Algorithms in Bioinformatics: A Practical Introduction

RNA Secondary Structure Prediction

Functions of RNA

- Serves as the intermediary for transforming DNA to protein
- Functions as a catalyze
- Acts as information storage in viruses such as HIV

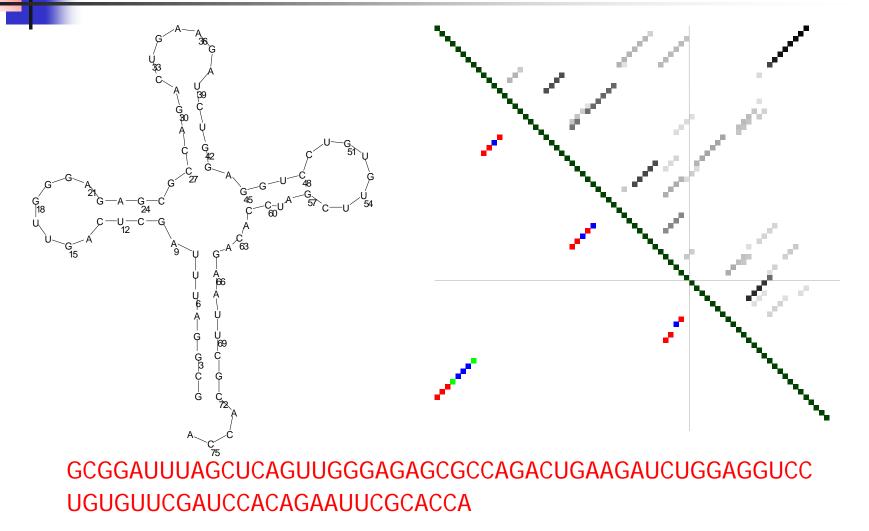
Why we study the structure of RNA?

- RNA is the only known molecular which can act as information storage and as catalyze
- It seems that their functionality is quite related to their structure

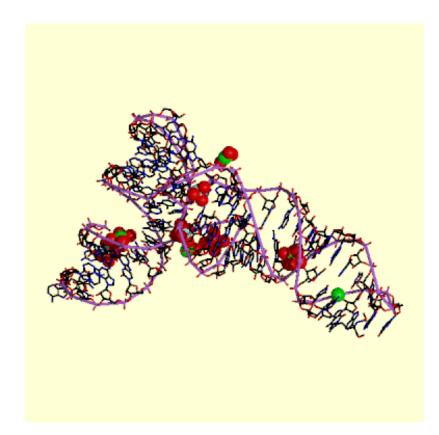
RNA structure

- As RNA has an extra OH attaching to 2' carbon, RNA forms extra hydrogen bond which enable it to have 3D structure
- RNA structure can be described in three levels
 - Primary structure
 - Just the sequence
 - Secondary structure
 - The base pairs
 - Tertiary structure
 - The 3-dimensional structure

Example (Secondary structure for phenylalanyl-tRNA)



Example (Tertiary structure for phenylalanyl-tRNA)



http://www.geocities.com/CollegePark/Hall/3826/interests.html http://www.biochem.ucl.ac.uk/bsm/pdbsum/1ehz/tracel_r.html Example (Function for phenylalanyl-tRNA)

- The structure of phenylalanyl-tRNA is a cloverleaf.
- Its function is to translate a codon (3 bases) into an amino acid.
- Note that the cloverleaf structure is essential to its translation function.

Formal definition of RNA secondary structure

- Given a RNA s=s₁s₂...s_n where s_i∈{a, c, g, u}.
- For 1 ≤ i < j ≤ n, if s_i and s_j form a base pair via hydrogen bond, we say (i, j)
 - Normally, a base pair is c-g or a-u.
 - Occasionally, we have g-u pair.
- A secondary structure of a RNA s is a set S of base pairs such that each base is paired at most once.

