
Algorithms in Bioinformatics: A 
Practical Introduction

Sequence Similarity



Earliest Researches in 
Sequence Comparison
 Doolittle et al. (Science, July 1983) searched for 

platelet-derived growth factor (PDGF) in his own DB. 
He found that PDGF is similar to v-sis onc gene.
 PDGF-2  1       SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34

p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

 Riordan et al. (Science, Sept 1989) wanted to 
understand the cystic fibrosis gene:



Why we need to compare 
sequences?
 Biology has the following conjecture

 Given two DNAs (or RNAs, or Proteins), 
high similarity  similar function or similar 
3D structure

 Thus, in bioinformatics, we always 
compare the similarity of two biological 
sequences.



Applications of sequence 
comparison
 Inferring the biological function of gene (or RNA or protein)

 When two genes look similar, we conjecture that both genes have 
similar function

 Finding the evolution distance between two species
 Evolution modifies the DNA of species. By measuring the similarity 

of their genome, we know their evolution distance
 Helping genome assembly

 Based on the overlapping information of a huge amount of short 
DNA pieces, Human genome project reconstructs the whole 
genome. The overlapping information is done by sequence 
comparison.

 Finding common subsequences in two genomes
 Finding repeats within a genome
 … many many other applications



Outline
 String alignment problem (Global alignment)

 Needleman-Wunsch algorithm
 Reduce time
 Reduce space

 Local alignment
 Smith-Waterman algorithm

 Semi-global alignment
 Gap penalty

 General gap function
 Affline gap function
 Convex gap function

 Scoring function



String Edit
 Given two strings A and B, edit A to B with 

the minimum number of edit operations:
 Replace a letter with another letter
 Insert a letter
 Delete a letter

 E.g.
 A = interestingly    _i__nterestingly
B = bioinformatics   bioinformatics__

1011011011001111
 Edit distance = 11



String edit problem
 Instead of minimizing the number of edge operations, 

we can associate a cost function to the operations 
and minimize the total cost. Such cost is called edit 
distance. 

 For the previous example, the cost function is as 
follows:
 A= _i__nterestingly
B= bioinformatics__

1011011011001111
 Edit distance = 11

_ A C G T
_ 1 1 1 1
A 1 0 1 1 1
C 1 1 0 1 1
G 1 1 1 0 1
T 1 1 1 1 0



String alignment problem
 Instead of using string edit, in computational biology, 

people like to use string alignment.
 We use similarity function, instead of cost function, 

to evaluate the goodness of the alignment.
 E.g. of similarity function: match – 2, mismatch, 

insert, delete – -1.
_ A C G T

_ -1 -1 -1 -1
A -1 2 -1 -1 -1
C -1 -1 2 -1 -1
G -1 -1 -1 2 -1
T -1 -1 -1 -1 2

δ(C,G) = -1



String alignment
 Consider two strings ACAATCC and AGCATGC. 
 One of their alignment is

A_CAATCC
AGCA_TGC

 In the above alignment, 
 space (‘_’) is introduced to both strings
 There are 5 matches, 1 mismatch, 1 insert, and 1 

delete.

match

mismatch

insert

delete



String alignment problem
 The alignment has similarity score 7

A_CAATCC
AGCA_TGC

 Note that the above alignment has the maximum 
score.

 Such alignment is called optimal alignment.

 String alignment problem tries to find the alignment 
with the maximum similarity score!

 String alignment problem is also called global 
alignment problem



Similarity vs. Distance (II)
 Lemma: String alignment problem and 

string edit distance are dual problems
 Proof: Exercise

 Below, we only study string alignment!



Needleman-Wunsch algorithm 
(I)
 Consider two strings S[1..n] and T[1..m].
 Define V(i, j) be the score of the optimal 

alignment between S[1..i] and T[1..j]
 Basis:

 V(0, 0) = 0
 V(0, j) = V(0, j-1) + δ(_, T[j])

 Insert j times

 V(i, 0) = V(i-1, 0) + δ(S[i], _)
 Delete i times



Needleman-Wunsch algorithm 
(II)
 Recurrence: For i>0, j>0



 In the alignment, the last pair must be either 
match/mismatch, delete, or insert.
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Example (I)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1
C -2
A -3
A -4
T -5
C -6
C -7



Example (II)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1 2 1 0 -1 -2 -3 -4
C -2 1 1 ?
A -3
A -4
T -5
C -6
C -7

