
Algorithms in Bioinformatics: A 
Practical Introduction

Population genetics



Human population
 Our genomes are not exactly the same.
 Human DNA sequences are 99.9% identical 

between individuals

 Those genetic variation (polymorphism) give 
different skin color, different outlook, and 
also different genetic diseases.

 This lecture would like to have a look of 
strategy to study human population.



Locus and Alleles
 Locus

 A particular location in a chromosome

 An allele is a possible nucleotide that 
occupies a given locus.

 In the human population, a locus may have 4 
possible alleles.

 Since mutation is rare, most of the loci are 
diallelic.



Human are diploid

 We have two copies of each chromosome
 One inherit from father while another one 

inherit from mother.

Father Mother



Locus and Alleles

 Example: Consider the following 
chromosome pair.

i j
…ACGTCATG…
…ACGCCATG…

 For locus i, the allele is C.
 For locus j, the alleles are T and C.



Genotype:
Homozygote vs Heterozygote

 Let A and a represent a pair of alleles of 
a given locus

 Then AA, aa, and Aa are the genotypes
of the locus.

 AA and aa are called homozygotes.
 Aa is called heterozygote. 



Homozygote vs Heterozygote: 
Example
Individual 1: …ACGTCATG…

…ACGCCATG…
Individual 2: …ACGCCATG…

…ACGCCATG…
Individual 3: …ACGTCATG…

…ACGTCATG…
Individual 4: …ACGCCATG…

…ACGTCATG…

 For the loci in red color,
 Homozygote: Individuals 2, 3
 Heterozygote: Individuals 1, 4



Dominance vs Recessiveness

 Let A and a represent a pair of alleles of 
a given locus

 A is called a dominant allele if
 the appearance or phenotype of the Aa 

individuals resembles that of the AA type

 a is called a recessive allele.



Single-Nucleotide 
Polymorphisms (SNPs)
 SNP is the loci where there is a single nucleotide variation among different 

individuals. It is the most common type of polymorphism.
 Below example contains 4 pair of chromosomes.

Individual 1: …ACGTCATG…
…ACGCCATG…

Individual 2: …ACGCCATG…
…ACGCCATG…

Individual 3: …ACGTCATG…
…ACGTCATG…

Individual 4: …ACGTCATG…
…ACGTCATG…

 For the loci in red color, there is a SNP with two alleles T and C.
 The allele frequency of T is 5/8 while the allele frequency of C is 3/8.
 In this case, the minor allele frequency is 3/8.



More on SNPs
 SNPs make up 90% of all human genetic 

variations.
 SNPs with a minor allele frequency of ≥ 1% occur 

every 100 to 300 bases along the human genome, 
on average.

 Two third of the SNPs substitute cytosine (C) with 
thymine (T).



HapMap project

 Through the collaborative effort of 
many countries,
 We already have identified the set of 

common SNPs in human population
 See http://www.hapmap.org/

http://www.hapmap.org/�


SNP and phenotype

 Phenotype
 The observable structure, function or behavior of 

a living organism.
 E.g. The color of the hair

 The variation of SNPs may or may not affect 
the phenotype.

 The SNPs which do not affect the phenotype 
are called natural SNPs; Otherwise, they are 
called causal SNPs.



Example: Hair color

 Hair color varies from black to white.
 The color of hair is control by 4 genes in 

on chromosome 3, 6, 10 and 18.
 The greater the number of dominant 

alleles, the darker the hair.



Example: Eyebrow
 Eyebrow thickness is determined by a gene in 

chromosome 9.
 Thick eyebrow = ZZ or Zz while thin eyebrow = zz.

 Eyebrow placement is determined by another gene in 
chromosome 10.

 Connected = aa while Disconnected = AA or Aa.



Genotype frequency
 Genotype frequency is the relative frequency 

of a genotype on a genetic locus in a 
population.

 Example:
 Let A and a represent a pair of alleles of a given 

locus
 Let the population be AA, Aa, aa, AA, AA, Aa, aa, 

Aa, AA, Aa
 f(AA) = 4/10
 f(aa) = 2/10
 f(Aa) = 4/10



Allele frequency

 Allele frequency is the relative frequency of 
an allele on a genetic locus in a population.

 Example:
 Let A and a represent a pair of alleles of a given 

locus
 Let the population be AA, Aa, aa, AA, AA, Aa, aa, 

Aa, AA, Aa
 pA = (2+1+0+2+2+1+0+1+2+1)/20 = 0.6
 pa = (0+1+2+0+0+1+2+1+0+1)/20 = 0.4



Genotype frequency  Allele 
frequency
 pA = f(AA) + 0.5 f(Aa)
 pa = f(aa) + 0.5 f(Aa)

 Example:
 Let A and a represent a pair of alleles of a given 

locus
 Let the population be AA, Aa, aa, AA, AA, Aa, aa, 

Aa, AA, Aa
 pA = 0.6, pa = 0.4
 f(AA) = 4/10, f(aa) = 2/10, f(Aa) = 4/10



Haplotype

 Haplotype is a combination of alleles at 
different loci on the same chromosome.

 For example:
 The following three loci have genotypes 

AC, AT, CG.
 There are two haplotypes: ATG and CAC.

A
C

T
A C

G



Genotype vs haplotype
 Example: consider the following two copies of the 

chromsome.
i        j

Copy1 of the chr  -----A--------B-------
Copy2 of the chr  -----a--------b-------

 The genotype for loci i and j are Aa and Bb.
 Consider copy1 of the chromosome, the haplotype 

for loci i and j are A and B.
 Consider copy2 of the chromosome, the haplotype 

for loci i and j are A and B.