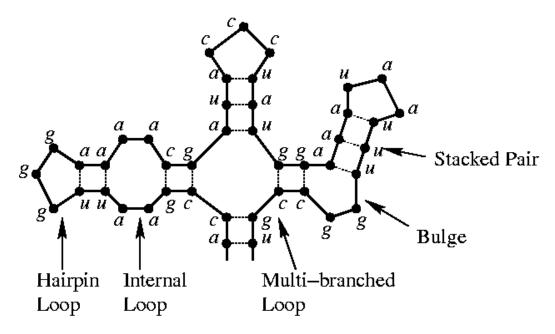
Pseudoknot

A pseudoknot is two base pairs (i,j) and (i',j') such that i<i'<j<j'</p>

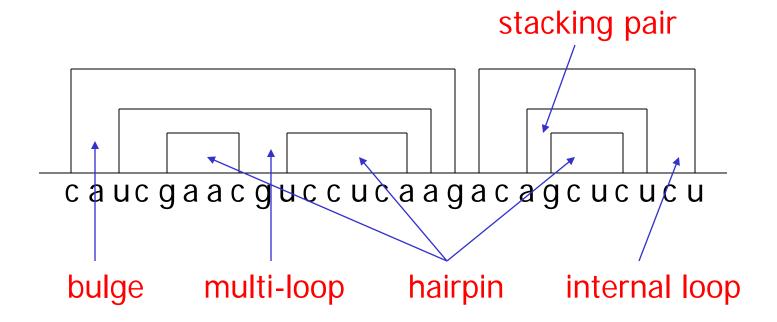


Loops

- Suppose there is no pseudoknot!
- Loops are regions enclosed by backbone and base pairs.
- Hairpin: loop contains exactly one base pair
- stacked pair: loop formed by base pairs (i,j), (i+1,j-1)
- Internal loop: loop contains two base pairs
- Bulge: internal loop with two adjacent bases.
- Multi-loop: loop contains three or more base pairs



Another view of loops



How to obtain RNA secondary structure?

Different ways to obtain RNA secondary structure.

- 1. By experiment
 - X-ray Crystallography
 - NMR Spectroscopy
- 2. Phylogenetic approach
 - Given a sufficient number of related RNA sequences, infers the RNA structure
- 3. **Prediction**
 - For secondary structure, based on the current best solution, on average, we can correctly predict 73% of known basepairs when sequence of fewer than 700 bases are folded

Overview

In this lecture, we focus on RNA secondary structure prediction.

- RNA secondary structure prediction problem (without pseudoknot)
 - Define thermodynamic model
 - Dynamic programming solution
 - Speedup
- RNA secondary structure prediction problem (with pseudoknot)

RNA secondary structure prediction problem

Nussinov folding algorithm

- Idea: maximize the number of base pairs
- Example: ACCAGCUGGU

Nussinov folding algorithm (I)

- Let S[1..n] be the RNA sequence
- Let V(i,j) be the maximum number of base pairs in S[i..j].
- Base case:
 - V(i,i)=0 since the sequence has only one base!
 - V(i+1,i) = 0 since the sequence is empty!

Nussinov folding algorithm (II)

- When i<j, we have four cases:</p>
 - 1. No base pair attached to j
 - V(i, j) = V(i, j-1)
 - 2. No base pair attached to i
 - V(i,j) = V(i+1, j)
 - 3. (i, j) form a base pair
 - V(i, j) = V(i+1, j-1) + δ(S[i], S[j]) where δ(x, y)=1 if (x,y)∈{(a,u), (u,a), (c,g), (g,c), (g,u), (u,g)}; and 0, otherwise
 - 4. Both I and j attached to some base pairs both (i,j) is not a base pair
 - $V(i, j) = \max_{i \le k < j} \{V(i,k) + V(k+1,j)\}$
- Note: cases 1 and 2 are subcase of case 4!

Nussinov folding algorithm (III)

Therefore, we have:

Base case:

• V(i,i)=0, V(i+1,i)=0

Recursive case (i<j):</p>

•
$$V(i, j) = \max \begin{cases} V(i+1, j-1) + \delta(S[i], S[j]) \\ \max_{i \le k < j} \{V(i, k) + V(k+1, j)\} \end{cases}$$

Example: base case

S[1..7]=ACCAGCU

	1	2	3	4	5	6	7
1	0						
2	0	0					
3		0	0				
4			0	0			
5				0	0		
6					0	0	
7						0	0

Example: recursive case (I)

S[1..7]=ACCAGCU

V (3,5)=max number of base pairs in S[3..5].

