Algorithms in Bioinformatics: A Practical Introduction

Population genetics

Human population

- Our genomes are not exactly the same.
- Human DNA sequences are 99.9% identical between individuals
- Those genetic variation (polymorphism) give different skin color, different outlook, and also different genetic diseases.
- This lecture would like to have a look of strategy to study human population.

Locus and Alleles

- Locus
 - A particular location in a chromosome
- An allele is a possible nucleotide that occupies a given locus.
- In the human population, a locus may have 4 possible alleles.
- Since mutation is rare, most of the loci are diallelic.

Human are diploid

- We have two copies of each chromosome
- One inherit from father while another one inherit from mother.

Locus and Alleles

Example: Consider the following chromosome pair.

```
i j
...ACGTCATG...
...ACGCCATG...
```

- For locus i, the allele is C.
- For locus j, the alleles are T and C.

Genotype: Homozygote vs Heterozygote

- Let A and a represent a pair of alleles of a given locus
- Then AA, aa, and Aa are the genotypes of the locus.
- AA and aa are called homozygotes.
- Aa is called heterozygote.

Homozygote vs Heterozygote: Example

Individual 1: ...ACGTCATG...

...ACGCCATG...

Individual 2: ...ACGCCATG...

...ACGCCATG...

Individual 3: ...ACGTCATG...

...ACGTCATG...

Individual 4: ...ACGCCATG...

...ACGTCATG...

For the loci in red color,

Homozygote: Individuals 2, 3

Heterozygote: Individuals 1, 4

Dominance vs Recessiveness

- Let A and a represent a pair of alleles of a given locus
- A is called a dominant allele if
 - the appearance or phenotype of the Aa individuals resembles that of the AA type
- a is called a recessive allele.

Single-Nucleotide Polymorphisms (SNPs)

- SNP is the loci where there is a single nucleotide variation among different individuals. It is the most common type of polymorphism.
- Below example contains 4 pair of chromosomes.

Individual 1: ...ACGTCATG...

...ACGCCATG...

Individual 2: ...ACGCCATG...

...ACGCCATG...

Individual 3: ...ACGTCATG...

...ACGTCATG...

Individual 4: ...ACGTCATG...

...ACGTCATG...

- For the loci in red color, there is a SNP with two alleles T and C.
- The allele frequency of T is 5/8 while the allele frequency of C is 3/8.
- In this case, the minor allele frequency is 3/8.

More on SNPs

- SNPs make up 90% of all human genetic variations.
 - SNPs with a minor allele frequency of ≥ 1% occur every 100 to 300 bases along the human genome, on average.
 - Two third of the SNPs substitute cytosine (C) with thymine (T).

HapMap project

- Through the collaborative effort of many countries,
 - We already have identified the set of common SNPs in human population
 - See http://www.hapmap.org/

SNP and phenotype

- Phenotype
 - The observable structure, function or behavior of a living organism.
 - E.g. The color of the hair
- The variation of SNPs may or may not affect the phenotype.
- The SNPs which do not affect the phenotype are called natural SNPs; Otherwise, they are called causal SNPs.

Example: Hair color

- Hair color varies from black to white.
- The color of hair is control by 4 genes in on chromosome 3, 6, 10 and 18.
- The greater the number of dominant alleles, the darker the hair.

Ī	8	7	6	5	4	3	2	1	0
١	dominant								
١	alleles								
	^	((((

Example: Eyebrow

- Eyebrow thickness is determined by a gene in chromosome 9.
- Thick eyebrow = ZZ or Zz while thin eyebrow = zz.

Bushy (ZZ, Zz)

Fine (zz)

- Eyebrow placement is determined by another gene in chromosome 10.
- Connected = aa while Disconnected = AA or Aa.

Not connected (AA, Aa)

Connected (aa)

Genotype frequency

- Genotype frequency is the relative frequency of a genotype on a genetic locus in a population.
- Example:
 - Let A and a represent a pair of alleles of a given locus
 - Let the population be AA, Aa, aa, AA, AA, Aa, aa, Aa, AA, Aa
 - f(AA) = 4/10
 - f(aa) = 2/10
 - f(Aa) = 4/10

Allele frequency

- Allele frequency is the relative frequency of an allele on a genetic locus in a population.
- Example:
 - Let A and a represent a pair of alleles of a given locus
 - Let the population be AA, Aa, aa, AA, AA, Aa, aa, Aa, AA, Aa
 - $p_A = (2+1+0+2+2+1+0+1+2+1)/20 = 0.6$
 - $p_a = (0+1+2+0+0+1+2+1+0+1)/20 = 0.4$

Genotype frequency Allele frequency

- $p_A = f(AA) + 0.5 f(Aa)$
- $p_a = f(aa) + 0.5 f(Aa)$

Example:

- Let A and a represent a pair of alleles of a given locus
- Let the population be AA, Aa, aa, AA, AA, Aa, aa, Aa, AA, Aa
- $p_A = 0.6, p_a = 0.4$
- f(AA) = 4/10, f(aa) = 2/10, f(Aa) = 4/10

Haplotype

- Haplotype is a combination of alleles at different loci on the same chromosome.
- For example:
 - The following three loci have genotypes AC, AT, CG.
 - There are two haplotypes: ATG and CAC.

Genotype vs haplotype

 Example: consider the following two copies of the chromsome.

```
i j
Copyl of the chr ----A-----B-----
Copy2 of the chr ----a-----b-----
```

- The genotype for loci i and j are Aa and Bb.
- Consider copy1 of the chromosome, the haplotype for loci i and j are A and B.
- Consider copy2 of the chromosome, the haplotype for loci i and j are A and B.

Technologies for studying human population

- There are 100 different genotyping technologies.
- Nowaday, we can perform whole genome genotyping for all the common SNPs found in HapMap!
 - (US\$0.1-US\$0.01 per genotype)
- Note that genotyping does not tell us the hapotypes appear in the chromosomes.
- E.g. The genotype of two loci are AC and CT. Then, there are two possible cases:

Bioinformatics problems

- Data quality checking
 - Check if the genotyping found by biological experiments are good or not.
- Genotype phasing
 - Identify the hapotypes from the genotypes.
- Tag SNP selection
 - Genotyping all SNPs are expensive and sometimes impossible. Hence, we want to select a subset of SNPs, called tag SNPs, for genotyping.
- Association study
 - Find the relationship between disease and genetic variation

Data quality checking

Hardy Weinberg equilibrium (HWE)

- Let p_A and p_a be the major and minor allele frequencies.
- Under the assumption:
 - Random mating
 - No natural selection
- Then, the expected frequencies are:
 - $\bullet \quad e(AA) = p_A * p_A$
 - $\bullet \quad e(aa) = p_a * p_a$
 - $e(Aa) = 2 p_A * p_a$
- We expect the genotype frequencies should be similar to the expected frequencies.