Technologies for studying 
human population
 There are 100 different genotyping technologies.

 Nowaday, we can perform whole genome genotyping 
for all the common SNPs found in HapMap! 
 (US$0.1-US$0.01 per genotype)

 Note that genotyping does not tell us the hapotypes 
appear in the chromosomes.

 E.g. The genotype of two loci are AC and CT. Then, 
there are two possible cases:

A
C

C
T

A
C

T
C



Bioinformatics problems
 Data quality checking

 Check if the genotyping found by biological experiments are 
good or not.

 Genotype phasing
 Identify the hapotypes from the genotypes.

 Tag SNP selection
 Genotyping all SNPs are expensive and sometimes 

impossible. Hence, we want to select a subset of SNPs, 
called tag SNPs, for genotyping.

 Association study
 Find the relationship between disease and genetic variation



Data quality checking



Hardy Weinberg equilibrium 
(HWE)
 Let pA and pa be the major and minor allele 

frequencies.
 Under the assumption:

 Random mating
 No natural selection

 Then, the expected frequencies are:
 e(AA) = pA * pA
 e(aa) = pa * pa
 e(Aa) = 2 pA * pa

 We expect the genotype frequencies should be 
similar to the expected frequencies.



Hardy Weinberg equilibrium 
(HWE)
 Example:

 Let A and a represent a pair of alleles of a given 
locus

 Let the population be AA, Aa, aa, AA, AA, Aa, aa, 
Aa, AA, Aa

 pA = 0.6, pa = 0.4
 f(AA) = 4/10, f(aa) = 2/10, f(Aa) = 4/10

 By HWE, 
 e(AA) = 0.6*0.6 = 0.36; eAA = 3.6
 e(aa) = 0.4*0.4 = 0.16; eaa = 1.6
 e(Aa) = 2*0.6*0.4 = 0.48; eAa = 4.8



χ2 test for HWE

 We can use χ2 test to determine if the 
genotype frequencies satisfy HWE.

 χ2 test with degree of freedom = 1
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χ2 test for HWE: Example

 χ2 test with degree of freedom = 1

 Pr(χ2 > 0.278) = 0.5980
 Which is much bigger than 0.05.
 So we accept that the SNP satisfies HWE.

Genotype AA Aa aa
Actual 4 4 2
Expected 3.6 4.8 1.6
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Fisher’s exact test for HWE
 n is the size of the population.
 nAa = number of Aa
 nA = number of A.
 Number of combinations where there are nA’s A is 
 Number of combinations where there are nAa

heterozygotes is

 Pr(nAa | nA) =
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Fisher’s exact test for HWE: 
Example
 n = 10, nA = 12, nAa = 4.

 Pr(nAa | nA) =          

= 3150*24/125970=0.40095 > 0.05

 So, we accept that the SNP satisfies HWE.

Genotype AA Aa aa
Actual 4 4 2
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Clean-up the dataset by HWE
 If a SNP derviates from HWE, it may be due to 

miscall during the genotyping process.
 Usually, we discard SNPs which derivate from HWE at 

significance level 10-3 or 10-4.

 However, this approach may miss some causal SNPs.
 In real life, there exists different forces to change the 

frequencies
 The forces include selection, drift, mutation, and migration.
 Those forces make the causal SNP derviates from HWE.



Other factors regarding 
clean-up

 Resolving missing genotypes



Genotype phasing



Genotype phasing

 Genotyping technology allows us to 
generate genotype of individual easily.

 However, it is difficult to recover the 
haplotype.

 The process of recovering haplotype 
from genotype is called genotype 
phasing.



Example

 Given the genotype of an individual:
 Aa,BB,cc,DD

 We need to recover the two hapotypes 
of the individual, which are
 ABcD; and
 aBcD



Notation
 For haplotype, we use 

 0 to represent major allele and 
 1 to represent minor allele

 For genotype, we use
 0 to represent both alleles are major, 
 1 to represent both alleles are minor, and
 2 to represent one is major and one is minor.

 For the previous example,
 AaBBccDD is represented as 2010
 ABcD is represented as 0010
 aBcD is represented as 1010



Experimental method for 
genotype phasing
 Asymmetric PCR amplification (Newton et al. 

1989; Wu et al. 1989)
 Isolation of single chromsome by limit dilution 

followed by PCR amplification (Ruano et al. 
1990)

 Inferring haplotype information by using 
genealogical information in families (Perlin et 
al. 1994)

 The above methods are low-throughput, 
costly, and complicated.



Computational methods

 We study computational methods for 
genotype phasing.

 We discuss the following:
 Clark’s algorithm
 Perfect Phylogeny Haplotyping
 Maximum likelihood
 Phase (just mention)



Difficulty of genotype phasing
 Consider the following example.

Genotype: 01211201

 Which one is correct? (I) or (II)?

(I) Haplotype: 01011101
01111001 

OR

(II) Haplotype: 01111101
01011001



Genotype phasing Problem
 Input:

 A set of genotypes G=(G1, G2, …, Gn).
 Output:

 A set of haplotypes which can best explain G 
according to certain criteria.

 Example Criteria:
 Minimize the number of haplotypes
 Maximize the likelihood
 …



Clark’s algorithm (1990)
 Parsimony approach: Find the simplest solution

 Minimize the total number of haplotypes.

