstract
facet from the Sign facet (Example 1). This will amount to determining, prior
to specialization, whether sign computation can produce constants. If so, the
specialization phase will collect sign information and trigger the open opera-
tors that produced the value Static at facet analysis time.

Example 2. The abstract facet for the Sign facet [D; O] is defined as
follows.

(1) D = D (similar to Example 1)

(2) &D is simply the identity mapping between D and D.

(3) d = { Z , ~ } where ; has the same functionality as ~ and -Z is defined
as follows.

?: DXD+VXS
? = A(a, b). a=lVb=lel-

a = pos A (b ● {neg, zero}) - Static,
a = zero A b = pos ~ Static,
a = zero A (b = [neg, zero)) ~ Static,
a = neg A (b ● {pos, zero}) ~ Static, Dynamic

ACM Transactions on Programming Languages and Systems, Vol 15, No. 3, July 1993.

480 . C. Consel and S. C. Khoo

5.2 Product of Abstract Facets

As in on-line parameterized partial evaluation, we now define the product of

abstract facets. It captures the set of abstract facets derived from the set of
facets defined for a given semantic algebra.

Definition 9 (Product of Abstract Facets). Let ti,: [D,; O,] s [Dl; 0,] for
i~{l, ..., m} be the set of facet mappings defined for the facets of a semantic
algebra [D; O]. Its product of abstract facets, noted [~, Q 1, consists of two
components:

(1) A domain d = II:. ID, is a smashed product of the abstract-facet
domains;

(2) A set of product opera~ors fi such that Vp = O and its corresponding
product operator i3P ● O;
(a) if ~ is a closed operator, then

p: Dn-D ,. and
-:@n+~

:P
= ~(~l,...,

‘P i)-” m’=lfiz($;,”””> 5;).

(b) otherwise, 15 ● O is an open operator, and
p: Dn + D’ for some domain D’, and

“:G’+VZS
fP

‘P
= A(81, ”””, sn)”(aj e {1,”””,772}St. dj = 1=) + L=,

(~.j ● {1,”””, m} s.t. ~j = Static) + Static, Dynamic

where d-= (jil(i$~,.. -, $~),.”.,ji~(~~,..”, $~~)).

The domain 6 is partially ordered componentwise. Since all the product
components are of finite height by definition, the product domain is also of
finite height.

PROPERTY 7. All operators defined in the product of abstract facets, [~; fl],

are monotonic.

5.3 Binding-Time Facet

While the partial-evaluation semantics of algebraic operators is captured by a
facet, the computation of their binding-time values can similarly be captured
by the notion of abstract facet. Such an abstract facet is called a binding-time

facet.

Definition 10 (Binding-Time Facet). The binding-time facet of a partial-—,.
evaluation facet [Values; O] is defined by the facet mapping d-:

—.
[Values; 01 ~ [Values; O]

(1) ii—: V7S + Vziizs
-Values
a— =?

Value%

(2) V6 C O of arity n

6: VGsn + Values

6 = A(dl,..., Jn). =jG{l,..., n}t.clJ=l=l — +1
m’

A ~. ~(~, = Static) + Stat&l&namic

ACM TransactIons on Programming Languages and Systems, Vol. 15, No. 3, July 1993

Parameterized Partial Evaluation . 481

PROPERTY 8. The binding-time facet (Definition 10) is an abstract facet,

Not surprisingly, Definition 10 captures the primitive functions of a con-
ventional binding-time analysis. As a result, not only does the facet analysis
compute user-defined abstract values but it also computes binding-time
values, just as a binding-time analysis.

5.4 Facet Analysis

We are now ready to examine the facet analysis. It is essentially a conven-
tional binding-time analysis, as described in [22] for example, extended to
compute facet information. Analogous to the definition of parameterized
online partial evaluation, we assume the binding-time facet to be always

defined. The main semantic domain used by the analysis is denoted by y=,
which is a sum of products of abstract facets—each summand corresponds to
a semantic algebra. The binding-time facet is assigned to the first component
of each product.

Facet analysis is displayed in Figure 4. It generalizes the traditional
binding-time analysis (e.g., [22, 18]) to compute abstract-facet information.
This analysis aims at collecting abstract-facet information for each function
in a given program; this forms the facet signature of a function. More
precisely, a facet signature of a function consists of a product of abstract-facet

values for the arguments and its corresponding result; it is defined as ~~ + 1.
The result of the analysis (domain SigEnv) is a function mapping each
user-defined function in the program to its facet signature.