Hardy Weinberg equilibrium (HWE)

Example:

- Let A and a represent a pair of alleles of a given locus
- Let the population be AA, Aa, aa, AA, AA, Aa, aa, Aa, AA, Aa
- $p_A = 0.6, p_a = 0.4$
- f(AA) = 4/10, f(aa) = 2/10, f(Aa) = 4/10
- By HWE,
 - e(AA) = 0.6*0.6 = 0.36; $e_{AA} = 3.6$
 - e(aa) = 0.4*0.4 = 0.16; $e_{aa} = 1.6$
 - $e(Aa) = 2*0.6*0.4 = 0.48; e_{Aa} = 4.8$

χ^2 test for HWE

• We can use χ^2 test to determine if the genotype frequencies satisfy HWE.

$$\chi^{2} = \frac{(n_{AA} - e_{AA})^{2}}{e_{AA}} + \frac{(n_{Aa} - e_{Aa})^{2}}{e_{Aa}} + \frac{(n_{aa} - e_{aa})^{2}}{e_{aa}}$$

χ² test for HWE: Example

$$\chi^2 = \frac{(4-3.6)^2}{3.6} + \frac{(4-4.8)^2}{4.8} + \frac{(2-1.6)^2}{1.6} = 0.278$$

- $Pr(\chi^2 > 0.278) = 0.5980$
 - Which is much bigger than 0.05.
 - So we accept that the SNP satisfies HWE.

Genotype	AA	Aa	aa	
Actual	4	4	2	
Expected	3.6	4.8	1.6	

Fisher's exact test for HWE

- n is the size of the population.
- $\mathbf{n}_{Aa} = \mathbf{number} \text{ of } \mathbf{Aa}$
- $\mathbf{n}_{A} = \text{number of A}.$
- Number of combinations where there are n_A 's A is $\binom{2n}{n_A}$
- Number of combinations where there are n_{Aa} heterozygotes is $\binom{n}{n_{AA},n_{Aa},n_{aa}} 2^{n_{Aa}}$

$$Pr(n_{Aa} \mid n_{A}) = \frac{\binom{n}{n_{AA}, n_{Aa}, n_{aa}} 2^{n_{Aa}}}{\binom{2n}{n_{A}}}$$

Fisher's exact test for HWE: Example

$$n = 10, n_A = 12, n_{Aa} = 4.$$

Genotype	AA	Aa	aa
Actual	4	4	2

•
$$Pr(n_{Aa} \mid n_{A}) = \frac{\binom{10}{4,4,2}2^{4}}{\binom{20}{12}}$$

= $3150*2^{4}/125970=0.40095 > 0.05$

So, we accept that the SNP satisfies HWE.

Clean-up the dataset by HWE

- If a SNP derviates from HWE, it may be due to miscall during the genotyping process.
- Usually, we discard SNPs which derivate from HWE at significance level 10⁻³ or 10⁻⁴.
- However, this approach may miss some causal SNPs.
 - In real life, there exists different forces to change the frequencies
 - The forces include selection, drift, mutation, and migration.
 - Those forces make the causal SNP derviates from HWE.

Other factors regarding clean-up

Resolving missing genotypes

Genotype phasing

Genotype phasing

- Genotyping technology allows us to generate genotype of individual easily.
- However, it is difficult to recover the haplotype.

The process of recovering haplotype from genotype is called genotype phasing.

Example

- Given the genotype of an individual:
 - Aa,BB,cc,DD
- We need to recover the two hapotypes of the individual, which are
 - ABcD; and
 - aBcD

Notation

- For haplotype, we use
 - 0 to represent major allele and
 - 1 to represent minor allele
- For genotype, we use
 - 0 to represent both alleles are major,
 - 1 to represent both alleles are minor, and
 - 2 to represent one is major and one is minor.
- For the previous example,
 - AaBBccDD is represented as 2010
 - ABcD is represented as 0010
 - aBcD is represented as 1010

Experimental method for genotype phasing

- Asymmetric PCR amplification (Newton et al. 1989; Wu et al. 1989)
- Isolation of single chromsome by limit dilution followed by PCR amplification (Ruano et al. 1990)
- Inferring haplotype information by using genealogical information in families (Perlin et al. 1994)
- The above methods are low-throughput, costly, and complicated.

Computational methods

- We study computational methods for genotype phasing.
- We discuss the following:
 - Clark's algorithm
 - Perfect Phylogeny Haplotyping
 - Maximum likelihood
 - Phase (just mention)

Difficulty of genotype phasing

Consider the following example.

Genotype: 01211201

Which one is correct? (I) or (II)?

(I) Haplotype: 01011101

01111001

OR

(II) Haplotype: 01111101

01011001

Genotype phasing Problem

- Input:
 - A set of genotypes $G = (G_1, G_2, ..., G_n)$.
- Output:
 - A set of haplotypes which can best explain G according to certain criteria.
- Example Criteria:
 - Minimize the number of haplotypes
 - Maximize the likelihood
 - **...**

Clark's algorithm (1990)

- Parsimony approach: Find the simplest solution
 - Minimize the total number of haplotypes.
- He gave a heuristics algorithm.
- 1. From all homozygotes and single-site heterozygotes genotypes,
 - Unambiguously, we generate a set of haplotypes.
- For each know haplotype H, we look for unresolved genotype G',
 - Check if we can resolve G' by H and some new haplotype H'.
 - If yes, include H' and resolve G'.
- Repeat the procedure until all genotypes are resolved.
- Note that Clark's algorithm may fail to return answer.