By the recursive formula, $V(3,5) = \max\{V(4,4) + \delta(S[3],S[5]), \max_{3 \le k < 5} V(3,k) + V(k+1,5)\} = \max\{V(4,4) + 1, V(3,3) + V(4,5), V(3,4) + V(5,5)\} = 1$

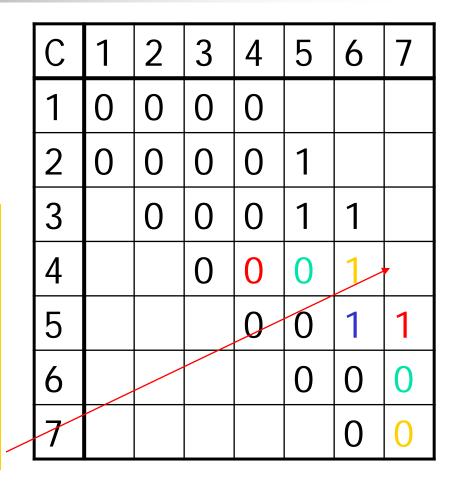
С	1	2	3	4	5	6	7
1	0	0	0				
2	0	0	0	0			
3		0	0	0	▼		
4			0	0	0		
5				0	0	1	
6					0	0	0
7						0	0

Example: recursive case (II)

S[1..7]=ACCAGCU

V (4,7)=max number of base pairs in S[4..6].

By the recursive formula, $V(4,7) = \max\{V(5,6) + \delta(S[4],S[7]), \max_{4 \le k < 7} V(4,k) + V(k+1,7)\} = \max\{V(5,6) + 1, V(4,4) + V(5,7), V(4,5) + V(6,7), V(4,6) + V(7,7)\} = 2$



Example: recursive case (III)

S[1..7]=ACCAGCU

С	1	2	3	4	5	6	7
1	0	0	0	0	1	1	2
2	0	0	0	0	1	1	2
3		0	0	0	1	1	2
4			0	0	0	1	2
5				0	0	1	1
6					0	0	0
7						0	0

Nussinov folding algorithm (IV)

Time analysis:

- We need to fill-in O(n²) V(i,j) entries
- Each V(i,j) entry can be computed in O(n) time.
- Thus, Nussinov algorithm can be solved in O(n³) time.

Predicting RNA secondary structure by energy minimization

- The best solution is energy minimization (thermodynamic model) based on dynamic programming
 - Idea:
 - bases that are bonded tend to stabilize the structure
 - unpaired bases which form loops tend to destabilize the structure

Software

- This dynamic programming solution has been implemented in two important RNA folding softwares
 - Zuker MFOLD algorithm
 - http://bioinfo.math.rpi.edu/~zukerm/rna/
 - Vienna package
 - http://www.tbi.univie.ac.at/~ivo/RNA/

Thermodynamic energy model

- Assume there is no pseudoknot.
- Thermodynamic model says
- Every loop's energy is independent of the other loops.
- 2. Energy of a secondary structure is the sum of the energies of all loops

Loop energy

- eS(i, j): free energy of the stacking pair consists of base pairs (i, j) and (i+1,j-1). Stacking pair stabilizes the structure and has a negative energy
- eH(i, j): free energy of the hairpin closed by the base pair (i, j)
- eL(i,j,i',j'): free energy of an internal loop or bulge enclosed by (i, j) and consists of 2 base pairs.
- eM(i,j,i₁,j₁,...,i_k,j_k): free energy of a multi-loop enclosed by (i, j) and consists of k+1 base pairs.

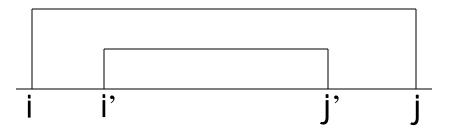
How to find the minimum energy secondary structure?