3 2



Example (III)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1 2 1 0 -1 -2 -3 -4
C -2 1 1 3 2 1 0 -1
A -3 0 0 2 5 4 3 2
A -4 -1 -1 1 4 4 3 2
T -5 -2 -2 0 3 6 5 4
C -6 -3 -3 0 2 5 5 7
C -7 -4 -4 -1 1 4 4 7

A_CAATCC
AGCA_TGC



Analysis
 We need to fill in all entries in the table 

with n×m matrix.
 Each entries can be computed in O(1) 

time.
 Time complexity = O(nm)
 Space complexity = O(nm)



Problem on Speed (I)
 Aho, Hirschberg, Ullman 1976

 If we can only compare whether two symbols are equal or 
not, the string alignment problem can be solved in Ω(nm) 
time.

 Hirschberg 1978
 If symbols are ordered and can be compared, the string 

alignment problem can be solved in Ω(n log n) time.

 Masek and Paterson 1980
 Based on Four-Russian’s paradigm, the string alignment 

problem can be solved in O(nm/log2 n) time.



Problem on Speed (II)
 Let d be the total number of inserts and 

deletes.
 0 ≤ d ≤ n+m

 If d is smaller than n+m, can we get a 
better algorithm? Yes!



O(dn)-time algorithm
 Observe that the alignment should be inside the 

2d+1 band.
 Thus, we don’t need to fill-in the lower and upper 

triangle.
 Time complexity: O(dn).

2d+1



Example

 d=3
A_CAATCC

AGCA_TGC

_ A G C A T G C
_ 0 -1 -2 -3
A -1 2 1 0 -1
C -2 1 1 3 2 1
A -3 0 0 2 5 4 3
A -1 -1 1 4 4 3 2
T -2 0 3 6 5 4
C 0 2 5 5 7
C 1 4 4 7



Problem on Space
 Note that the dynamic programming 

requires a lot of space O(mn).
 When we compare two very long 

sequences, space may be the limiting 
factor.

 Can we solve the string alignment 
problem in linear space?



Suppose we don’t need to 
recover the alignment
 In the pervious example, observe that 

the table can be filled in row by row. 
 Thus, if we did not need to backtrack, 

space complexity = O(min(n, m))



Example

 Note: when we fill in row 
4, it only depends on row 
3! So, we don’t need to 
keep rows 1 and 2!

 In general, we only need 
to keep two rows.

_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7

A -1 2 1 0 -1 -2 -3 -4

C -2 1 1 3 2 1 0 -1

A -3 0 0 2 5 4 3 2

A -4 -1 -1 1 4 4 3 2

T -5 -2 -2 0 3 6 5 4

C -6 -3 -3 0 2 5 5 7

C -7 -4 -4 -1 1 4 4 7



Can we recover the alignment 
given O(n+m) space?
 Yes. Idea: By recursion!

1. Based on the cost-only algorithm, find the mid-
point of the alignment!

2. Divide the problem into two halves.
3. Recursively deduce the alignments for the two 

halves.

n/2 n/2 n/2

3n/4

n/4

mid-point



How to find the mid-point
Note:

1. Do cost-only dynamic programming for the first half. 
 Then, we find V(S[1..n/2], T[1..j]) for all j

2. Do cost-only dynamic programming for the reverse 
of the second half.
 Then, we find V(S[n/2+1..n], T[j+1..m]) for all j

3. Determine j which maximizes the above sum!
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Example (Step 1)
_ A G C A T G C _

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1 2 1 0 -1 -2 -3 -4
C -2 1 1 3 2 1 0 -1
A -3 0 0 2 5 4 3 2
A -4 -1 -1 1 4 4 3 2
T
C
C
_



Example (Step 2)
_ A G C A T G C _

_
A
C
A
A -4 -1 -1 1 4 4 3 2
T -1 0 1 2 3 0 0 -3
C -2 -1 1 -1 0 1 1 -2
C -4 -3 -2 -1 0 1 2 -1
_ -7 -6 -5 -4 -3 -2 -1 0



Example (Step 3)
_ A G C A T G C _

_
A
C
A
A -4 -1 -1 1 4 4 3 2
T -1 0 1 2 3 0 0 -3
C
C
_



Example (Recursively solve 
the two subproblems)

_ A G C A T G C _
_
A
C
A
A
T
C
C
_



Time Analysis
 Time for finding mid-point:

 Step 1 takes O(n/2 m) time
 Step 2 takes O(n/2 m) time
 Step 3 takes O(m) time.
 In total, O(nm) time.

