
Algorithms in Bioinformatics: A 
Practical Introduction

RNA Secondary Structure 
Prediction



Functions of RNA

 Serves as the intermediary for 
transforming DNA to protein

 Functions as a catalyze
 Acts as information storage in viruses 

such as HIV



Why we study the structure of 
RNA?

 RNA is the only known molecular which 
can act as information storage and as 
catalyze

 It seems that their functionality is quite 
related to their structure



RNA structure
 As RNA has an extra OH attaching to 2’

carbon, RNA forms extra hydrogen bond 
which enable it to have 3D structure

 RNA structure can be described in three 
levels
 Primary structure

 Just the sequence
 Secondary structure

 The base pairs
 Tertiary structure

 The 3-dimensional structure



Example (Secondary structure  
for phenylalanyl-tRNA)
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Example (Tertiary structure  
for phenylalanyl-tRNA)

http://www.geocities.com/CollegePark/Hall/3826/interests.html
http://www.biochem.ucl.ac.uk/bsm/pdbsum/1ehz/tracel_r.html

http://www.geocities.com/CollegePark/Hall/3826/interests.html�
http://www.biochem.ucl.ac.uk/bsm/pdbsum/1ehz/tracel_r.html�


Example (Function for 
phenylalanyl-tRNA)

 The structure of phenylalanyl-tRNA is a 
cloverleaf.

 Its function is to translate a codon (3 
bases) into an amino acid.

 Note that the cloverleaf structure is 
essential to its translation function.



Formal definition of RNA 
secondary structure
 Given a RNA s=s1s2…sn where 

si∈{a, c, g, u}.
 For 1 ≤ i < j ≤ n, if si and sj form a base pair

via hydrogen bond, we say (i, j)
 Normally, a base pair is c-g or a-u.
 Occasionally, we have g-u pair.

 A secondary structure of a RNA s is a set S of 
base pairs such that each base is paired at 
most once.



Pseudoknot

 A pseudoknot is two base pairs (i,j) and 
(i’,j’) such that i<i’<j<j’



Loops
 Suppose there is no 

pseudoknot!
 Loops are regions enclosed 

by backbone and base pairs.

 Hairpin: loop contains 
exactly one base pair

 stacked pair: loop formed by 
base pairs (i,j), (i+1,j-1)

 Internal loop: loop contains 
two base pairs

 Bulge: internal loop with two 
adjacent bases.

 Multi-loop: loop contains 
three or more base pairs



Another view of loops

a ugc ca cg cua u cg cau aacc cucga u

hairpin

stacking pair

internal loopmulti-loopbulge



How to obtain RNA secondary 
structure?
Different ways to obtain RNA secondary structure.
1. By experiment

 X-ray Crystallography
 NMR Spectroscopy

2. Phylogenetic approach
 Given a sufficient number of related RNA sequences, infers 

the RNA structure
3. Prediction

 For secondary structure, based on the current best solution, 
on average, we can correctly predict 73% of known base-
pairs when sequence of fewer than 700 bases are folded



Overview
 In this lecture, we focus on RNA 

secondary structure prediction. 
 RNA secondary structure prediction 

problem (without pseudoknot)
 Define thermodynamic model 
 Dynamic programming solution
 Speedup

 RNA secondary structure prediction 
problem (with pseudoknot)



RNA secondary structure 
prediction problem

 Nussinov folding algorithm
 Idea: maximize the number of base pairs

 Example: ACCAGCUGGU

ACCAGCUGGU



Nussinov folding algorithm (I)

 Let S[1..n] be the RNA sequence
 Let V(i,j) be the maximum number of 

base pairs in S[i..j].
 Base case:

 V(i,i)=0 since the sequence has only one 
base!

 V(i+1,i)= 0 since the sequence is empty!



Nussinov folding algorithm (II)
 When i<j, we have four cases:

1. No base pair attached to j
 V(i, j) = V(i, j-1)

2. No base pair attached to i
 V(i,j) = V(i+1, j)

3. (i, j) form a base pair
 V(i, j) = V(i+1, j-1) + δ(S[i], S[j])

where δ(x, y)=1 if (x,y)∈{(a,u), (u,a), (c,g), (g,c), (g,u), 
(u,g)}; and 0, otherwise

4. Both I and j attached to some base pairs both (i,j) is not a 
base pair
 V(i, j) = maxi≤k<j{V(i,k)+V(k+1,j)}

 Note: cases 1 and 2 are subcase of case 4!