 He gave a heuristics algorithm.

1. From all homozygotes and single-site heterozygotes 
genotypes,

 Unambiguously, we generate a set of haplotypes.
2. For each know haplotype H, we look for unresolved genotype 

G’,
 Check if we can resolve G’ by H and some new haplotype H’.
 If yes, include H’ and resolve G’.

3. Repeat the procedure until all genotypes are resolved.

 Note that Clark’s algorithm may fail to return answer.



Example for Clark’s algorithm 
Step 1
 Example genotype input:

 G1 = 10121101
 G2 = 10201121
 G3 = 20001211

 From G1, we have
 H1 = 10101101
 H2 = 10111101



Example for Clark’s algorithm 
Step 2
 Example genotype input:

 G1 = 10121101
 G2 = 10201121
 G3 = 20001211

 We have the following haplotypes:
 H1 = 10101101
 H2 = 10111101

 From H1 and G2, we have
 H3 = 10001111

 From H3 and G3, we have
 H4 = 00001011

 Hence, the set of predicted haplotypes is
 H1 = 10101101
 H2 = 10111101
 H3 = 10001111
 H4 = 00001011



Perfect Phylogeny Haplotyping
 This problem is first introduced by Gusfield 

2002.
 Input:

 A set of genotypes G={G1, …, Gn}, each Gi is a 
length-m genotype.

 Output: 
 A set of haplotypes H={Hi,H’i| Hi,H’i resolve Gi} 

such that H1,H’1 …, Hn,H’n form a perfect 
phylogeny

 For example,
 G={G1=220, G2=012, G3=222}
 The solution is H={100, 010, 011}

100

H1 H3

000

H’1

010

011 H’2

H2 H’3

1 2

3



Previous work
 Gusfield (2002) introduced the problem and 

gives an O(nm α(nm)) time algorithm by 
reduction to the graph realization problem

 Eskin et al (2002) gives a simple O(nm2) time 
algorithm.

 Bafna et al (2002) gives a simple O(nm2) time 
algorithm.

 Gusfield et al (RECOMB 2005) gives an O(nm) 
time algorithm.



Represent G as a matrix

 To simplify the discussion, we represent 
{G1,…,Gn} as a nxm matrix G where the 
entry G(i,j) is the j genotype of Gi.

1 2 3 4 5 6

G1 1 1 2 0 2 0

G2 1 2 2 0 0 2

G3 1 1 2 2 0 0

G4 2 2 2 0 0 2

G5 1 1 2 2 2 0



Our aim
 Given n x m matrix G

 Each entry is either 0, 1, or 2

 Construct 2n x m matrix H
 Each entry is either 0 or 1
 If G(r,c)≠2, H(2r,c)=H(2r-1,c)=G(r,c)
 Otherwise, {H(2r,c),H(2r-1,c)}={0,1}
 H satisfies a perfect phylogeny

1 2 3

G1 2 2 0

G2 0 1 2

G3 2 2 2

1 2 3

H1 1 0 0

H’1 0 1 0

H2 0 1 1

H’2 0 1 0

H3 1 0 0

H’3 0 1 1



4-gamete test

 A set of haplotypes admits a perfect 
phylogeny (whose root is an all-0 haplotypes) 
if and only if there are no two columns i and j 
containing all four pairs 00, 01, 10, and 11.

 Proof:
 Recall that M admits a perfect phylogeny if and 

only if for every characters i and j, they are 
pairwise compatible.



In-phase and out-of-phase
 If some columns c and c’ in G contain (1) either 11 or 12 or 21 and (2) 

either 00 or 02 or 20,
 columns c and c’ in H must contain both 11 and 00.
 In such case, c and c’ are called in-phase.

 If some columns c and c’ in G contain (1) either 10 or 20 and (2) either 
01 or 02,
 Columns c and c’ in H must contain both 10 and 01.
 In such case, c and c’ are called out-of-phase.

 E.g.
 Columns 2 and 5 are in-phase
 Columns 4 and 5 are out-of-phase
 Columns 3 and 4 are neither in-phase

or out-of-phase

1 2 3 4 5 6

G1 1 1 2 0 2 0

G2 1 2 2 0 0 2

G3 1 1 2 2 0 0

G4 2 2 2 0 0 2

G5 1 1 2 2 2 0



 If columns c and c’ in G are both in-
phase and out-of-phase, G has no 
solution to the PPH problem.
 Proof: By 4-gamete test



GM

 In GM, a pair of columns forms an edge if it contains 
22.

 Red: in-phase (color 0)
 Blue: out-of-phase (color 1)

1 2 3 4 5 6 7

G1 1 1 0 2 2 0 2

G2 1 2 2 0 0 2 0

G3 1 1 2 2 0 0 0

G4 2 2 2 0 0 2 0

G5 1 1 2 2 2 0 0

G6 1 1 0 2 0 0 2

3

5

6

2

4

1

7



Theorem
 Consider a matrix M such that every pair of columns 

is not both in-phase and out-of-phase.
 There exists a PPH solution for M if and only if we 

can infer the colors of all edges in GM such that
 All edges which are in-phase and out-of-phase are colored 

red and blue, respectively. (Denote Ef be the set of these 
edges);

 For any triangle (i,j,k) where there exists r s.t. 
M[r,i]=M[r,j]=M[r,k]=2,  either 0 or 2 edges are colored 
blue.

 If such coloring exists, such coloring is called a valid 
coloring of GM.