The valuation function ~ maps each user-defined function into its abstract
version. The resulting abstract functions are then used by the valuation
function ~ to compute the facet signatures. As usua~, computation is accom-
plished via fixpoint iteration. Functions ~ and 3P perform the abstract
computation on constants and primitive operators. This is similar to func-
tions % and ~P defined in Figure 3. Finally, note that fixpoint iteration is

performed over the domains 9% and SigEnv. Since these domains are of
finite height and operations over these domains are monotonic, a fixpoint will
be reached in a finite number of steps.

6. AN EXAMPLE

This section illustrates further parameterized partial evaluation with an
example of a program computing the inner product of two vectors. After
describing this program, we examine its online and offline partial evaluation
when the size of the vectors is known. In this example we consider vectors of
floating point numbers.

One can think of a vector as an abstract data type V consisting of a set of
operators O listed below.

MktVec: Int + V

MktVec creates an empty vector of the specified size
UpdVec: V X Int X Float + V

UpdVec updates an element

ACM Transactions on Programming Languages and Systems, Vol 15, No. 3, July 1993.

482 . C. Consel and S. C. Khoo

1. Syntactic Domains

(defined in Figure 1)

2. Semantic Domains

ZES—D.

QGEnV=

T E SigEnv =

< & FEnv =

‘&, Where 5, = (~,, B... @ fi,~) and s is the number of bas;c dorna;ns
,=1
Var ~ S—D
Fn + S—D”~l
Fn + S—D”+ S—D

ACM TransactIons on Programming Languages and Systems, Vol 15, No 3, July 1993.

Parameterized Partial Evaluation . 483

iprod(A, B) s dotProd(A, B,n) -
let n = Vectl(A) ifn=O then O

in dotProd(A, B,n) else Vref(L,n) * vref(E,n)
+ dotProd(A,B,n-1)

Fig.5. Program forinner product computation.

Vec#:V+Int

Vec# returns the size ofthevector
Vre~:VXInt - Float

Vre~returns a specified element ofagiven vector

The program for computing inner product is presented in Figure 5. To
specialize the inner product program with respect to the size of the vectors
our strategy consists ofdefiningthe size information as aproperty ofa vector.

6.1 On-lhe Parameterized Partial Evaluation

In o~der to capture the size property ofa vector, we define the Size facet
[V; O] from the vector algebra [V; O].

(1)

(2)

(3)

(4)

L

V= Int U{L~, T~} with the ordering Lv L i L Tv Vi = Int.

Abstraction function

&v : V+*

ii~(v) = 1~ ifv=l
Vec#(v) otherwise

Closed operators
——
MkVec: Values+ V

MkVec(i) = (i = L—)+1~,

(~=T=)~TV,~
values

UpdVec: V x Values x V~s + V

U=c(t, i, r) = (i = 1 Z)v(r=L—).
Values

Open operators

Vec #: V - Values

Vec#(fi) = (fi=l~) -1—,

(i= i) + i,~~

%fi V X VZRGS + Values

=f(fi, i)=(o=l~)v(i=l)+~m,Tz
Values

et us now specialize the inner product program with respect to a given
size, say 3. The facet values passed to the partial evaluator will be (A,
(T _,3))and(B, (T—, 3)), (where A and B are residual identifiersvalues
for i prod). When partially evaluating i prod, the size facet information is
used to obtain the size of vector A. Variable n is then bound to a constant
value. As a result, the test expression in dot Prod is static, and thus can be

ACMTransactionsonProgrammingLanguagesandSystems,Vol. 15,No.3,July 1993

484 . C. Consel and S. C. Khoo

reduced; also, the recursive call to dot Prod can be unfolded. The resulting
program is displayed in Figure 6. Notice that it is now nonrecursive; also,
since elements of the vectors are unknown at partial-evaluation time, the
primitive operation Vre f cannot be reduced; thus both the multiplication and
addition operations are residual.

6.2 Off-line Parameterized Partial Evaluation

In the off-line parameterized partial evaluation, we define the abstract Size
facet [V; O].