Example for Clark's algorithm Step 1

- Example genotype input:
 - $G_1 = 10121101$
 - $G_2 = 10201121$
 - $G_3 = 20001211$
- From G_1 , we have
 - $H_1 = 10101101$
 - $H_2 = 10111101$

Example for Clark's algorithm Step 2

- Example genotype input:
 - $G_1 = 10121101$
 - $G_2 = 10201121$
 - $G_3 = 20001211$
- We have the following haplotypes:
 - $H_1 = 10101101$
 - $\mathbf{H}_2 = 10111101$
- From H_1 and G_2 , we have
 - $H_3 = 10001\overline{1}11$
- From H₃ and G₃, we have
 - $H_4 = 00001011$
- Hence, the set of predicted haplotypes is
 - $H_1 = 10101101$
 - $H_2 = 10111101$
 - $H_3 = 10001111$
 - $H_4 = 00001011$

Perfect Phylogeny Haplotyping

- This problem is first introduced by Gusfield 2002.
- Input:
 - A set of genotypes G={G₁, ..., G_n}, each G_i is a length-m genotype.
- Output:
 - A set of haplotypes H={H_i,H'_i| H_i,H'_i resolve G_i} such that H₁,H'₁ ..., H_n,H'_n form a perfect phylogeny
- For example,
 - $G = \{G_1 = 220, G_2 = 012, G_3 = 222\}$
 - The solution is H={100, 010, 011}

Previous work

- Gusfield (2002) introduced the problem and gives an O(nm α(nm)) time algorithm by reduction to the graph realization problem
- Eskin et al (2002) gives a simple O(nm²) time algorithm.
- Bafna et al (2002) gives a simple O(nm²) time algorithm.
- Gusfield et al (RECOMB 2005) gives an O(nm) time algorithm.

Represent G as a matrix

To simplify the discussion, we represent {G₁,...,G_n} as a nxm matrix G where the entry G(i,j) is the j genotype of G_i.

	1	2	3	4	5	6
G_1	1	1	2	0	2	0
G_2	1	2	2	0	0	2
G_3	1	1	2	2	0	0
G_4	2	2	2	0	0	2
G_5	1	1	2	2	2	0

Our aim

- Given n x m matrix G
 - Each entry is either 0, 1, or 2

Construct	2n	Χ	m	matrix	Н
		<i>,</i> .		1110001170	

- Each entry is either 0 or 1
- If $G(r,c)\neq 2$, H(2r,c)=H(2r-1,c)=G(r,c)
- Otherwise, $\{H(2r,c),H(2r-1,c)\}=\{0,1\}$
- H satisfies a perfect phylogeny

	1	2	3
G_1	2	2	0
G_2	0	1	2
G_3	2	2	2

	1	2	3
H ₁	1	0	0
H′ ₁	0	1	0
H_2	0	1	1
H′ ₂	0	1	0
H_3	1	0	0
H′ ₃	0	1	1

4-gamete test

A set of haplotypes admits a perfect phylogeny (whose root is an all-0 haplotypes) if and only if there are no two columns i and j containing all four pairs 00, 01, 10, and 11.

Proof:

Recall that M admits a perfect phylogeny if and only if for every characters i and j, they are pairwise compatible.

In-phase and out-of-phase

- If some columns c and c' in G contain (1) either 11 or 12 or 21 and (2) either 00 or 02 or 20,
 - columns c and c' in H must contain both 11 and 00.
 - In such case, c and c' are called in-phase.
- If some columns c and c' in G contain (1) either 10 or 20 and (2) either 01 or 02,
 - Columns c and c' in H must contain both 10 and 01.
 - In such case, c and c' are called out-of-phase.
- E.g.
 - Columns 2 and 5 are in-phase
 - Columns 4 and 5 are out-of-phase
 - Columns 3 and 4 are neither in-phase or out-of-phase

	1	2	3	4	5	6
G_1	1	1	2	0	2	0
G_2	1	2	2	0	0	2
G_3	1	1	2	2	0	0
G_4	2	2	2	0	0	2
G_5	1	1	2	2	2	0

- If columns c and c' in G are both inphase and out-of-phase, G has no solution to the PPH problem.
 - Proof: By 4-gamete test

G_N

- In G_M, a pair of columns forms an edge if it contains 22.
- Red: in-phase (color 0)
- Blue: out-of-phase (color 1)

								_
	1	2	3	4	5	6	7	
G_1	1	1	0	2	2	0	2	5 - 4
G_2	1	2	2	0	0	2	0	
G_3	1	1	2	2	0	0	0	3
G_4	2	2	2	0	0	2	0	2 1
G_5	1	1	2	2	2	0	0	
G_6	1	1	0	2	0	0	2	6

Theorem

- Consider a matrix M such that every pair of columns is not both in-phase and out-of-phase.
- There exists a PPH solution for M if and only if we can infer the colors of all edges in G_M such that
 - All edges which are in-phase and out-of-phase are colored red and blue, respectively. (Denote E_f be the set of these edges);
 - For any triangle (i,j,k) where there exists r s.t. M[r,i]=M[r,j]=M[r,k]=2, either 0 or 2 edges are colored blue.
- If such coloring exists, such coloring is called a valid coloring of G_M.

Infer colors for the uncolored

edges

A valid coloring will color all edges not in E_f so that

> For any triangle (i,j,k), either 0 or 2 edges are

colored blue.

How to infer the colors? (I)

- The colored edges in G_M form a set C of connected components.
- Let E_C be a minimum set of edges, which connect all these connected components.

How to infer color? (II)

- Bafna et al. showed the following theorem:
 - Either (1) G_M has no valid solution or (2) any arbitrary coloring of the edges in E_C define a unique valid coloring for G_M . (Thus, there are exactly 2^r valid coloring, where $r = |E_C|$.)

How to infer color? (III)

- Given the coloring of E_C, the colors of the dotted edges can be inferred as follows.
- While a dotted edge e is adjacent to two colored edges,
 - Color e so that the triangle has either 0 or 2 blue edges.
- Bafna et al. showed the above algorithm can infer the color of all dotted edges correctly.

How to infer the haplotypes?