Infer colors for the uncolored 
edges

 A valid coloring will 
color all edges not in Ef
so that
 For any triangle (i,j,k), 

either 0 or 2 edges are 
colored blue.
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How to infer the colors? (I)

 The colored edges in GM form a set C of 
connected components.

 Let EC be a minimum set of edges, which 
connect all these connected components.

3

5

6

2

4

1

7

3

5

6

2

4
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7

C = { {3,4,5,7}, {2}, {1}, {6} }

EC



How to infer color? (II)
 Bafna et al. showed the following theorem:

 Either (1) GM has no valid solution or (2) any arbitrary 
coloring of the edges in EC define a unique valid coloring for 
GM. (Thus, there are exactly 2r valid coloring, where r=|EC|.)
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How to infer 
color? (III)

 Given the coloring of EC, the 
colors of the dotted edges can be 
inferred as follows.

 While a dotted edge e is adjacent 
to two colored edges,
 Color e so that the triangle has 

either 0 or 2 blue edges.

 Bafna et al. showed the above 
algorithm can infer the color of 
all dotted edges correctly.
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How to infer the haplotypes?
 Given the coloring of all edges of GM, we can infer 

the haplotypes as follows.

 For j = 1 to m,
 For i = 1 to n,

 if M[i,j]∈{0,1}, set H[2i,j]=H[2i-1,j]=M[i,j]
 Otherwise, let k<j be a column such that M[i,k]=2.
 If k exists, 

 if (j,k) is colored red, set H[2i,j]=H[2i,k], H[2i-1,j]=1-H[2i,j]
 If (j,k) is colored blue, set H[2i,j]=1-H[2i,k], H[2i-1,j]=1-H[2i,j]

 Else
 set H[2i,j]=0, H[2i-1,j]=1



Example

1 2 3 4 5 6 7

G1 1 1 0 2 2 0 2

G2 1 2 2 0 0 2 0

G3 1 1 2 2 0 0 0

G4 2 2 2 0 0 2 0

G5 1 1 2 2 2 0 0

G6 1 1 0 2 0 0 2

1 2 3 4 5 6 7

H1 1 1 0 1 1 0 0

H’1 1 1 0 0 0 0 1

H2 1 1 1 0 0 1 0

H’2 1 0 0 0 0 0 0

H3 1 1 1 0 0 0 0

H’3 1 1 0 1 0 0 0

H4 1 1 1 0 0 1 0

H’4 0 0 0 0 0 0 0

H5 1 1 0 1 1 0 0

H’5 1 1 1 0 0 0 0

H6 1 1 0 1 0 0 0

H’6 1 1 0 0 0 0 1
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Time analysis

 Checking in-phase and out-of-phase for all 
pairs of columns takes O(nm2) time.

 Infering colors for the uncolored edges takes 
O(m2) time.

 Compute the matrix H takes O(nm) time.

 In total, the algorithm runs in O(nm2) time.



More on PPH problem

 Theorem: If every column in M contains 
at least one 0 and one 1 entry,
 Then there is either no PPH solution for M 

or has a unique PPH solution for M.
 Also, such solution can be found in O(nm) 

time.



Maximum likelihood approach

 This approach is used by Excoffier and 
Slatkin (1995).

 Try to infer the haplotype with the most 
realistic haplotype frequencies
 under the assumption of Hardy-Weinberg 

equilibrium



Motivation (I)

 Example: Consider two genotypes
 G1 = 0111
 G2 = 0221

 Two possible solutions:

 Which solution is better?

G1: 0111
0111

G2: 0111
0001

G1: 0111
0111

G2: 0101
0011



Motivation (II)

 For solution 1:

 There are two haplotypes 0111 and 0001.
 Their frequencies are ¾ and ¼.
 The chance of getting G2=0221 is ¾*¼.

 For solution 2:

 There are three haplotypes 0111, 0101, and 0011.
 Their frequencies are ½, ¼ and ¼.
 The chance of getting G2=0221 is ¼*¼.

 Solution 1 seems better!

G1: 0111
0111

G2: 0111
0001

G1: 0111
0111

G2: 0101
0011



Preliminary
 Given a genotype Gi, we can generate the set 

Si, which is the set of all haplotype pairs that 
are phased genotypes of Gi.

 Example: Consider the genotype 0221.
 Since there are two heterozygous loci, 

 we have 22 = 4 possible haplotypes.
 h1=0001, h2=0011, h3=0101, h4=0111

 The set of all phased genotypes of 0221 is 
 {h1h4, h2h3}.



Maximum Likelihood (I)
 Let G = {G1, G2, …, Gn} be the set of n genotypes.
 Let h1, h2, …, hm be the set of all possible haplotypes 

that can resolve G.
 Let F={F1, F2,…, Fm} be the population frequency of 

{h1, h2, …, hm}.
 Note: F1+F2+…+Fm=1

 For x = 1, 2, …, n, 
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Maximum Likelihood (II)

 We would like to maximize the overall 
probability product of all P(Gi), that is, 
the following function L.

 In principle, we can solve this equation. 
But there is no close form.

 Instead, we use EM algorithm.
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Formal definition of Maximum 
likelihood

 Given 
 a set of observations X={x1,x2,…,xn}
 A set of parameters Θ.

 The likelihood function:
 L(Θ)=Πi=1..nPr(xi|Θ)=Pr(X|Θ)

 Aim:
 Find Θ’ = argmaxΘ Pr(X|Θ) 

= argmaxΘ Πi=1..n Pr(xi|Θ)



Hidden data

 xi is called observed data
 Each xi is associated with some hidden 

data yi.