(1)

(2)

(3)

(4)

V = {s, d} with the ordering 1~ G s L d.
Values s and d denote a static and a dynamic vector

Abstraction function
A

Gv:v+v

ti~(o) = 1~ if~=lfi
d if~=T~
s otherwise.

Closed operators

M~c: Values+ V

M~c(x) = (i =1—) ~ Lv , (i = Dynamic) ~ d,
Values——

UpdVec: V x Values x Values+ V

UpdVec(ti, i, r) = (i = L =)v(r”l —)+1~,
values

Open operators

size,

s

G.

respectively.

Vec#: V + VZZZS

Let us now perform a facet analysis on the inner product program, given
that the actual value of both vectors is dynamic but their size is static. Recall
that besides the abstract Size facet, the binding-time facet (Definition 10) is
also defined. Both parameters of dot Prod will then be bound to the pair of
abstract values (Dynamic, s). As a result, the binding-time value of variable
n is Static. Thus, the facet analysis determines that the test expression in
dot Procl is static, and the conditional expression can be reduced statically.
This coincides with the result of on-line parameterized partial evaluation;
however, these reductions have been determined statically.

Figure 7 displays the information yielded by the facet analysis of the inner
product program when only the size of the vectors is static; more precisely,
we show the facet values of the main expressions of the program. For
conciseness, the values stat ic and Dynamic are noted Stat and Dyn,
respectively.

The underlined binding-time value represents the static value obtained
from the size abstract facet value. Notice that the size information is only

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No 3, July 1993

Parameterized Partial Evaluation . 485

iprod(A, B)= Vref(k,3) *Vref(B,3)

+Vref(A,2) * Vref(B,2)

+Vref(A, 1) * Vref(B,l)

Program Code

iprod(A, B) =

let n = Vecj(A)

in dotProd(A, B, n)

dotProd(A, B, n)=

if

n=O

then O

else vref(A, n) * Vref(B, n)

+
dotProd(A, B, n–1)

Fig.6. Residual program forinner product corn-

putation.

Facet Values

A = (Dyn, S), B = (Dyn, S)

Vecj(A) = @

n=(M

A = (Dyn, S), B = (Dyn, S)

n=w
(Stat)

vref(A, n) = (Dyn), Vref(B, n) = (Dyn)

Fig.7. Abstract facet information after facet analysis

used in the main function, iprod. This means that, at specialization time,
size facet computation is only required for i prod (in fact, it is only required
for partial evaluation of the abstract syntax tree rooted by the open operation
Ve c #). only partial-evaluation facet computation is performed for dot Prod.

This contrasts with on-line parameterized partial evaluation of the inner
product program where the size facet computation is performed each time
function dot Prod is invoked.

7. RELATED WORK

Redfun was the first partial evaluator to specialize programs with respect to
symbolic values. Since then, other partial-evaluation systems with similar
capabilities have been developed (e.g., [21, 13, 3]). The latest system devel-
oped along this line is Fuse [26, 25]. This partial evaluator utilizes type

information during program specialization. In particular, it uses symbolic
values to represent both a value and the code to produce the value. This
technique is similar to value descriptors and q-tuples introduced in Redfun.
However, instead of fixing the set of static properties used by the system (as
in Redfun), Fuse allows the user to modify the specializer’s code to introduce
new type information.

In contrast to our approach, Fuse and its predecessors are restricted to an
on-line strategy. They do not provide a safe and systematic approach to
introduce user-defined static properties; when static properties can be intro-
duced, this is usually done by modifying the partial evaluator’s code. Finally,
the lack of a formal methodology makes it difficult to reason about combining
various symbolic values.

Generalized Partial Computation [11, 24] is a program optimization ap-
proach that aims at specializing programs with respect to different kinds of

ACMTransactionsonProgrammingLanguagesandSystems,Vol. 15,No.3,July 1993,

486 . C. Consel and S C Khoo

information (called u-information) such as logical structures of programs,
axioms for abstract data types, and so on. It uses a set of transformation rules
to specialize a program and calls upon a logic system to compute u-informa-
tion for each expression in the program. The safety of the computation relies
on the underlying logic system and its relation with the semantics of the
language in which programs are written. This relation is currently under
study [24]. Generalized Partial Computation does not address off-line partial
evaluation. The literature in the field [23] does not report any implementa-
tion of this approach.