- Similar to finding optimal alignment, we use dynamic programming
- W(j): energy of the optimal secondary structure for S[1..j]
- V(i, j): energy of the optimal secondary structure for S[i..j] with (i, j) forms a base pair
- VBI(i, j): energy of the optimal secondary structure for S[i..j] with (i, j) closes a bulge or internal loop
- VM(i, j): energy of the optimal secondary structure for S[i..j] with (i, j) closes a multi-loop

W(j) W(j) find the free energy of the optimal secondary structure for S[1..i] • W(0) = 0■ For j>0, $W(j) = \min \begin{cases} W(j-1), & j \text{ is free} \\ \min_{1 \le i \le j} \{V(i, j) + W(i-1)\} & j \text{ pairs with i} \end{cases}$ V(i, j) V(i, j) find the free energy of the optimal secondary structure for S[i..j] with (i, j) forms a base pair. If $i \ge j$, V(i, j) is undefined. i < j, i < j, $V(i, j) = \min \begin{cases} eH(i, j) \\ eS(i, j) + V(i+1, j-1) \\ VBI(i, j) \\ VM(i, j) \end{cases}$ ∎ If i<j, Hairpin Stacking pair **Bulge/Internal** loop Multi-loop

VBI(i, j) finds the free energy of the optimal secondary structure for S[i..j] with (i, j) closes a bulge or internal loop

•
$$VBI(i, j) = \min_{\substack{i', j' \\ i < i' < j' < j}} \left\{ eL(i, j, i', j') + V(i', j') \right\}$$

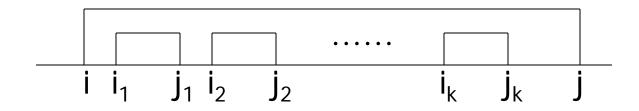


VBI(i, j)

VM(i, j) finds the free energy of the optimal secondary structure for S[i..j] with (i, j) closes a multi-loop

VM(i, j)

$$VM(i, j) = \min_{\substack{k, i_1, j_1, \dots, i_k, j_k \\ i < i_1 < j_1 < \dots < i_k < j_k < j}} \left\{ eM(i, j, i_1, j_1, \dots, i_k, j_k) + \sum_{h=1}^k V(i_h, j_h) \right\}$$



Time analysis

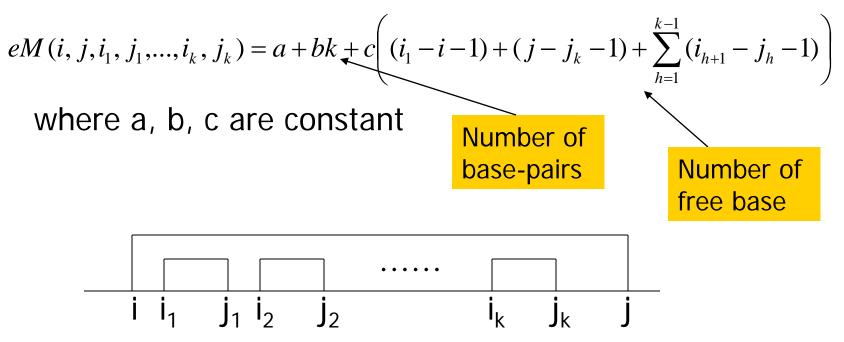
- W(i): n entries, each requires finding minimum of n terms. In total, O(n²) time.
- V(i, j): n² entries, each requires finding minimum of 4 terms. In total, O(n²) time.
- VBI(i, j): n² entries, each requires finding minimum of O(n²) terms. In total, O(n⁴) time.
- VM(i, j): n² entries, each requires finding minimum of exponential terms. In total, exponential time.
- Total time is exponential!

Speedup

- Multi-loop: approximate it with affline linear function
 - Execution time: O(n³)
- Internal loop: ninio equation
 - Execution time: O(n³)
- We will go through the multi-loop speed-up.

Approximating free energy for multi-loop

- Bottleneck is VM.
- To reduce the time, we approximate free energy for multi-loop using an affine linear function.