 Finding Θ’ = argmaxΘ Pr(X|Θ) may be 
difficult.

 Moreover, finding argmaxΘ Pr(X,Y|Θ) 
may be easier.



What is EM algorithm?

 EM algorithm is a popular method for 
solving the maximum likelihood 
problem.

 The idea is to alternate between
 Filling in Y based on the best guess Θ; and
 Maximizing Θ with Y fixed.



EM Algorithm

 Initialization: A guess at Θ
 Repeat until satisfy

 E-step: Given a current fixed Θ’, compute 
Pr(y|x,Θ’)

 M-step: Given Pr(y|x,Θ’), find Θ which 
maximizes Σx Σy Pr(y|x,Θ’) log Pr(x,y|Θ)



Explanation of EM-algorithm 
(I)

 Let Θ’ be the old 
guess.

 Maximizing L(Θ) is 
the same as 
maximizing R(Θ,Θ’) 
= L(Θ)/L(Θ’)
 since Θ’ is fixed.
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Explanation of EM-algorithm 
(II)
 By AM≥GM, we have

 By taking log and Θ’ is a constant, maximizing 
R(Θ,Θ’) is the same as maximizing Q(Θ,Θ’) where
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Example: Genotype phasing

 G = {G1, G2, …, Gn} which are the set of 
observed genotypes.

 Let {h1, h2, …, hm} be the set of all possible 
haplotypes that can resolve G.

 Θ is set of haplotype frequencies 
{F1,F2,…,Fm} where Fx is the frequency of hx.

 Aim:
 Find Θ’ = argmaxΘ Pr(G|Θ)



Example: Genotype phasing

 For each genotype Gi,
 The hidden data is its phase hxhy.

 Pr(hxhy,Gi|Θ) = Fx Fy.



Example: Genotype phasing 
EM algorithm
 Initialization: F(0) = {F1

(0),F2
(0),…, Fm

(0)}.
 Repeat the following two steps:
 E-step:

 For every Gx, estimate the phased genotype 
frequencies P(hihj|Gx,F(g)) for all hihj that is 
consistent with Gx.

 M-step:
 Based on the phased genotype frequencies, we 

estimate a new set  F (g+1) of haplotype 
frequencies.



Example: Genotype phasing 
E-step

 Suppose hxhy is a phased genotype of 
Gi.
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Example: Genotype phasing 
M-step

 M-step: Maximizes Q(Θ,Θ’)
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Example: Genotype phasing 
M-step
 To maximize Σx(ax log Fx) such that ΣxFx = 1

 The solution is Fx = ax / (Σx ax) for all x.

 Hence, M-step is:

where δ(h,H) is the number of occurrences of 
h in the phased genotype H
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Example
 G={G1=11, G2=12, G3=22}.
 Possible haplotypes of G: h1=11, h2=00, h3=10, h4=01
 Let F1, F2, F3, and F4 be the corresponding haplotype 

frequencies. (Suppose Fi=0.25 for all i.)

 h1h1 is the only possible phased genotype of G1.
 P(h1h1| G1, F) = 1

 h1h3 is the only possible phased genotype of G2.
 P(h1h3| G2, F) = 1

 h1h2 and h3h4 are the possible phased genotype of G3.
 P(h1h2|G3, F) = (F1 F2)/(F1 F2 + F3 F4)=1/2
 P(h3h4|G3, F) = (F3 F4)/(F1 F2 + F3 F4)=1/2



Example
 G={G1=11, G2=12, G3=22}. (n=3)
 Possible haplotypes of G: h1=11, h2=00, h3=10, h4=01

 P(h1h1| G1,F) = 1
 P(h1h3| G2,F) = 1
 P(h1h2| G3,F) = 1/2
 P(h3h4| G3,F) = 1/2

 F’1 = [2P(h1h1| G1,F)+ P(h1h3| G2,F)+ P(h1h2|G3,F)]/2/n = 7/12
 F’2 = P(h1h2|G3,F)/2/n = 1/12
 F’3 = [P(h1h3| G2,F) + P(h3h4|G3,F)]/2/n = 3/12
 F’4 = P(h3h4|G3,F)/2/n = 1/12



Phase
 When there are many heterozygous loci, EM 

algorithm becomes slow since there are 
exponential number of haplotypes.

 Phase resolves this problem. More 
importantly, it improves the accuracy.

 Phase is a Bayesian-based method which 
uses Gibbs sampling.



Motivation (I)
 Given a set of known haplotypes

 4’s 10001
 5’s 11110
 3’s 00101

 For the ambiguous genotype 20112, two 
possible solutions:

 Which solution is better?

10110
00111

10111
00110

(A) (B)



Motivation (II)
 Given a set of known haplotypes

 4’s 10001
 5’s 11110
 3’s 00101

 Solution (A) is better since the two haplotypes look 
similar to some known high frequency haplotypes.

10110
00111

10111
00110

(A) (B)



Mutation model
 Given a set H of haplotypes, for any 

haplotype h, it is shown that Pr(h|H) is

 where
 n=|H|, θ is the scaled mutation rate,
 nα is the number of occurrences of haplotype α in 

H, and
 P is mutation matrix
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 Phase try to use Gibbs sampling to 
predict the haplotype phase of G.