8. CONCLUSION AND FUTURE WORKS

Parameterized partial evaluation is based on a uniform methodology to
introduce static properties at both the on-line and off-line levels of partial
evaluation. This is achieved by the notion of facet mapping, which provides a
generic and safe abstraction mechanism for relating domains and primitive
operations at three levels of evaluation: standard evaluation, on-line partial
evaluation, and off-line partial evaluation. Furthermore, our approach gener-
alizes the notion of binding-time analysis to any facet information. Facet
analysis makes it possible to achieve self-application and improve the special-
ization process.

Parameterized partial evaluation has already been successfully imple-
mented for a first order subset of ML at CMU [6] and at Yale [171.

Both on-line and off-line higher order parameterized partial evaluation
have also been formally specified. Not surprisingly, these specifications have
essentially the same structure as higher order partial evaluators. In particu-
lar, in the case of off-line partial evaluation, we have directly used the
binding-time analysis described in [8] and parameterized it with respect to
abstract facets. We are now using these specifications as a basis for imple-
menting a higher order parameterized partial evaluator for ML.

Finally, we are investigating various extensions to this framework. In
particular, we are looking into parametrized partial evaluation for a lazy
language. We are also exploring partial evaluation parameterized with re-
spect to operational properties such as strictness properties.

APPENDIX A. PROOFS

A.1 ProofQ on Logical Relations

PROPERTY 1. Let a~,: [A O] -

a’ = {aB;: Bl - B’,}, Vp ● O and

p EUA’ p’.

[A’; 0’] be a facet mapping with respect to

its corresponding abstract version p‘ ● 0’,

PROOF. We need to prove that the safety condition (Condition 5) in Defini-

tion 2 is equivalent to the relation p Ca., p‘ Vp E O. We only prove the case
for closed operator. The proof for open operator is similar, and thus omitted.

ACM TransactIonsonProgrammingLanguagesandSystems,Vol 15,No 3, July 1993

Parameterized Partial Evaluation

(1) Suppose that a*l o p E p’o GIA. Va G A and Vu’ ● A’, if a Es,,

(2)

~~(~(~)) ~~ ~’(aA(a)) by the above assumption

. 487

a‘, then

GA p’(a’) monotonicity of p‘ and a L~~, a‘.

Thus, p(a) c.., p’(a’). Since this is true for any a = A and a’ G A’ with
a ~a~, a’, we have p L~A, p’.

Suppose that p E@A, p‘. Va E A,

p ~aA, p’ *p(a) E .~, p(a~l(a)) since a ~~~, aA, (a)

= aA(P(a)) ~~, p(aA(a)) by Definition 3

- (aA, ”P)(a) Z (P’” aA,)(a).

Since this is true for all a = A, we have a* 0 p L p‘ 0 aAI.

This concludes the proof. ❑

A.2 Proofs on On-line Parameterized Partial Evaluation

PROPERTY 2. For any open operator p ● O of arity n, lid,,..., cf. = fi and

Vd, @ D, if d, La,+a?, Qi ~ {1,..., n}, then fi(~l,..., ~~) ~ Const A

p(dl,. ””, dn) + L *~(cfl,...,cfJ = ?(p(dl,..., d,)).

PROOF. Let fi(jl,..., in) = c1 and ;(p(dl,..., d.)) = Cz, where cl, Cz
= Values. Notice that cz # L . By the safety condition for facet, we must

have Cz L -Cl. Since any two distinct constants are incomparable in

V~s, we must have c1 = Cz. ❑

LEMMA 3. Let [~; h] be a product of facets and pA = O be an open

ope~ator. If 3j, k ● {1,..., n-z} (j + k) and $1,..., $n G= such that both

fil(s~, ”””, &) G Const and flh($~,..., $:) = Const, then fll(i$~,..., $;) =

fi~(s$,” ””, s;).

PROOF. Without loss of generality, we consider u~ary open operators (the

argument is noted C?). Let C = n ~=~{d ● D I d Lfi ~ ‘}. Since $ is consistent,
it is true that C + ~ and C # { L}. Suppose =d ~ C such that p(d) termi-
nates. Then, by Property 2, we have

fiJ(6J) ● Const ~~j(~’) = ?(p(d)), and

fi~(~fi) ● Const =15~(8k) = ?(p(d)).