- Given the coloring of all edges of G_M, we can infer the haplotypes as follows.
- For j = 1 to m,
 - For i = 1 to n,
 - if $M[i,j] \in \{0,1\}$, set H[2i,j] = H[2i-1,j] = M[i,j]
 - Otherwise, let k<j be a column such that M[i,k]=2.
 - If k exists,
 - if (j,k) is colored red, set H[2i,j]=H[2i,k], H[2i-1,j]=1-H[2i,j]
 - If (j,k) is colored blue, set H[2i,j]=1-H[2i,k], H[2i-1,j]=1-H[2i,j]
 - Else
 - set H[2i,j]=0, H[2i-1,j]=1

Example

	1	2	3	4	5	6	7
G_1	1	1	0	2	2	0	2
G_2	1	2	2	0	0	2	0
G_3	7	1	2	2	0	0	0
G_4	2	2	2	0	0	2	0
G_5	7	1	2	2	2	0	0
G ₆	1	1	0	2	0	0	2
-					-		

	1	2	3	4	5	6	7
H ₁	~	~	0	1	1	0	0
H′ ₁	7	7	0	0	0	0	1
H_2	$\overline{}$	~	1	0	0	1	0
H′ ₂	~	0	0	0	0	0	0
H_3	7	7	1	0	0	0	0
H′ ₃	~	~	0	1	0	0	0
H ₄	1	1	1	0	0	1	0
H′ ₄	0	0	0	0	0	0	0
H_5	~	~	0	1	1	0	0
H′ ₅	1	1	1	0	0	0	0
H ₆	1	1	0	1	0	0	0
H′ ₆	1	1	0	0	0	0	1

Time analysis

- Checking in-phase and out-of-phase for all pairs of columns takes O(nm²) time.
- Infering colors for the uncolored edges takes O(m²) time.
- Compute the matrix H takes O(nm) time.

In total, the algorithm runs in O(nm²) time.

- Theorem: If every column in M contains at least one 0 and one 1 entry,
 - Then there is either no PPH solution for M or has a unique PPH solution for M.
 - Also, such solution can be found in O(nm) time.

Maximum likelihood approach

- This approach is used by Excoffier and Slatkin (1995).
- Try to infer the haplotype with the most realistic haplotype frequencies
 - under the assumption of Hardy-Weinberg equilibrium

Motivation (I)

- Example: Consider two genotypes
 - $G_1 = 0111$
 - $G_2 = 0221$
- Two possible solutions:

$$G_1$$
: 0111 G_2 : 0111 G_2 : 0111 G_2 : 0101 G_3 : 0001

Which solution is better?

Motivation (II)

G₁: 0111 0111

For solution 1:
G₂: 0111
0001

- There are two haplotypes 0111 and 0001.
- Their frequencies are ¾ and ¼.
- The chance of getting $G_2=0221$ is $\frac{3}{4}*\frac{1}{4}$.

G₁: 0111 0111

• For solution 2: G₂: 0101

- There are three haplotypes 0111, 0101, and 0011.
- Their frequencies are ½, ¼ and ¼.
- The chance of getting $G_2=0221$ is $\frac{1}{4}*\frac{1}{4}$.
- Solution 1 seems better!

Preliminary

- Given a genotype G_i, we can generate the set S_i, which is the set of all haplotype pairs that are phased genotypes of G_i.
- Example: Consider the genotype 0221.
 - Since there are two heterozygous loci,
 - we have $2^2 = 4$ possible haplotypes.
 - $h_1 = 0001$, $h_2 = 0011$, $h_3 = 0101$, $h_4 = 0111$
 - The set of all phased genotypes of 0221 is
 - $\{h_1h_4, h_2h_3\}.$

Maximum Likelihood (I)

- Let $G = \{G_1, G_2, ..., G_n\}$ be the set of n genotypes.
- Let h₁, h₂, ..., h_m be the set of all possible haplotypes that can resolve G.
- Let $F = \{F_1, F_2, ..., F_m\}$ be the population frequency of $\{h_1, h_2, ..., h_m\}$.
 - Note: $F_1 + F_2 + ... + F_m = 1$
- For x = 1, 2, ..., n,

$$\Pr(G_x \mid F) = \sum_{\substack{h_i h_j \text{ is a} \\ \text{phased genotype} \\ \text{of } G_x}} (F_i \cdot F_j)$$

Maximum Likelihood (II)

We would like to maximize the overall probability product of all P(G_i), that is, the following function L.

$$L(F) = \Pr(G \mid F) = \alpha \prod_{i=1..n} \Pr(G_i \mid F)$$

- In principle, we can solve this equation. But there is no close form.
- Instead, we use EM algorithm.

Formal definition of Maximum likelihood

- Given
 - a set of observations X={x₁,x₂,...,x_n}
 - lacksquare A set of parameters Θ .
- The likelihood function:
 - $L(\Theta) = \prod_{i=1..n} Pr(x_i | \Theta) = Pr(X | \Theta)$
- Aim:
 - Find $\Theta' = \operatorname{argmax}_{\Theta} \operatorname{Pr}(X|\Theta)$ = $\operatorname{argmax}_{\Theta} \Pi_{i=1..n} \operatorname{Pr}(x_i|\Theta)$

Hidden data

- x_i is called observed data
 - Each x_i is associated with some hidden data y_i.
- Finding $Θ' = argmax_Θ Pr(X|Θ)$ may be difficult.
- Moreover, finding argmax_Θ Pr(X,Y|Θ) may be easier.

What is EM algorithm?

EM algorithm is a popular method for solving the maximum likelihood problem.

- The idea is to alternate between
 - Filling in Y based on the best guess ⊕; and
 - Maximizing Θ with Y fixed.

EM Algorithm

- Initialization: A guess at Θ
- Repeat until satisfy
 - **E-step:** Given a current fixed Θ' , compute $Pr(y|x,\Theta')$
 - M-step: Given $Pr(y|x,\Theta')$, find Θ which maximizes $\Sigma_x \Sigma_y Pr(y|x,\Theta')$ log $Pr(x,y|\Theta)$

Explanation of EM-algorithm (I)

- Let Θ' be the old guess.
- Maximizing L(Θ) is the same as maximizing R(Θ,Θ')
 - $= L(\Theta)/L(\Theta')$
 - since Θ' is fixed.