 For any haplotype Hi=(hi1,hi2)
 Pr(Hi|G,H-i)∝Pr(Hi|H-i)∝Pr(hi1|H-i)Pr(hi2|H-i)



Phase algorithm
 Initialization: Let H(0) ={H1

(0),…, Hn
(0)} be the initial 

guess of the phase haplotypes of G.

1. Uniformly randomly choose an ambiguous 
individual Gi (i.e., individuals with more than one 
possible haplotype reconstruction).

2. Sample Hi
(t+1) from Pr(Hi | G,H-i

(t)), where  H-i is the 
set of haplotypes excluding individual i.

3. Set Hj
(t+1) = Hj

(t) for j = 1,…,n, j ≠ i.
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Linkage disequilibrium



Is recombination randomly 
distributed on the genome?

 Recombination occurs in the evolution 
process.

 Is the recombination cut the genome at 
random position?

Father Mother

sperm egg

Meiosis



Recombination hotspot 
evident (I)
 Daly et al (2001) study 500kb region on chromosome 

5q31
 Broken into a series of discrete haplotype blocks that range 

in size from 3-92kb.
 Each haplotype block corresponded to a region in which 

there were just a few common haplotypes (2-4 per block)
 Jeffreys et al (2001) study the class II major 

histocompatability complex (MHC) region from single-
sperm typing.
 Most of the recombinations are restricted to narrow 

recombination hotspots.



Recombination hotspot 
evident (II)
 Many other studies also found that recombination 

tends to cluster in hotspots that are roughly 102kb in 
length.

 For haplotype block, it can be very long (says 804kb 
for a haplotype block on chromosome 22). Most of 
the haplotype blocks are of length about 5-20kb.

 Hence, it is conjecture that
 The genome might be divided into regions of high LD that 

are separated by recombination hotspots.



Correlation between recombination 
hotspots and genomic features

 By Li et al (AJGH2006), a recombination 
hotspot is correlated with
 High G+C content
 Less repeat. In detail:

 Less L1
 More MIR, L2, and low_complexity

 Less gene region
 High DNaseI hypersensitivity 



Linkage disequilibrium (LD)

 LD refers to the non-random association 
between alleles at two different loci.
 that is, two particular alleles can co-occur more 

often than expected by chance.

 There are two important LD measurements:
 D;
 D’; and
 r2



D
 Loci 1: either A or a (pa + pA = 1)
 Loci 2: either B or b (pb + pB = 1)
 If loci 1 and 2 are independent,

 pAB=pA pB
 pAb=pA pb
 paB=pa pB
 pab=pa pb

 If LD presents (says, A associate with B), then
 pAB=pA pB + D1
 pAb=pA pb – D2
 paB=pa pB – D3
 pab=pa pb + D4
 We can show that D1=D2=D3=D4=D.
 D is known as the linkage disequilibrium coefficient
 D is in the range -0.25 to 0.25. D = 0 under linkage equilibrium



D’

 D is highly dependent on the allele frequency 
and is not good for measuring the strength of 
LD.

 Define D’ = D / Dmax
 where Dmax is the maximum possible value for D 

given pA and pB.
 Note: Dmax = min{pA,pB}-pApB.

 When |D’|=1,  we say it is a complete LD.



Example
 AB, Ab, aB, Ab, ab, ab, ab.
 pAB=1/7, pA=3/7, and pB=2/7.
 Hence, D = 1/7 – 3/7*2/7 = 1/49.

 Given pA=3/7, pB=2/7, the max value for pAB
= min{pA, pB} = 2/7. Hence, Dmax=2/7 –
3/7*2/7 = 8/49.

 Hence, D’ = D / Dmax = 1/8.



r2

 r2 measures the correlation of two loci.
 Define r2 = D2 / (pA pa pB pb).
 When r2 = 1,

 If we know the allele on loci 1, we can 
deduce the allele on loci 2, and vice versa.

 Called perfect LD.



Example

 AB, Ab, aB, Ab, ab, ab, ab.
 pAB=1/7, pA=3/7, and pB=2/7.
 Hence, D = 1/7 – 3/7*2/7 = 1/49.

 r2 = (1/49)2/(3/7*4/7*2/7*5/7) = 
1/120.



Tag SNP selection
 There are about 10 million common SNPs (SNPs with allele 

frequency > 1%).
 It accounts for ~90% of the human genetic variation.
 Hence, we can study the genetic variation of an individual by 

getting its profile for the common SNPs.

 Even though the cost of genotyping is rapidly decreasing, it is 
still impractical to genotype every SNP or even a large 
proportion of them.

 Fortunately, nearby SNPs using show strong correlation to each 
other (i.e. strong LD).

 It is possible to define a subset of SNPs (called tag SNPs) to 
represent the rest of the SNPs.



Idea of Zhang et al PNAS 
2002
 Assume the genome can be blocked so that 

the SNPs in each block has high LD.

 Partition the genome into blocks.
 Within each block, we select a minimum set 

of tag SNPs which can distinguish the 
haplotypes in the block.

 Aim: minimizing the total number of tag 
SNPs.



 Input: a set of K haplotypes, each is 
described by n SNPs.

 Denote ri(k) be the allele of the i-th SNP in 
the k-th haplotype.
 where ri(k) = 0, 1, 2 where 0 means missing data.

 Output: A set of blocks, each block is ri … rj.
 For each block, a set of tag SNPs which can 

distinguish at least α% of the unambiguous 
haplotypes (defined in the next slide).

 The total number of tag SNPs is minimized.