Thus, tJ(8j) = ?(p(d)) = fih($~). ❑

PROPERTY 4. All operators defined in the product of facets, [~; fl], are
monotonic.

PROOF. It is easy to see that the operator for closed operation is mono-
tonic, since all its constituent facet operations are monotonic.

ACMTransactionsonProgrammingLanguagesandSystems,Vol. 15,No.3,July 1993

488 . C. Consel and S. C. Khoo

To prove that functio~ i2P ~for op~n operations is indeed monotonic, we first
observe the fact that Vt$l, ”””,8. ~~, V.i ● {1, ..., In}:

(1)

where ii = (Pl($~,.””, $;), . . . , fi~(~~)”””, ~.m)). Without 10SSOf generality) We
asAsume th~t the operator takes one argument. Thus, we need to show that
W$l, $2 E9,

Let : = i3P(;I); the proof is clone by case analysis of the different classes of

value ; produced by the operation.

(1) IfO=l a, then ti G _ ~p(82) since 8 is the least element in Values.

(2) If 2 = Const, then by (l), Vj ● {1,. . . . n-z},we have

If Elh~ {l,..., m} such that 15k($~) is consta~t, then this constant must
be t and 0 = ~P($z); otherwise, 0 L _ $P(8Z) = T —----

Values

(3) If fi=Tm then by (l), Vj ● {1,..., m}, we have

A

Tlzla ~ values .7 —A(Q).‘t (8<) ~ ValuespJ

But T _ is the top element in V~s, therefore, ‘dj ● {1, m},

ij(~~) = T m, and 6P($Z) = 0.

Therefore, t3P is monotonic. ❑

PROPERTY 5. The partial-evaluation facet (Definition 7) is a facet.

PROOF. We need to show that 6-:
—A

[D; 01 ~ [Values; O] is a facet

mapping with respect to f. This is accomplished by considering the conditions

for a facet mapping.

(1) Values is an algebraic lattice of height 3.

(2) We want to show that VF = O, ~ is monotonic. Without loss of generality,
we assume that ~ takes one argument. Thus, we need to show that

Veil,cl,,cf,Efi, =+@l) G@(i,).

The proof is done by case analysis of the different values of cfa.

—c12 ‘ L _Then~l=lm too. By the definition of fi, we have

#(dl) = 1 _ = p(c12). ‘

—~z G Const. Then either ~1 = ~z or ~1 = 1 . For the former case,
Values

we have fi(~l) = fi(~z). For the latter case, we have fi(~l) = 1 m.

ACM TransactIonsonProgrammingLanguagesandSystems,Vol. 15,No.3, July 1993

(3)

(4)

(5)

(a)

(b)

Parameterized Parhal Evaluation . 489

Since L _ is the least element in the domain, then 15(o?l) L 13(cfz).

—ci2= T —. Then ~(~z) = T w by definition of 6. Since T — is

the ma~~g~ element in the domain, P(~1) L ~(o!z).
Values

Hence, Vj3 ● O, j is monotonic.

If p G O is a closed operator, then its corresponding abstract version is

p‘: V~s ~ Values, whose type matches that of ~ as defined in Defini-
tion 7.

If p G O is an open operator with functionality D ~ D’, where D’ is some
domain different from D, then its corresponding abstract version is p‘:

Values + V~s, whose type again matches that of ~ in Definition 7.

To prove the safety of the abstract operations, we define E. - as a

relation between D and Values such that:

Vd e D, V~~ Values: d c —2H a=(d) L=cf.—a vat.?.

We need to show that Vp E O, if fi = O is its corresponding abstract
A—

version, then p c. _ ~. That is, Vi ● {1, n}, Vdl ● D, VdL c Values:

~ [d, G.-j,] -p(dl,”””, dn) Ea-fi@l,”””,c$,,). (2)
~=1

This is achieved by considering the result produced by p(dl, ””, d.).

Notice that p(dl, d.) returns either a concrete value or L.

If p(dl, d.) = L , then (2) is vacuously true.