$$R(\Theta, \Theta') = \frac{\prod_{x} \sum_{y} \Pr(x, y | \Theta)}{\prod_{x} \Pr(x | \Theta')}$$

$$= \prod_{x} \frac{\sum_{y} \Pr(x, y | \Theta)}{\Pr(x | \Theta')}$$

$$= \prod_{x} \sum_{y} \frac{\Pr(x, y | \Theta)}{\Pr(x | \Theta')}$$

$$= \prod_{x} \sum_{y} \frac{\Pr(x, y | \Theta)}{\Pr(x | \Theta')} \frac{\Pr(x, y | \Theta)}{\Pr(x, y | \Theta')}$$

$$= \prod_{x} \sum_{y} \Pr(y | x, \Theta') \frac{\Pr(x, y | \Theta)}{\Pr(x, y | \Theta')}$$

Explanation of EM-algorithm (II)

■ By AM≥GM, we have

$$R(\Theta, \Theta') = \prod_{x} \sum_{y} \Pr(y \mid x, \Theta') \frac{\Pr(x, y \mid \Theta)}{\Pr(x, y \mid \Theta')}$$

$$\geq \prod_{x} \prod_{y} \left[\frac{\Pr(x, y \mid \Theta)}{\Pr(x, y \mid \Theta')} \right]^{\Pr(y \mid x, \Theta')}$$

By taking log and Θ' is a constant, maximizing $R(\Theta, \Theta')$ is the same as maximizing $Q(\Theta, \Theta')$ where

$$Q(\Theta, \Theta') = \sum_{x} \sum_{y} \Pr(y \mid x, \Theta') \log \Pr(x, y \mid \Theta)$$

Example: Genotype phasing

- $G = \{G_1, G_2, ..., G_n\}$ which are the set of observed genotypes.
- Let {h₁, h₂, ..., h_m} be the set of all possible haplotypes that can resolve G.
- Θ is set of haplotype frequencies
 {F₁,F₂,...,F_m} where F_x is the frequency of h_x.
- Aim:
 - Find $\Theta' = \operatorname{argmax}_{\Theta} \Pr(G|\Theta)$

Example: Genotype phasing

- For each genotype G_i,
 - The hidden data is its phase h_xh_y.

• $Pr(h_x h_y, G_i | \Theta) = F_x F_y$.

Example: Genotype phasing EM algorithm

- Initialization: $F^{(0)} = \{F_1^{(0)}, F_2^{(0)}, \dots, F_m^{(0)}\}.$
- Repeat the following two steps:
- E-step:
 - For every G_x , estimate the phased genotype frequencies $P(h_ih_j|G_x,F^{(g)})$ for all h_ih_j that is consistent with G_x .
- M-step:
 - Based on the phased genotype frequencies, we estimate a new set F (g+1) of haplotype frequencies.

Example: Genotype phasing E-step

 Suppose h_xh_y is a phased genotype of G_i.

$$P(h_{x}h_{y} | G_{i}, F^{(g)}) = \frac{F_{x}^{(g)}F_{y}^{(g)}}{\sum \{F_{x'}^{(g)}F_{y'}^{(g)} | h_{x'}h_{y'} \text{ is a phased genotype of } G_{i}\}}$$

Example: Genotype phasing M-step

M-step: Maximizes Q(Θ,Θ')

$$Q(\Theta, \Theta') = \sum_{i=1..n} \sum_{\substack{h_x h_y \text{is a phased} \\ \text{genotype of } G_i}} \Pr(h_x h_y \mid G_i, \Theta') \log \Pr(h_x h_y, G_i \mid \Theta)$$

$$= \sum_{i=1..n} \sum_{\substack{h_x h_y \text{is a phased} \\ \text{genotype of } G_i}} \Pr(h_x h_y \mid G_i, \Theta') \log(F_x F_y)$$

$$= \sum_{x} \left(\sum_{i=1..n} \sum_{\substack{h_x h_y \text{is a phased} \\ \text{genotype of } G_i}} \Pr(h_x h_y \mid G_i, \Theta') \right) \log F_x$$

Example: Genotype phasing M-step

- To maximize $\Sigma_x(a_x \log F_x)$ such that $\Sigma_x F_x = 1$
 - The solution is $F_x = a_x / (\Sigma_x a_x)$ for all x.
- Hence, M-step is:

$$F_x^{(g+1)} = \frac{1}{2n} \sum_{i=1}^n \sum_{\substack{h_x h_y \text{ is a} \\ \text{phased genotype} \\ \text{of } G_i}} \mathcal{S}(h_x, h_x h_y) P(h_x h_y \mid G_i, F^{(g)})$$

where $\delta(h,H)$ is the number of occurrences of h in the phased genotype H

Example

- $G = \{G_1 = 11, G_2 = 12, G_3 = 22\}.$
- Possible haplotypes of G: $h_1=11$, $h_2=00$, $h_3=10$, $h_4=01$
- Let F₁, F₂, F₃, and F₄ be the corresponding haplotype frequencies. (Suppose F_i=0.25 for all i.)
- h₁h₁ is the only possible phased genotype of G₁.
 - $P(h_1h_1|G_1, F) = 1$
- h₁h₃ is the only possible phased genotype of G₂.
 - $P(h_1h_3|G_2, F) = 1$
- h₁h₂ and h₃h₄ are the possible phased genotype of G₃.
 - $P(h_1h_2|G_3, F) = (F_1F_2)/(F_1F_2 + F_3F_4) = 1/2$
 - $P(h_3h_4|G_3, F) = (F_3F_4)/(F_1F_2 + F_3F_4) = 1/2$

Example

- $G = \{G_1 = 11, G_2 = 12, G_3 = 22\}. (n=3)$
- Possible haplotypes of G: $h_1=11$, $h_2=00$, $h_3=10$, $h_4=01$
- $P(h_1h_1|G_1,F) = 1$
- $P(h_1h_3|G_2,F) = 1$
- $P(h_1h_2|G_3,F) = 1/2$
- $P(h_3h_4|G_3,F) = 1/2$
- $F'_1 = [2P(h_1h_1|G_1,F) + P(h_1h_3|G_2,F) + P(h_1h_2|G_3,F)]/2/n = 7/12$
- $F'_2 = P(h_1h_2|G_3,F)/2/n = 1/12$
- $F'_3 = [P(h_1h_3|G_2,F) + P(h_3h_4|G_3,F)]/2/n = 3/12$
- $F'_4 = P(h_3h_4|G_3,F)/2/n = 1/12$

Phase

- When there are many heterozygous loci, EM algorithm becomes slow since there are exponential number of haplotypes.
- Phase resolves this problem. More importantly, it improves the accuracy.
- Phase is a Bayesian-based method which uses Gibbs sampling.