Example
 (1,2,1, 2,1,0,1, 1,1,2,1)
 (1,0,1, 1,0,1,2, 1,1,0,1)
 (0,2,1, 0,1,2,1, 1,0,2,2)
 (2,1,2, 2,1,2,1, 2,2,1,2)
 (2,0,2, 1,2,1,0, 2,0,1,2)
 (2,1,0, 1,2,0,2, 1,2,2,2)

 For the above example, we may want to partition them into 3 
blocks: r1..r3, r4..r7, r8..r11.

 For block r1..r3, we select r1 as the tag SNP.
 For block r4..r7, we select r4 as the tag SNP.
 For block r8..r11, we select r8 and r11 as the tag SNPs.



Ambiguous
 Two haplotypes in a block are compatible if the 

alleles are the same for all loci with no missing 
values.

 Example:
 h1=(1, 2, 0, 0), h2=(0, 2, 1, 2), h3=(1, 2, 1, 1).
 h1 is compatible with h2 and h3. However, h2 is not 

compatible with h3.

 A haplotype h in a block is ambiguous if h is 
compatible with h’ and h’’ but h’ is not compatible 
with h’’.

 For the above example, h1 is ambiguous in the block.



block(ri, …, rj)
 Within a block, we can cluster the haplotypes 

into different groups,
 Each group contains unambiguous haplotypes 

which are compatible.
 A haplotype in a group is called common if its 

group is of size at least two.
 We want most of the haplotypes in a block 

are unambiguous.
 Formally, we define block(ri, …, rj) = 1 if 

there are >β% common unambiguous 
haplotypes.



f(ri…rj)
 We denote f(ri…rj) = the minimum number of tag 

SNPs that can uniquely distinguish at least α% of the 
common unambiguous haplotypes in the block ri…rj.

 Example: In the block r3…r5, we have the following 
haplotypes.
 (1,1,2), (1,0,2), (1,1,0), (2,1,1), (2,1,0), (2,0,1)
 All haplotypes are unambiguous and form two groups:

 {(1,1,2), (1,0,2), (1,1,0)} and {(2,1,1), (2,1,0), (2,0,1)}
 To distinguish 100% of these haplotypes, we need 1 tag 

SNP, that is, r3.



Dynamic programming (I)

 Let S(i) = minimum number of tag SNPs 
to uniquely distinguish at least α% of 
the unambiguous haplotypes in r1…ri.

 Base case:
 S(0) = 0

 Recursive case:
 S(i)=min{S(j-1)+f(rj…ri)|1≤j≤i,block(rj…ri)=1}



Dynamic programming (II)
 In practice, there may exist several block 

partitions that give the minimum number of 
tag SNPs.

 We want to minimize the number of blocks.
 Let C(i) = minimum number of blocks so that 

the number of tag SNPs is S(i).
 We have

 C(0) = 0;
 C(i) = min{ C(j-1) + 1 |

1≤j≤i,block(rj…ri)=1,S(i)=S(j-1) +f(rj…ri)}



IdSelect (Carlson et al. 
Am. J. Hum. Genet. 2004)

 Aim: Among all SNPs exceeding a 
specified minor allele frequency (MAF) 
threshold, select a set of tag SNPs S 
such that 
 For every SNP i,  there exists a SNP j in S 

so that their r2 > a certain threshold th.



Algorithm IdSelect
 IdSelect is a greedy algorithm.

Algorithm IdSelect
1. Let S be the set of SNPs that are above the MAF 

threshold.
2. Let T = φ
3. While S is not empty,

 Select s∈S which maximizes the size of the set {s’∈S | 
r2(s,s’)>th}.

 T = T∪{s};
 S = S – {s} – {s’∈S | r2(s,s’)>th}.



Disadvantage of IdSelect

 Since rare SNPs are harder to link with 
other SNPs, IdSelect tends to include 
many rare SNPs as the tag SNPs,
 which is not nature.



Reference
 Carlson, C.S., Eberle, M.A., Rieder, M.J., Yi, Q., 

Kruglyak, L., and Nickerson, D.A. 2004. Selecting a 
maximally informative set of single-nucleotide 
polymorphisms for association analyses using linkage 
disequilibrium. Am. J. Hum. Genet. 74: 106–120. 

 Zhang, K., Deng, M., Chen, T., Waterman, M.S., and 
Sun, F. 2002. A dynamic programming algorithm for 
haplotype block partitioning. Proc. Natl. Acad. Sci. 
99: 7335–7339.



Association study



What is association study?

Case
(Disease sample)

Control
(Normal sample)

ACGTACCGGTCACTCGCCCACTTCAGGCATA
ACGTGCCGGTCACTCACTCACTTCAGGCCTA
ACGTACAGGTCACTCGCTCACTTCAGGCATA
ACGTACCGGTCACACGCTCACTTTAGGAATA
AGGTACCGGTCACTCGCTCACTTCAGGCATA
ACCTACAGGTGACTCGCTCACTTCTGGCATG
ACGTACCGGTCACTCACTCTCTTCAGGCATG
ACGTACCGGTCAATCGCTCACTTCAGGCATA
ACCTACCGGTCACTCACTCACTTCAGGCCTA
ACGTACCGGACACTCACTCACTTTAGGCATA
GCGTACCGGTCACACACTCACTTCAGTCATA
ACGTACCGGTCACTCACTCACTTCAGGCCTA
ACCTGCCGGTGACTCACTCACTTTAGGCATG
ACGTACCGGTCACTCGCTCTCTTCAGGCATA
ACGTACAGGTCACTCACTCACTTCAGGCATA
ACGTACCGGTCACTCACTCACTTCAGGCATA



Rationale for association 
studies

 Case: individuals with disease
 Control: normal individuals

Risk enhancing 
mutation



Why association studies?
 Identify genetic variation which are correlated to 

disease
 Such information help to identify

 Drug target
 Disease marker

 Understand how genetic variation affects the respond 
to pathogens or drugs.