Suppose that p(dl,”. ”, d.)#l, then Vi={l,..., n}, d, #J.. ~incepis
strict. This implies that ~t + L , assuming that d, CO - d,. It also
implies that fl(~l,.:., ~~) < J_ ; so fi(~l,. ... ~.) is either a constant or it is
T -~. If fl(d”l,..., d“.) = T —, then p(dl,..., d.) z.-,

Values

fi@>”””, dnl If fi(~l,”””, $.) produces a constant, then fl(a?l, ”””, ~.) =
?(p(dl,..., d~)) by the definition of 8. Again, p(dl, ”.”, d.) E.-

Z3(~l, ”””, ~.). Therefore, Definition 7 holds.

Thus, a- is a facet mapping with respect to V~s, and Definition 7

defines a facet. ❑

THEOREM 1. Let [6; ~] be a product of facets (including the partial-

eualuati~n facet) for an algebra [D; O]. Let c = (~%[p(xl,” ““, x,)] 1

[([x,], 8r)\Ix,ll 1~.~.. Lsf)$ 1, and ~v = (%[P(Xl,”””, x.)IL [d,\Kx,ll
1 ~n~n,,) where d, ~ fi~=l{d ~ D I d E&g 8/}, for i G {1,..., n}. Then,

J

(c ● Const) and v+ _L = c = t(v).

PROOF. First of all notice that

(% ITP(X,,-, x.)]L [dZ/[x,]] -L.) =%P~pl(dl, ””., d.) =p(dl, ”””, d.).

ACM Transactions on Programming Languages and Systems, Vol. 15. No. 3. July 1993.

490 . C. Consel and S. C. Khoo

As defined in the on-line parameterized partial-evaluation semantics, we
have

Given that (~%iIp(xl,””, x.)IL [([x,], 8,)/Ix,ll 1. L)L 1 ● Const, the
proof is done by case analysis of the different classes of primitive operators:

(1) If p is a closed operator: Given (tij~p](~~ll,”””, ~X~])(~,,”4”, $.) ~)J 1
= Const. By definition of parameterized online partial evaluation,
for a closed operator, this constant can only be produced by the partial-
evaluation facet (that is, the first component of the product of facets).
Thus,

Given that (% IP(.YI,”, Xn)l L [d,\~x,ll L) + L and jl~~~,”””, ~~) ~
Const, by Definition 7, we have ViAG {1,”””, n}, 8: ● Const. Then Vi ●

{1,., n.}, Vd, c D such that d, =Y(8,1):

(2) If p is anopen operator: (-%~[pl([xll,.., [xnl)(~l,”””, ~.) L)J 1 ~ Const
implies that this constant is produced by a facet operation in the product
of facets. Lemma 3 says that we can consider any facet that produces the
constant. Assume that the ith facet produces this constant; This is
denoted by fi,(s~,..., 6;). By Property 2, we have fi,(s~,-”, s;) =

?(p(dl, ””., dJ).

This concludes the proof. ❑

A.3 Proofs on Off-1ine Parameterized Partial Evaluation

PROOF. By the safety condition for abstract facet, we must have

([
,,

~ F d17””’7
rM ‘=5 ‘1’”””’

cin~ = Static.

By definition of ?, we have Vx e Values, ;(x) E = Static - x = Const U

{L -}. Therefore j(~l,”””, cf.) = Const U {1 -}. ❑

PROPERTY7. All operators defined in the product of abstract facets, [~; h],

are monotonic.

PROOF. It is easy to see that the operator for closed operation is mono-

tonic, since all its constituent abstract-facet operations are monotonic.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 3, July 1993.

Parameterized Partial Evaluation . 491

To prove that operator for open operation, &P, is indeed monotonic, we first
observe the fact that V~l,G”., ~m=~ tij = {1, ..., m}:

where ii = (151(~~,”””, 8;), . . .,l%~$?,”””? ~~rn)). Without loss of generality, we
assume that the operator takes one argument. Thus, we need to show that
V$l, 52 E@,

($,E.; $2= iip(f$) L-fip(ti).

Let i = tip(~1), the proof is done by case analysis of the different classes of
value U produced by the operation.

(1) If fi=d--, then fi~z &P(~z) since fi is the least element in Values.

(2) If fi = Static, then by (3), Vj @ {1,..., m}, we have

~izzz u values —-(sj).‘fi G =fi~(ai) L vdue.5pJ

If3k~ {l,..., m} such that 15~(~~) = Static, then by ~he definition of the
product operator, i = tiP(~z); otherwise, fi Q w 6P(8Z) = Dynamic.