Speedup for multi-loop

WM(i, j):free energy of a subregion i..j of the multi-loop region.

$$WM(i, j-1) + c,$$

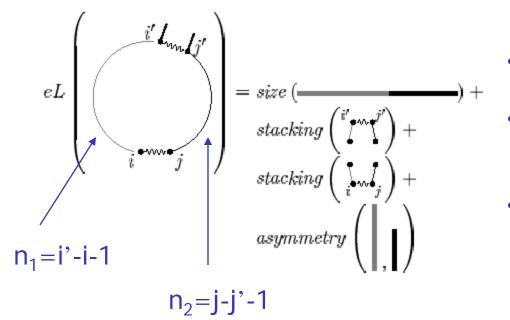
$$WM(i, j) = \min \begin{cases} WM(i, j-1) + c, & j \text{ is free} \\ WM(i+1, j) + c, & i \text{ is free} \\ V(i, j) + b, & (i, j) \text{ is a pair} \\ \min_{i < k \le j} \{WM(i, k-1) + WM(k, j)\} & i \text{ and } j \text{ are not free} \\ \text{and } (i, j) \text{ is not a pair} \end{cases}$$

$$VM(i, j) = WM(i+1, j-1) + a$$

- WM(i, j): n² entries, each can be computed in O(n) time. In total, O(n³) time.
- VM(i, j): n² entries, each can be computed in O(n) time. In total, O(n³) time.

Assumption for internal loop/ bulge free energy

eL(i, j, i', j') = size(n₁+n₂) + stacking(i, j) + stacking(i', j') + asymmetry(n₁, n₂)



- size(): energy depends on loop size
- stacking(): energy for the mismatched base pair adjacent to the base pair
- asymmetry(): asymmetry penalty

Asymmetry Function Assumption

- We further assume that when n₁,n₂>c, asymmetry(n₁, n₂) is only depend on the difference of n₁ and n₂. In other word,
 - asymmetry(n_1 , n_2) = asymmetry(n_1 -1, n_2 -1) when n_1 , n_2 >c
- Currently, we use Ninio equation, which is
 - asymmetry(n₁, n₂) = min{K, |n₁-n₂|f(m)} where m=min {n₁, n₂, c}, K and c are constants.
 - Note that asymmetry(n₁, n₂) satisfies the above assumption.
 - c is proposed to be 1 and 5 in two literatures.

Refined equation

- Let $n_1 = i' i 1$, $n_2 = j j' 1$, $l = n_1 + n_2$.
- For $n_1 > c$ and $n_2 > c$, we have

eL(i, j, i', j') - eL(i+1, j-1, i', j')= size(l) - size(l-2) + stacking(i, j) - stacking(i+1, j-1)

Proof:

$$eL(i, j, i', j') - eL(i + 1, j - 1, i', j') = [size(\ell) + stacking(i, j) + stacking(i', j') + asymmetry(n_1, n_2)] - [size(\ell - 2) + stacking(i + 1, j - 1) + stacking(i', j') + asymmetry(n_1 - 1, n_2 - 1)] = size(\ell) - size(\ell - 2) + stacking(i, j) - stacking(i + 1, j - 1)$$

$$VBI''(i, j, l) = \min_{\substack{i < i' < j' < j \\ i' - i - 1 + j - j' - 1 = l \\ i' - i - 1, j - j' - 1 > c}} \left\{ eL(i, j, i', j') + V(i', j') \right\}$$

By previous slide, we have

VBI''(i, j, l) = VBI''(i+1, j-1, l)

+ size(l) - size(l-2) + stacking(i, j) - stacking(i+1, j-1)

- For running time, there are O(n³) entries for VBI"(i,j,l). Each entry can be computed in constant time.
 - Hence, all entries in VBI" can be computed in O(n³) time.