Motivation (I)

- Given a set of known haplotypes
 - 4's 10001
 - 5's 11110
 - 3's 00101
- For the ambiguous genotype 20112, two possible solutions:

(A)
$$\frac{10110}{00111}$$
 (B) $\frac{10111}{00110}$

Which solution is better?

Motivation (II)

- Given a set of known haplotypes
 - 4's 10001
 - 5's 11110
 - **3**'s 00101

 Solution (A) is better since the two haplotypes look similar to some known high frequency haplotypes.

Mutation model

 Given a set H of haplotypes, for any haplotype h, it is shown that Pr(h|H) is

$$\sum_{\alpha \in H} \sum_{s=0}^{\infty} \frac{n_{\alpha}}{n} \left(\frac{\theta}{n+\theta} \right)^{s} \frac{n}{n+\theta} (P^{s})_{\alpha h}$$

- where
 - n=|H|, θ is the scaled mutation rate,
 - n_{α} is the number of occurrences of haplotype α in H, and
 - P is mutation matrix

Phase try to use Gibbs sampling to predict the haplotype phase of G.

- For any haplotype H_i=(h_{i1},h_{i2})
 - $Pr(H_i|G,H_{-i}) \propto Pr(H_i|H_{-i}) \propto Pr(h_{i1}|H_{-i}) Pr(h_{i2}|H_{-i})$

Phase algorithm

- Initialization: Let $H^{(0)} = \{H_1^{(0)}, ..., H_n^{(0)}\}$ be the initial guess of the phase haplotypes of G.
- Uniformly randomly choose an ambiguous individual G_i (i.e., individuals with more than one possible haplotype reconstruction).
- Sample $H_i^{(t+1)}$ from $Pr(H_i \mid G, H_{-i}^{(t)})$, where H_{-i} is the set of haplotypes excluding individual i.
- Set $H_j^{(t+1)} = H_j^{(t)}$ for $j = 1,...,n, j \neq i$.

References

- Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122
- Excoffier L, Slatkin M (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921–927. [EM algorithm]
- Stephens M, Smith NJ and Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978-989. [Phase]
- Paul Scheet and Matthew Stephens (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78:629-644. [FastPhase]

Linkage disequilibrium

Is recombination randomly distributed on the genome?

- Recombination occurs in the evolution process.
- Is the recombination cut the genome at random position?

Recombination hotspot evident (I)

- Daly et al (2001) study 500kb region on chromosome 5q31
 - Broken into a series of discrete haplotype blocks that range in size from 3-92kb.
 - Each haplotype block corresponded to a region in which there were just a few common haplotypes (2-4 per block)
- Jeffreys et al (2001) study the class II major histocompatability complex (MHC) region from singlesperm typing.
 - Most of the recombinations are restricted to narrow recombination hotspots.

Recombination hotspot evident (II)

- Many other studies also found that recombination tends to cluster in hotspots that are roughly 102kb in length.
- For haplotype block, it can be very long (says 804kb for a haplotype block on chromosome 22). Most of the haplotype blocks are of length about 5-20kb.
- Hence, it is conjecture that
 - The genome might be divided into regions of high LD that are separated by recombination hotspots.

Correlation between recombination hotspots and genomic features

- By Li et al (AJGH2006), a recombination hotspot is correlated with
 - High G+C content
 - Less repeat. In detail:
 - Less L1
 - More MIR, L2, and low_complexity
 - Less gene region
 - High DNaseI hypersensitivity

Linkage disequilibrium (LD)

- LD refers to the non-random association between alleles at two different loci.
 - that is, two particular alleles can co-occur more often than expected by chance.

- There are two important LD measurements:
 - D;
 - D'; and
 - r²

D

- Loci 1: either A or a $(p_a + p_A = 1)$
- Loci 2: either B or b $(p_b + p_B = 1)$
- If loci 1 and 2 are independent,
 - $p_{AB} = p_A p_B$
 - $p_{Ab} = p_A p_b$
 - $p_{aB} = p_a p_B$
 - $p_{ab} = p_a p_b$
- If LD presents (says, A associate with B), then
 - $p_{AB} = p_A p_B + D_1$
 - $\qquad p_{Ab} = p_A p_b D_2$
 - $p_{aB} = p_a p_B D_3$
 - $p_{ab} = p_a p_b + D_4$
 - We can show that $D_1=D_2=D_3=D_4=D$.
 - D is known as the linkage disequilibrium coefficient
 - D is in the range -0.25 to 0.25. D = 0 under linkage equilibrium

D'

- D is highly dependent on the allele frequency and is not good for measuring the strength of LD.
- Define $D' = D / D_{max}$
 - where D_{max} is the maximum possible value for D given p_A and p_B .
 - Note: $D_{max} = min\{p_A, p_B\} p_A p_B$.
- When |D'|=1, we say it is a complete LD.

Example

- AB, Ab, aB, Ab, ab, ab, ab.
- $p_{AB}=1/7$, $p_A=3/7$, and $p_B=2/7$.
- Hence, D = 1/7 3/7*2/7 = 1/49.
- Given $p_A=3/7$, $p_B=2/7$, the max value for $p_{AB} = min\{p_A, p_B\} = 2/7$. Hence, $D_{max}=2/7 3/7*2/7 = 8/49$.
- Hence, $D' = D / D_{max} = 1/8$.

r^2

- r² measures the correlation of two loci.
- Define $r^2 = D^2 / (p_A p_a p_B p_b)$.
- When $r^2 = 1$,
 - If we know the allele on loci 1, we can deduce the allele on loci 2, and vice versa.
 - Called perfect LD.

Example

- AB, Ab, aB, Ab, ab, ab, ab.
- $p_{AB}=1/7$, $p_A=3/7$, and $p_B=2/7$.
- Hence, D = 1/7 3/7*2/7 = 1/49.

 $r^2 = (1/49)^2/(3/7*4/7*2/7*5/7) = 1/120.$

Tag SNP selection

- There are about 10 million common SNPs (SNPs with allele frequency > 1%).
- It accounts for ~90% of the human genetic variation.
- Hence, we can study the genetic variation of an individual by getting its profile for the common SNPs.
- Even though the cost of genotyping is rapidly decreasing, it is still impractical to genotype every SNP or even a large proportion of them.
- Fortunately, nearby SNPs using show strong correlation to each other (i.e. strong LD).
- It is possible to define a subset of SNPs (called tag SNPs) to represent the rest of the SNPs.