Nussinov folding algorithm (III)

 Therefore, we have:
 Base case:

 V(i,i)=0, V(i+1,i)=0

 Recursive case (i<j):
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Example: base case
 S[1..7]=ACCAGCU 1 2 3 4 5 6 7

1 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0



Example: recursive case (I)
 S[1..7]=ACCAGCU C 1 2 3 4 5 6 7

1 0 0 0
2 0 0 0 0
3 0 0 0
4 0 0 0
5 0 0 1
6 0 0 0
7 0 0

V (3,5)=max number of base pairs 
in S[3..5].

By the recursive formula,
V(3,5)=max{V(4,4)+δ(S[3],S[5]), 
max3≤k<5V(3,k)+V(k+1,5)} = 
max{V(4,4)+1, V(3,3)+V(4,5), 
V(3,4)+V(5,5)} = 1



Example: recursive case (II)
 S[1..7]=ACCAGCU C 1 2 3 4 5 6 7

1 0 0 0 0
2 0 0 0 0 1
3 0 0 0 1 1
4 0 0 0 1
5 0 0 1 1
6 0 0 0
7 0 0

V (4,7)=max number of base pairs 
in S[4..6].

By the recursive formula,
V(4,7)=max{V(5,6)+δ(S[4],S[7]), 
max4≤k<7V(4,k)+V(k+1,7)} = 
max{V(5,6)+1, V(4,4)+V(5,7), 
V(4,5)+V(6,7), V(4,6)+V(7,7)} = 2



Example: recursive case (III)
 S[1..7]=ACCAGCU C 1 2 3 4 5 6 7

1 0 0 0 0 1 1 2
2 0 0 0 0 1 1 2
3 0 0 0 1 1 2
4 0 0 0 1 2
5 0 0 1 1
6 0 0 0
7 0 0



Nussinov folding algorithm (IV)

 Time analysis:
 We need to fill-in O(n2) V(i,j) entries
 Each V(i,j) entry can be computed in O(n) 

time.
 Thus, Nussinov algorithm can be solved in 

O(n3) time.



Predicting RNA secondary 
structure by energy minimization

 The best solution is energy minimization 
(thermodynamic model) based on 
dynamic programming
 Idea: 

 bases that are bonded tend to stabilize the 
structure 

 unpaired bases which form loops tend to 
destabilize the structure



Software

 This dynamic programming solution has 
been implemented in two important 
RNA folding softwares
 Zuker MFOLD algorithm

 http://bioinfo.math.rpi.edu/~zukerm/rna/

 Vienna package
 http://www.tbi.univie.ac.at/~ivo/RNA/

http://bioinfo.math.rpi.edu/~zukerm/rna/�
http://www.tbi.univie.ac.at/~ivo/RNA/�


Thermodynamic energy model

 Assume there is no pseudoknot.
 Thermodynamic model says
1. Every loop’s energy is independent of 

the other loops.
2. Energy of a secondary structure is the 

sum of the energies of all loops



Loop energy
 eS(i, j): free energy of the stacking pair consists of 

base pairs (i, j) and (i+1,j-1). Stacking pair stabilizes 
the structure and has a negative energy

 eH(i, j): free energy of the hairpin closed by the base 
pair (i, j)

 eL(i,j,i’,j’): free energy of an internal loop or bulge 
enclosed by (i, j) and consists of 2 base pairs.

 eM(i,j,i1,j1,…,ik,jk): free energy of a multi-loop 
enclosed by (i, j) and consists of k+1 base pairs.



How to find the minimum 
energy secondary structure?
 Similar to finding optimal alignment, we use dynamic 

programming
 W(j): energy of the optimal secondary structure for 

S[1..j]
 V(i, j): energy of the optimal secondary structure for 

S[i..j] with (i, j) forms a base pair
 VBI(i, j): energy of the optimal secondary structure 

for S[i..j] with (i, j) closes a bulge or internal loop
 VM(i, j): energy of the optimal secondary structure 

for S[i..j] with (i, j) closes a multi-loop



W(j)

W(j) find the free energy of the optimal 
secondary structure for S[1..j]

 W(0) = 0
 For j>0,
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V(i, j)

V(i, j) find the free energy of the optimal 
secondary structure for S[i..j] with (i, j) 
forms a base pair.