Speedup for internal loop

 $VBI(i, j) = \min_{0 < l \le n} \begin{cases} VBI''(i, j, l) \text{ if } l > c \\ \min_{1 \le d \le c} V(i + d, j - l - d) + eL(i, j, i + d, j - l + d - 2) \\ \min_{1 \le d \le c} V(i + l + d, j - d) + eL(i, j, i + l + d + 2, j - d) \end{cases}$

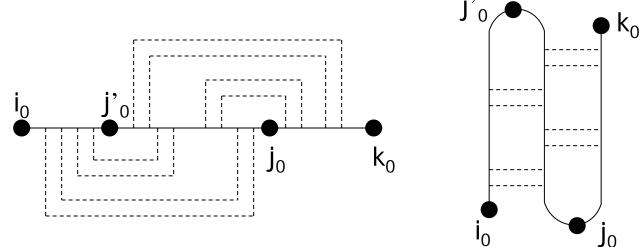
- There are O(n²) entries for the table VBI.
 Each entry can be computed in O(n) time.
- In total, the RNA secondary structure prediction problem can be solved in O(n³) time.

RNA secondary structure prediction with pseudoknots

- Up to now, there is no good way to predict RNA secondary structure with pseudoknots.
- In fact, predicting RNA secondary structure with pseudoknots is a NP-hard problem.
- This section considers RNA secondary structure prediction with a particular kind of pseudoknot --- simple pseudoknot!

Simple Pseudoknot

- A set of base pairs $M_{i0,k0}$ is a simple pseudoknot if there exist $i_0 < j'_0 < j_0 < k_0$ such that
- Each endpoint i appear in M_{i0,k0} once.
- Each (i, j) $\in M_{i0,k0}$ satisfies either $i_0 \le i < j'_0 < j \le j_0$ or $j'_0 \le i < j_0 < j \le k_0$
- If pairs (i, j) and (i', j') in $M_{i0,k0}$ satisfies either $i < i' < j'_0$ or $j'_0 \le i < i'$, then j > j'.



RNA secondary structure with simple pseudoknots

- A set of base pairs M is called an RNA secondary structure with simple pseudoknots if
 - $\blacksquare M {=} M' {\cup} M_1 {\cup} M_2 ... {\cup} M_t$
 - M_h is a simple pseudoknot for $S[i_h..k_h]$ where $1 \le i_1 < k_1 < i_2 < k_2 < ... < i_t < k_t \le n$
 - M' is secondary structure without pseudoknots for string S' where S' is obtained by deleting all S[i_h..k_h]

Problem

- Input: an RNA sequence S[1..n]
- Output: an RNA secondary structure with simple pseudoknots
 - maximizing the number of base pairs

Dynamic programming for Simple Pseudoknot

- V(i, j): maximum number of base pairs in S[i..j]
- V_{pseudo}(i, j): maximum number of base pairs of a pseudoknot in S[i..j]

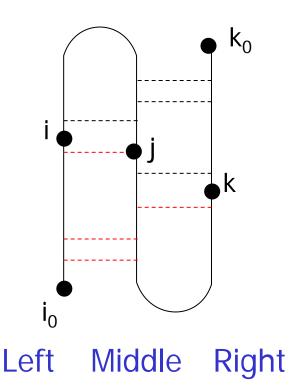
•
$$V(i, j) = \max \begin{cases} V_{pseudo}(i, j) \\ V(i+1, j-1) + \delta(S[i], S[j]) \\ \max_{i < k \le j} \{V(i, k-1) + V(k, j)\} \end{cases}$$

V(i, i) = 0 for any i

- Note: δ(S[i], S[j]) is 1 if S[i] and S[j] are complement and 0, otherwise.
- Suppose, for all i and j, V_{pseudo}(i, j) are available. The table V can be filled in using O(n³) time.

Terminology

- What remain is to compute V_{pseudo}(i₀, k₀).
- Given a set of base pairs in a simple pseudoknot for S[i₀, k₀],
 - A base pair is said to be below the triplet (i, j, k) if they are the red edges.