(3) If i = Dynamic, then by (3), Vj = {1,..., m}, we have

Bu~ ,Dynamic is the top e~ement in V~s; therefore, Vj G {1,..., m},

15J(8J) = Dynamic, and fip(8Z) = L. Therefore, fiP is monotonic. ❑

PROPERTY8. The binding-time facet (Definition 10) is an abstract facet.
—,.

PROOF. We need to show that &m: [Values; O] + [Values; O] is a
—.

facet mapping with respect to f. This is accomplished by considering the
conditions for a facet mapping.

(1) Values is an algebraic lattice of height 3.

(2) We want to show that Vfi E O, ~ is monotonic. Without loss of generality,
we assume that ~ takes one argument. Thus, we need to show that

vci,,J2, J, cc-i,-@(q E5(CQ.

The proof is done by case analysis of the different values of ~z.

—ci2= 1 —. Then ~1 = L
Values

= too. By the definition of fi, we have

j(dl) = 1 _ =p(J2).

—~z = Static. Then either ~1 = ~t or ~1 = 1 —. For the former case, we
Values

have j(~l) = fi(~z). For the latter case, we have j5(~l) = -1 —.Values
Since 1 _ is the least element in the domain, thus, fi(~l) L F3(~”z).

—dz = Dynamic. Then ji(~z) = Dynamic by -definitio-n of 5. Since Dynamic
is the maximal element in the domain. p(dl) c fi(dz).

Hence, V~ ● O, ji is monotonic.

ACMTransactIonsonProgrammingLanguagesandSystems,Vol. 15,No.3,July 1993.

492 . C. Consel and S. C. Khoo

(3) If fi = O is a closed operator, then its corresponding abstract version is
:‘: V~s ~ V~s, the type of which matches that of ji in Definition
10.

(4) We do not need to consider open operator since O has none.

(5) To prove the safety of the abstract operations, we define c.= as a

relation between Values and Values such that

Vi E Values, VJ = Values: Z L.-2 @ a- (~) L-d.

We need to show that V~ E O, if 15 = O is its corresponding abstract. —.
version, then S E. -15. That is, Vi ~ {1, ..., n}, ~d, E values, ~d,

G Values:

This is achieved by considering the result produced by fi(~l, ”””,~~).

(a)

(b)

(c)

If fi(~l,”””,~.) = 1=, then (4) is vacuously true.

If j3(il ,“””, i.) returns a constant, then by Definition 7, we have
Vi = {1,..., n}, ~Z = Cons$ This implies that Vi = {1,. ”., n}, d, ●

{Static, Dyrmnzi~}, siqce d, La= ~,. From the definition qf 6, ye
must have. ~(dl,; ””, d.) e {static, Dynamic}. Therefore, ~(dl,.””, d.)

r—a- fi(dl,-. ”, dJ.

If fi(ctl,”””,~~) = T= then from the definition of 15(Definition 7),

3j = {1,”””, n} such that ~1 = T-, while Vi ● {l, ””, n}, ~, # ~ .

This impli~s that =j ● {1,”””, n} s’~~~ ‘that ~~j = Dynamic, while Vi G

{1,.;.,n}, -d, * -L (Since vi = {1,; -, n},fi d, L. - i,- in (+)). Thus,
ji(dl,””., d.) = Tm. Hence, S(dl,”””,dn) L.- ~(dl,..,d.).

Therefore, (4) holds.

Thus, a= is a facet mapping with respect to 7, and Definition 10 defines

an abstract facet. ❑

ACKNOWLEDGMENTS

To the Yale Haskell Group. Thanks are also due to Karoline Malmkj=r,
Olivier Danvy, Paul Hudak, Pierre Jouvelot, and David Schmidt for thought-
ful comments on earlier versions of this paper.

REFERENCES

1. ABRAMSKY, A. Abstract interpretation, logical relations and Kan extensions. Logic Comput

1, 1 (1990), 5-40.
2. ASRAMShT, S., AND HANKIN, C., EDS. Abstract Interpretation of Declarative Languages. Elhs

Horwood, 1987.
3. BERLIN, A. Partial evaluation applied to numerical computation In ACM Conference on

Lisp and Functional Programming (Nice, France, June 1990), 139-150.