 Understand the different among different races.
 E.g. Why Asian has higher chance of getting Hapatitis B 

infection?



Single SNP association study

 Relative risk and odds ratio
 Logistic regression



Relative risk and odds ratio
 Let x and y be the two possible alleles in a loci.
 To check if Case is associate with allele x.
 Relative risk (RR) is [a/(a+b)] / [c/(c+d)]. 
 Odds ratio (OR) is ad/bc.

 The bigger the value of RR and OR, the SNP is more 
related to the disease.

 We use the Odds ratio to rank the SNPs.
Actual Allele x Allele y

Case a c

Control b d



Relative risk and odds ratio 
(II)

 RR = (6/7)/(2/9) =3.86
 OR = (6*7)/(2*1) = 21

 Since the values are big, 
this SNP is highly related 
to the disease.

ACGTACCGGTCACTCGCCCACTTCAGGCATA
ACGTGCCGGTCACTCACTCACTTCAGGCCTA
ACGTACAGGTCACTCGCTCACTTCAGGCATA
ACGTACCGGTCACACGCTCACTTTAGGAATA
AGGTACCGGTCACTCGCTCACTTCAGGCATA
ACCTACAGGTGACTCGCTCACTTCTGGCATG
ACGTACCGGTCACTCACTCTCTTCAGGCATG
ACGTACCGGTCAATCGCTCACTTCAGGCATA
ACCTACCGGTCACTCACTCACTTCAGGCCTA
ACGTACCGGACACTCACTCACTTTAGGCATA
GCGTACCGGTCACACACTCACTTCAGTCATA
ACGTACCGGTCACTCACTCACTTCAGGCCTA
ACCTGCCGGTGACTCACTCACTTTAGGCATG
ACGTACCGGTCACTCGCTCTCTTCAGGCATA
ACGTACAGGTCACTCACTCACTTCAGGCATA
ACGTACCGGTCACTCACTCACTTCAGGCATA

Actual Allele G Allele A

Case 6 2

Control 1 7



Linear regression
Genotype phenotypic score

0 2
0 2.1
0 2.4
0 2.3
0 2.2
0 2.5
1 2.4
1 2.5
1 2.6
1 3
1 2.7
1 2.8
1 2.3
2 2.9
2 3.2
2 3

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0 1 2

y = 2.2415 + 0.3874x + ε

Find the straight line which best fit the data!

Genotype



Formal definition
 Given (xi, yi), i=1, 2, …,n

 where xi is the genotype of the SNP and yi is the 
phenotypic score.

 We would like to compute β0 and β1 such that
 yi = β0 + β1xi +εi; and
 Σi=1..n εi

2 = Σi=1..n(yi-β0-β1xi)2 is minimized.

 Σ εi
2 is called the sum of squares error (SSE).

 Denote ŷi= β0 + β1xi



β0 and β1

 By partial differentiation with respect to 
β0 and β1, we can show that
 β1 = Σi=1..n (xi - µx)(yi - µy)

Σi=1..n (xi- µx)2

 β0 = µy - β1 µx.

 µx and µy are the means of x and y 
respectively.



Significant test for linear 
regression
 Mean sum of squares error (MSE) is 
Σi=1..n(yi- ŷi)2 / (n-2).

 Regression sum of squares (MSR) is 
Σi=1..n(ŷi-µy)2.

 MSR/MSE follows the F distribution.

 H0: β1=0, H1: β1≠0
 We reject H0 if MSR/MSE > F1,n-2,0.95



Example
 n=16
 µy = 2.55625
 MSE = Σi=1..n(yi- ŷi)2 / (n-2) 

= 0.040931
 MSR = Σi=1..n(ŷi-µy)2

= 1.266338

 MSR/MSE = 30.03819 > 
F1,14,0.95 = 4.6

 We reject H0: β1=0.

Genotype phenotypic score
0 2
0 2.1
0 2.4
0 2.3
0 2.2
0 2.5
1 2.4
1 2.5
1 2.6
1 3
1 2.7
1 2.8
1 2.3
2 2.9
2 3.2
2 3



Regression when Y is binary

 For case and control study, 
 Y usually has only 2 values: 0 and 1.

 In this case, we would like to fit
 Pr(D) = α + β X + ε.

 However, such function is difficult to fit 
since Pr(D) is in a narrow range [0,1].



Sigmoid function (standard 
logistic function)

 F(t) = 1 / (1 + e-t)
 t =0  F(t)=0.5
 t = +∞  F(t) = 1
 t = -∞  F(t) = 0

 We try to fit
 Pr(D) = 1 / (1 + e-(α+βX))
 Hence, Pr(D)/(1-Pr(D)) = e-(α+βX)



Logistic regression

 D is the disease status
 X has 3 values:

 2 if the genotype is xx; 
 1 if the genotype is xy; and 
 0 if the genotype is yy.

 Test if β=0

X
D

D βα +=
−

)
)Pr(1

)Pr(log(
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