Computing $V_{pseudo}(i_0, k_0)$ (I)

- For $i_0 < i < j < k < k_0$, we define
 - V_L(i,j,k) be the maximum number of base pairs below the triplet (i, j, k) in a pseudoknot for S[i₀..k₀] with (i, j) is a base pair
 - V_R(i,j,k) be the maximum number of base pairs below the triplet (i, j, k) in a pseudoknot for S[i₀..k₀] with (j, k) is a base pair
 - V_M(i,j,k) be the maximum number of base pairs below the triplet (i, j, k) in a pseudoknot for S[i₀..k₀] with both (i, j) and (j, k) are not a base pair
- Note: max{V_L(i,j,k), V_M(i,j,k), V_R(i,j,k)} is the maximum number of base pairs below the triplet (i, j, k) in a pseudoknot for S[i₀..k₀]

Computing V_{pseudo}(i₀, k₀) (II)

$V_{pseudo}(i_0, k_0) = \max_{i_0 \le i < j < k \le k_0} \left\{ V_L(i, j, k), V_M(i, j, k), V_R(i, j, k) \right\}$

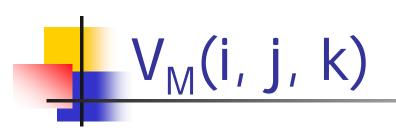
$$V_{L}(i, j, k) = \delta(S[i], S[j]) + \max \begin{cases} V_{L}(i-1, j+1, k) \\ V_{M}(i-1, j+1, k) \\ V_{R}(i-1, j+1, k) \end{cases}$$

V_L(i, j, k) means (i, j) is a pair.
 Thus, V_L(i, j, k) is equal to δ(S[i], S[j]) plus the maximum number of base pairs below (i-1, j+1, k)

V_R(i, j, k)

Similarly, we have

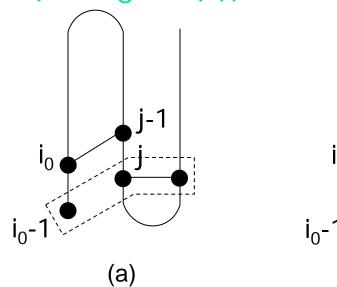
$$V_{R}(i, j, k) = \delta(S[j], S[k]) + \max \begin{cases} V_{L}(i, j+1, k-1) \\ V_{M}(i, j+1, k-1) \\ V_{R}(i, j+1, k-1) \end{cases}$$

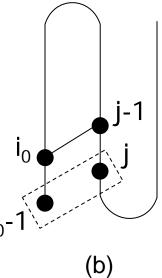


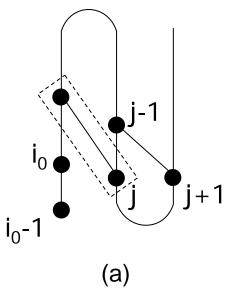
$$V_{M}(i, j, k) = \max \begin{cases} V_{M}(i-1, j, k), V_{M}(i, j+1, k), V_{M}(i, j, k-1), \\ V_{L}(i-1, j, k), V_{L}(i, j+1, k), \\ V_{R}(i, j+1, k), V_{R}(i, j, k-1) \end{cases}$$

Basis

- V_R
 - V_R(i₀-1,j,k)=0 if k=j or (k=j+1 and S[j] and S[k] does not form a base pair) (see figure (b))
 - V_R(i₀-1,j,j+1)=1 if S[j] and S[j+1] forms a base pair (see figure (a))







• $V_M(i_0-1,j,k)=0$ if k=j or k=j+1

Time complexity for computing V_{pseudo}(i₀, k₀) (I)

- For a fixed i₀, k₀, the basis can be computed in O(n) time
- V_L, V_R, V_M can be computed in O(n³) time.
- Thus, for every i₀,k₀, V_{pseudo}(i₀,k₀) can be computed in O(n³) time.
- It takes O(n⁵) time to compute V_{pseudo}(i₀,k₀) for all i₀ < k₀

Time complexity for computing V_{pseudo}(i₀, k₀) (II)

- Can we further improve it?
- Note that the basis only depends on i₀
- Thus, for a fixed i₀, for any k₀,
 - the values of table V_{R} , V_{L} , V_{M} are the same.
 - We can compute V_{pseudo}(i₀,k₀) for a fixed i₀ and for any k₀ in O(n³) time.
- In total, it takes O(n⁴) time to compute V_{pseudo}(i₀,k₀) for all i₀<k₀

Conclusion

- The table V_{pseudo} can be filled in using O(n⁴)
- The table V can be filled in using O(n³)
- Thus, the RNA secondary structure problem with simple pseudoknots can be solved in O(n⁴) time.