ACM Transactions on Programming Languages and Systems, Vol 15, No. 3, July 1993

Parameterized Partial Evaluation . 493

4. BJ@RNER, D., ERSHOV, A. P., AND JONES, N. D., EDS. Partial Evaluation and Mixed Compu-

tation. North-Holland, 1988.

5. BURSTALL, R. M.j AND DARLINGTON, J. A transformational system for developing recursive
programs. J. ACM 24, 1 (1977), 44-67.

6. COLBY, C., AND LEE, P. An implementation of parameterized partial evaluation. Z3igre J. 74
(1991), 82-89.

7. CONSEL, C. Analyse de Programmed, Evaluation Partielle et G6n6ration de Compilateurs.
Ph.D. thesis, Univ. de Paris VI, Paris, France, June 1989.

8. CONSEL, C. Binding time analysis for higher order untyped functional languages. In ACM

Conference on Ltsp and Functional Programming (Nice, France, June 1990), 264-272.

9. COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In ACM Symposium on

Principles of Programming Languages (Los Angeles, Calif., Jan. 1977), 238-252.

10. EMANUELSON, P., AND HANDSSON, A. On compiling embedded languages in LISP. In ACM

Conference on Lisp and Functional Programmmg (Stanford, Calif., June 1980), 208-215.
1L FUTAMURA, Y., AND NOGI, K. Generalized partial computation. In Partial Evaluation and

Mixed Computation. D. Bj@-ner, A. P. Ershovj and N. D. Jones, Eds. North-Hollandj 1988.

12. GANZINGER, H., AND JONES, N. D., EDS. Programs as Data Objects, Vol. 217, Lecture Notes

in Computer Science, Springer-Verlag, 1985.

13. GUZOWSKI, M. A. Toward developing a reflexive partial evaluator for an interesting subset
of Lisp. Master’s thesis, Dept. of Computer Engineering and Science, Case Western Reserve

Univ., Cleveland, Ohio, 1988.

14. HARALDSSON,A. A program manipulation system based on partial evaluation. Ph.D. thesis,
Linkoping Univ., Swedenj 1977. Linkoping Studies in Science and Technology Disserta-

tions 14.

15. JONES, N. D., AND NIELSON, F. Abstract interpretation: A semantics-based tool for program
analysis. Tech. Rep. Univ. of Copenhagen and Aarhus Univ., Copenhagen, Denmark, 1990.

16. JONES, N. D., SESTOFT,P., AND S@NDERGAARD,H. Mix: A self-applicable partial evaluator for
experiments in compiler generation. LLSp Symb. Comput. 2 (1989), 9–50.

17. KHOO, S. C. Parameterized partial evaluation: theory and practice. Ph.D. thesis, Yale Univ.

1992. June 1992. Also Res. Rep. 926.

18. LAUNCHBURY, J. Projection factorisation in partial evaluation. Ph.D. thesis, Dept. of Com-

puting Science, Univ. of Glasgow, Scotland, 1990.
19. NIELSON, F. Two-level semantics and abstract interpretation. I%eor. Comput. Sci. 69

(1989), 117-242.

20. SCHMIDT, D. A. Denotational Semantics: a Methodology for Language Development. Allyn

and Bacon, 1986.

21. SCHOOLER,R. Partial evaluation as a means of language extensibility. Master’s thesis, MIT,
1984.

22. SESTOFT, P. The structure of a self-applicable partial evaluator. In Programs as Data

Objects, Vol. 217, Lecture Notes in Computer ScLence. Springer-Verlag, 1985, 236-256.

23. SESTOFT, P. Annotated bibliography on partial evaluation and mixed computation. Diku

report, Univ. of Copenhagen, Copenhagen, Denmark, 1990.

24. TAKANO, A. Generalized partial computation for a lazy functional language. In ACM

Symposium on Partial Evaluation and Semantics-based Program Manipulation (New Haven,
Corm.,June 1991),1-11.

25. WEISE,D., CONYBEARE,R., RUF,E., ANDSELIGMAN,S. Automatic online partial evaluation.
In FPCA’91, 5th International Conference on Functional Programming Languages and

Computer Architecture (Cambridge, Mass.j Aug. 1991), 165-191.

26. WEISE, D., AND RUF, E. Computing types during program specialization. Tech. Rep. 441,
Stanford Univ., Stanford, Calif., 1990.

Received September 1991; revised March 1992; accepted April 1992

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 3, July 1993