 If i≥j, V(i, j) is undefined.
 If i<j,
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VBI(i, j)

VBI(i, j) finds the free energy of the 
optimal secondary structure for S[i..j] 
with (i, j) closes a bulge or internal loop
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VM(i, j)

VM(i, j) finds the free energy of the 
optimal secondary structure for S[i..j] 
with (i, j) closes a multi-loop
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Time analysis
 W(i): n entries, each requires finding minimum of n 

terms. In total, O(n2) time.
 V(i, j): n2 entries, each requires finding minimum of 4 

terms. In total, O(n2) time.
 VBI(i, j): n2 entries, each requires finding minimum 

of O(n2) terms. In total, O(n4) time.
 VM(i, j): n2 entries, each requires finding minimum of 

exponential terms. In total, exponential time.

 Total time is exponential!



Speedup
 Multi-loop: approximate it with affline 

linear function
 Execution time: O(n3)

 Internal loop: ninio equation
 Execution time: O(n3)

 We will go through the multi-loop 
speed-up.



Approximating free energy for 
multi-loop
 Bottleneck is VM.
 To reduce the time, we approximate free energy for 

multi-loop using an affine linear function.

where a, b, c are constant
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Speedup for multi-loop

 WM(i, j):free energy of a subregion i..j 
of the multi-loop region.
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Time analysis

 WM(i, j): n2 entries, each can be 
computed in O(n) time. In total, O(n3) 
time.

 VM(i, j): n2 entries, each can be 
computed in O(n) time. In total, O(n3) 
time.



Assumption for internal loop/ 
bulge free energy
 eL(i, j, i’, j’) = size(n1+n2) + stacking(i, j) + 

stacking(i’, j’) +asymmetry(n1, n2)

• size( ): energy depends on loop 
size

• stacking( ): energy for the 
mismatched base pair adjacent 
to the base pair

• asymmetry( ): asymmetry 
penalty

n1=i’-i-1

n2=j-j’-1



Asymmetry Function 
Assumption
 We further assume that when n1,n2>c, asymmetry(n1, 

n2) is only depend on the difference of n1 and n2. In 
other word,
 asymmetry(n1, n2) = asymmetry(n1-1, n2-1) when n1, n2 >c

 Currently, we use Ninio equation, which is
 asymmetry(n1, n2) = min{K, |n1-n2|f(m)}

where m=min {n1, n2, c}, K and c are constants.
 Note that asymmetry(n1, n2) satisfies the above assumption.
 c is proposed to be 1 and 5 in two literatures.



Refined equation
 Let n1=i’-i-1, n2=j-j’-1, l=n1+n2.
 For n1>c and n2>c, we have 

 Proof:

)1,1(),()2()(
)',',1,1()',',,(

−+−+−−=
−+−

jistackingjistackinglsizelsize
jijieLjijieL



VBI”

 By previous slide, we have

 For running time, there are O(n3) entries for 
VBI”(i,j,l). Each entry can be computed in constant 
time. 
 Hence, all entries in VBI” can be computed in O(n3) time.
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Speedup for internal loop

 There are O(n2) entries for the table VBI. 
Each entry can be computed in O(n) time.

 In total, the RNA secondary structure 
prediction problem can be solved in O(n3) 
time.
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RNA secondary structure 
prediction with pseudoknots
 Up to now, there is no good way to predict 

RNA secondary structure with pseudoknots.
 In fact, predicting RNA secondary structure 

with pseudoknots is a NP-hard problem.
 This section considers RNA secondary 

structure prediction with a particular kind of 
pseudoknot --- simple pseudoknot!