Idea of Zhang et al PNAS 2002

- Assume the genome can be blocked so that the SNPs in each block has high LD.
- Partition the genome into blocks.
- Within each block, we select a minimum set of tag SNPs which can distinguish the haplotypes in the block.
- Aim: minimizing the total number of tag SNPs.

- Input: a set of K haplotypes, each is described by n SNPs.
- Denote r_i(k) be the allele of the i-th SNP in the k-th haplotype.
 - where $r_i(k) = 0$, 1, 2 where 0 means missing data.
- Output: A set of blocks, each block is r_i ... r_j.
 - For each block, a set of tag SNPs which can distinguish at least $\alpha\%$ of the unambiguous haplotypes (defined in the next slide).
 - The total number of tag SNPs is minimized.

Example

- **(1,2,1, 2,1,0,1, 1,1,2,1)**
- **(1,0,1, 1,0,1,2, 1,1,0,1)**
- **(**0,2,1, 0,1,2,1, 1,0,2,2)
- **(2,1,2, 2,1,2,1, 2,2,1,2)**
- **(2,0,2, 1,2,1,0, 2,0,1,2)**
- **(2,1,0, 1,2,0,2, 1,2,2,2)**
- For the above example, we may want to partition them into 3 blocks: r₁..r₃, r₄..r₇, r₈..r₁₁.
- For block r₁..r₃, we select r₁ as the tag SNP.
- For block $r_4...r_7$, we select r_4 as the tag SNP.
- For block $r_8..r_{11}$, we select r_8 and r_{11} as the tag SNPs.

Ambiguous

- Two haplotypes in a block are compatible if the alleles are the same for all loci with no missing values.
- Example:
 - $h_1=(1, 2, 0, 0), h_2=(0, 2, 1, 2), h_3=(1, 2, 1, 1).$
 - h₁ is compatible with h₂ and h₃. However, h₂ is not compatible with h₃.
- A haplotype h in a block is ambiguous if h is compatible with h' and h'' but h' is not compatible with h''.
- For the above example, h₁ is ambiguous in the block.

$block(r_i, ..., r_j)$

- Within a block, we can cluster the haplotypes into different groups,
 - Each group contains unambiguous haplotypes which are compatible.
 - A haplotype in a group is called common if its group is of size at least two.
- We want most of the haplotypes in a block are unambiguous.
- Formally, we define block(r_i , ..., r_j) = 1 if there are > β % common unambiguous haplotypes.

$f(r_i...r_j)$

- We denote $f(r_{i}...r_{j})$ = the minimum number of tag SNPs that can uniquely distinguish at least $\alpha\%$ of the common unambiguous haplotypes in the block $r_{i}...r_{j}$.
- Example: In the block r₃...r₅, we have the following haplotypes.
 - (1,1,2), (1,0,2), (1,1,0), (2,1,1), (2,1,0), (2,0,1)
 - All haplotypes are unambiguous and form two groups:
 - {(1,1,2), (1,0,2), (1,1,0)} and {(2,1,1), (2,1,0), (2,0,1)}
 - To distinguish 100% of these haplotypes, we need 1 tag SNP, that is, r₃.

Dynamic programming (I)

- Let S(i) = minimum number of tag SNPs to uniquely distinguish at least $\alpha\%$ of the unambiguous haplotypes in $r_1...r_i$.
- Base case:
 - S(0) = 0
- Recursive case:
 - $S(i) = min\{S(j-1) + f(r_j...r_i) | 1 \le j \le i, block(r_j...r_i) = 1\}$

Dynamic programming (II)

- In practice, there may exist several block partitions that give the minimum number of tag SNPs.
- We want to minimize the number of blocks.
- Let C(i) = minimum number of blocks so that the number of tag SNPs is S(i).
- We have
 - C(0) = 0;
 - $C(i) = min\{ C(j-1) + 1 | 1 \le j \le i, block(r_i...r_i) = 1, S(i) = S(j-1) + f(r_i...r_i) \}$

IdSelect (Carlson et al. Am. J. Hum. Genet. 2004)

- Aim: Among all SNPs exceeding a specified minor allele frequency (MAF) threshold, select a set of tag SNPs S such that
 - For every SNP i, there exists a SNP j in S so that their r² > a certain threshold th.

Algorithm IdSelect

IdSelect is a greedy algorithm.

Algorithm IdSelect

- Let S be the set of SNPs that are above the MAF threshold.
- Let $T = \phi$
- 3. While S is not empty,
 - Select $s \in S$ which maximizes the size of the set $\{s' \in S \mid r^2(s,s')>th\}$.
 - $T = T \cup \{s\};$
 - $S = S \{s\} \{s' \in S \mid r^2(s,s') > th\}.$

Disadvantage of IdSelect

- Since rare SNPs are harder to link with other SNPs, IdSelect tends to include many rare SNPs as the tag SNPs,
 - which is not nature.

Reference

- Carlson, C.S., Eberle, M.A., Rieder, M.J., Yi, Q., Kruglyak, L., and Nickerson, D.A. 2004. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet. 74: 106–120.
- Zhang, K., Deng, M., Chen, T., Waterman, M.S., and Sun, F. 2002. A dynamic programming algorithm for haplotype block partitioning. *Proc. Natl. Acad. Sci.* 99: 7335–7339.

Association study

What is association study?

Case

(Disease sample)

Control

(Normal sample)

ACGTACCGGTCACTCGCCCACTTCAGGCATA ACGTGCCGGTCACTCACTTCAGGCCTA ACGTACAGGTCACTC<mark>G</mark>CTCACTTCAGGCATA ACGTACCGGTCACACGCTCACTTTAGGAATA AGGTACCGGTCACTCGCTCACTTCAGGCATA ACCTACAGGTGACTCGCTCACTTCTGGCATG ACGTACCGGTCACTCTCTCTCTCAGGCATG ACGTACCGGTCAATCGCTCACTTCAGGCATA ACCTACCGGTCACTCACTCACTTCAGGCCTA ACGTACCGGACACTCACTTTAGGCATA GCGTACCGGTCACACACTCACTTCAGTCATA ACGTACCGGTCACTCACTCACTTCAGGCCTA ACCTGCCGGTGACTCACTCTTAGGCATG ACGTACCGGTCACTCGCTCTCTTCAGGCATA ACGTACAGGTCACTCACTTCAGGCATA ACGTACCGGTCACTCACTCACTTCAGGCATA

Rationale for association studies

- Case: individuals with disease
- Control: normal individuals

Why association studies?