Simple Pseudoknot
A set of base pairs Mi0,k0 is a simple pseudoknot if there exist 

i0<j’0<j0<k0 such that
 Each endpoint i appear in Mi0,k0 once.
 Each (i, j)∈ Mi0,k0 satisfies either i0 ≤ i < j’0 < j ≤ j0 or j’0 ≤ i < j0 

< j ≤ k0

 If pairs (i, j) and (i’, j’) in Mi0,k0 satisfies either i < i’ < j’0 or j’0 ≤
i < i’, then j > j’.

i0 j’0

j0 k0

k0
j’0

j0i0



RNA secondary structure with 
simple pseudoknots
 A set of base pairs M is called an RNA 

secondary structure with simple 
pseudoknots if
 M=M’∪ M1 ∪ M2… ∪ Mt

 Mh is a simple pseudoknot for S[ih..kh] 
where 1≤i1<k1<i2<k2<…<it<kt≤n

 M’ is secondary structure without 
pseudoknots for string S’ where S’ is 
obtained by deleting all S[ih..kh]



Problem

 Input: an RNA sequence S[1..n]
 Output: an RNA secondary structure 

with simple pseudoknots
 maximizing the number of base pairs



Dynamic programming for 
Simple Pseudoknot 
 V(i, j): maximum number of base pairs in S[i..j]
 Vpseudo(i, j): maximum number of base pairs of a pseudoknot in 

S[i..j]



 V(i, i) = 0 for any i
 Note: δ(S[i], S[j]) is 1 if S[i] and S[j] are complement and 0, 

otherwise.
 Suppose, for all i and j, Vpseudo(i, j) are available. The table V 

can be filled in using O(n3) time.
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Terminology
 What remain is to compute 

Vpseudo(i0, k0).

 Given a set of base pairs in 
a simple pseudoknot for 
S[i0, k0],
 A base pair is said to be 

below the triplet 
(i, j, k) if they are the red 
edges.

k0

i0

i
j

k

Left Middle Right



Computing Vpseudo(i0, k0) (I)
 For i0<i<j<k<k0, we define

 VL(i,j,k) be the maximum number of base pairs below the 
triplet (i, j, k) in a pseudoknot for S[i0..k0] with (i, j) is a 
base pair

 VR(i,j,k) be the maximum number of base pairs below the 
triplet (i, j, k) in a pseudoknot for S[i0..k0] with (j, k) is a 
base pair

 VM(i,j,k) be the maximum number of base pairs below the 
triplet (i, j, k) in a pseudoknot for S[i0..k0] with both (i, j) 
and (j, k) are not a base pair

 Note: max{VL(i,j,k), VM(i,j,k), VR(i,j,k)} is the 
maximum number of base pairs below 
the triplet (i, j, k) in a pseudoknot for S[i0..k0]



Computing Vpseudo(i0, k0) (II)
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VL(i, j, k)



 VL(i, j, k) means (i, j) is a pair. 
 Thus, VL(i, j, k) is equal to δ(S[i], S[j]) 

plus the maximum number of base 
pairs below (i-1, j+1, k)
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VR(i, j, k)

 Similarly, we have
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VM(i, j, k)
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Basis
 VR

 VR(i0-1,j,k)=0 if k=j or (k=j+1 and S[j] and S[k] 
does not form a base pair) (see figure (b))

 VR(i0-1,j,j+1)=1 if S[j] and S[j+1] forms a base 
pair (see figure (a))

(a) (b)

j

i0-1

i0

j-1
j

i0-1

i0

j-1



Basis

 VL
 VL(i,j,j)= δ(S[i], S[j]) for all i<j

 (see figure)

 VL(i0-1,j,k)=0 if k=j or k=j+1

 VM

 VM(i0-1,j,k)=0 if k=j or k=j+1
(a)

j
i0-1

i0

j-1

j+1



Time complexity for 
computing Vpseudo(i0, k0) (I)
 For a fixed i0, k0, the basis can be 

computed in O(n) time
 VL, VR, VM can be computed in O(n3) 

time.
 Thus, for every i0,k0, Vpseudo(i0,k0) can 

be computed in O(n3) time.
 It takes O(n5) time to compute 

Vpseudo(i0,k0) for all i0<k0



Time complexity for 
computing Vpseudo(i0, k0) (II)
 Can we further improve it?
 Note that the basis only depends on i0
 Thus, for a fixed i0, for any k0, 

 the values of table VR, VL, VM are the same.
 We can compute Vpseudo(i0,k0) for a fixed i0

and for any k0 in O(n3) time.
 In total, it takes O(n4) time to compute 

Vpseudo(i0,k0) for all i0<k0



Conclusion

 The table Vpseudo can be filled in using 
O(n4)

 The table V can be filled in using O(n3)
 Thus, the RNA secondary structure 

problem with simple pseudoknots can 
be solved in O(n4) time.
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