- Identify genetic variation which are correlated to disease
 - Such information help to identify
 - Drug target
 - Disease marker
- Understand how genetic variation affects the respond to pathogens or drugs.
- Understand the different among different races.
 - E.g. Why Asian has higher chance of getting Hapatitis B infection?

Single SNP association study

- Relative risk and odds ratio
- Logistic regression

Relative risk and odds ratio

- Let x and y be the two possible alleles in a loci.
- To check if Case is associate with allele x.
- Relative risk (RR) is [a/(a+b)] / [c/(c+d)].
- Odds ratio (OR) is ad/bc.
- The bigger the value of RR and OR, the SNP is more related to the disease.
- We use the Odds ratio to rank the SNPs.

Actual	Allele x	Allele y
Case	а	С
Control	b	d

Relative risk and odds ratio

Actual	Allele G	Allele A
Case	6	2
Control	1	7

- \blacksquare RR = (6/7)/(2/9) = 3.86
- OR = (6*7)/(2*1) = 21
- Since the values are big, this SNP is highly related to the disease.

ACGTACCGGTCACTCGCCCACTTCAGGCATA ACGTGCCGGTCACTCACTCACTTCAGGCCTA ACGTACAGGTCACTCGCTCACTTCAGGCATA ACGTACCGGTCACACGCTCACTTTAGGAATA AGGTACCGGTCACTCGCTCACTTCAGGCATA ACCTACAGGTGACTCGCTCACTTCTGGCATG ACGTACCGGTCACTCACTCTCTTCAGGCATG ACGTACCGGTCAATCGCTCACTTCAGGCATA ACCTACCGGTCACTCACTCACTTCAGGCCTA ACGTACCGGACACTCACTCTTAGGCATA GCGTACCGGTCACACACTCACTTCAGTCATA ACGTACCGGTCACTCACTCACTTCAGGCCTA ACCTGCCGGTGACTCACTCTTAGGCATG ACGTACCGGTCACTCGCTCTCTTCAGGCATA ACGTACAGGTCACTCACTCACTTCAGGCATA ACGTACCGGTCACTCACTTCAGGCATA

Linear regression

Genotype	phenotypic score
0	2
0	2.1
0	2.4
0	2.3
0	2.2
0	2.5
1	2.4
1	2.5
1	2.6
1	3
1	2.7
1	2.8
1	2.3
2	2.9
2	3.2
2	3

Find the straight line which best fit the data!

$$y = 2.2415 + 0.3874x + \varepsilon$$

Formal definition

- Given (x_i, y_i) , i=1, 2, ..., n
 - where x_i is the genotype of the SNP and y_i is the phenotypic score.
- We would like to compute β_0 and β_1 such that
 - $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$; and
 - $\Sigma_{i=1..n} \ \epsilon_i^2 = \Sigma_{i=1..n} (y_i \beta_0 \beta_1 x_i)^2$ is minimized.
- $\Sigma \varepsilon_i^2$ is called the sum of squares error (SSE).
- Denote $\hat{y}_i = \beta_0 + \beta_1 x_i$

β_0 and β_1

 By partial differentiation with respect to β₀ and β₁, we can show that

$$\beta_1 = \frac{\sum_{i=1..n} (x_i - \mu_x)(y_i - \mu_y)}{\sum_{i=1..n} (x_i - \mu_x)^2}$$

$$\bullet \beta_0 = \mu_y - \beta_1 \mu_x.$$

μ_x and μ_y are the means of x and y respectively.

Significant test for linear regression

- Mean sum of squares error (MSE) is $\Sigma_{i=1..n}(y_i \hat{y}_i)^2 / (n-2)$.
- Regression sum of squares (MSR) is $\Sigma_{i=1..n}(\hat{y}_i \mu_y)^2$.
- MSR/MSE follows the F distribution.
- H_0 : $\beta_1 = 0$, H_1 : $\beta_1 \neq 0$
- We reject H_0 if MSR/MSE $> F_{1,n-2,0.95}$

Example

- n=16
- $\mu_{v} = 2.55625$
- $MSE = \sum_{i=1..n} (y_i \hat{y}_i)^2 / (n-2)$ = 0.040931
- MSR = $\Sigma_{i=1..n} (\hat{y}_i \mu_y)^2$ = 1.266338
- MSR/MSE = $30.03819 > F_{1,14,0.95} = 4.6$
- We reject H_0 : $\beta_1 = 0$.

Genotype	phenotypic score
0	2
0	2.1
0	2.4
0	2.3
0	2.2
0	2.5
1	2.4
1	2.5
1	2.6
1	3
1	2.7
1	2.8
1	2.3
2	2.9
2	3.2
2	3

Reg

Regression when Y is binary

- For case and control study,
 - Y usually has only 2 values: 0 and 1.

- In this case, we would like to fit
 - $Pr(D) = \alpha + \beta X + \epsilon$.
- However, such function is difficult to fit since Pr(D) is in a narrow range [0,1].

Sigmoid function (standard logistic function)

•
$$F(t) = 1 / (1 + e^{-t})$$

■
$$t = 0 \rightarrow F(t) = 0.5$$

$$\bullet t = +\infty \rightarrow F(t) = 1$$

$$\bullet$$
 t = $-\infty \rightarrow F(t) = 0$

- We try to fit
 - $Pr(D) = 1 / (1 + e^{-(\alpha + \beta X)})$
 - Hence, $Pr(D)/(1-Pr(D)) = e^{-(\alpha+\beta X)}$

Logistic regression

$$\log(\frac{\Pr(D)}{1 - \Pr(D)}) = \alpha + \beta X$$

- D is the disease status
- X has 3 values:
 - 2 if the genotype is xx;
 - 1 if the genotype is xy; and
 - 0 if the genotype is yy.
- Test if $\beta = 0$