 Let T(n, m) be the time needed to recover the 
alignment.

 T(n, m) 
= time for finding mid-point + time for solving the 
two subproblems
= O(nm) + T(n/2, j) + T(n/2, m-j)

 Thus, time complexity = T(n, m) = O(nm)



Space analysis
 Working memory for finding mid-point takes 

O(m) space
 Once we find the mid-point, we can free the 

working memory
 Thus, in each recursive call, we only need to 

store the alignment path
 Observe that the alignment subpaths are 

disjoint, the total space required is O(n+m).



More for string alignment 
problem
 Two special cases:

 Longest common subsequence (LCS)
 Score for mismatch is negative infinity
 Score for insert/delete=0, Score for match=1

 Hamming distance
 Score for insert/delete is negative infinity
 Score for match=1, Score for mismatch=0



Local alignment

 Given two long DNAs, both of them contain 
the same gene or closely related gene. 
 Can we identify the gene?

 Local alignment problem:
Given two strings S[1..n] and T[1..m],

among all substrings of S and T, 
find substrings A of S and B of T whose global alignment 

has the highest score



Brute-force solution
 Algorithm:

For every substring A=S[i’..i] of S,
For every substring B=T[j’..j] of T,

Compute the global alignment of A and B
Return the pair (A, B) with the highest score

 Time:
 There are n2/2 choices of A and m2/2 choices of B.
 The global alignment of A and B can be computed 

in O(nm) time.
 In total, time complexity = O(n3m3)

 Can we do better?



Some background
 X is a suffix of S[1..n] if X=S[k..n] for 

some k≥1
 X is a prefix of S[1..n] if X=S[1..k] for 

some k≤n
 E.g.

 Consider S[1..7] = ACCGATT
 ACC is a prefix of S, GATT is a suffix of S
 Empty string is both prefix and suffix of S



Dynamic programming for 
local alignment problem
 Define V(i, j) be the maximum score of the 

global alignment of A and B over 
 all suffixes A of S[1..i] and 
 all suffixes B of T[1..j]

 Note: 
 all suffixes of S[1..i] = all substrings in S end at i
 {all suffixes of S[1..i]|i=1,2,…,n} = all substrings 

of S
 Then, score of local alignment is 

 maxi,j V(i ,j)



Smith-Waterman algorithm
 Basis:

 V(i, 0) = V(0, j) = 0

 Recursion for i>0 and j>0:


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Example (I)
 Score for 

match = 2
 Score for 

insert, delete, 
mismatch = -1

_ C T C A T G C
_ 0 0 0 0 0 0 0 0
A 0
C 0
A 0
A 0
T 0
C 0
G 0



Example (II)
 Score for 

match = 2
 Score for 

insert, delete, 
mismatch = -1

_ C T C A T G C
_ 0 0 0 0 0 0 0 0
A 0 0 0 0 2 1 0 0
C 0 2 1 2 1 1 0 2
A 0 0 1 1 4 3 2 1
A 0 0 0 0 3 3 2 1
T 0 0 ?
C
G

1 22



Example (III)

CAATCG

C_AT_G

_ C T C A T G C
_ 0 0 0 0 0 0 0 0
A 0 0 0 0 2 1 0 0
C 0 2 1 2 1 1 0 2
A 0 1 1 1 4 3 2 1
A 0 0 0 0 3 3 2 1
T 0 0 2 1 2 5 4 3
C 0 2 1 4 3 4 4 6
G 0 1 1 3 3 3 6 5



Analysis
 We need to fill in all entries in the table 

with n×m matrix.
 Each entries can be computed in O(1) 

time.
 Finally, finding the entry with the 

maximum value.
 Time complexity = O(nm)
 Space complexity = O(nm)



More on local alignment
 Similar to global alignment,

 we can reduce the space requirement

 Exercise!



Semi-global alignment
 Semi-global alignment ignores some end 

spaces
 Example 1: ignoring beginning and ending 

spaces of the second sequence. 
 ATCCGAA_CATCCAATCGAAGC
______AGCATGCAAT______

 The score of below alignment is 14
 8 matches (score=16), 1 delete (score=-1), 1 mismatch 

(score=-1)
 This alignment can be used to locate gene in a 

prokaryotic genome



Semi-global alignment
 Example 2: ignoring beginning spaces of the 

1st sequence and ending spaces of the 2nd

sequence
 _________ACCTCACGATCCGA
TCAACGATCACCGCA________

 The score of above alignment is 9
 5 matches (score=10), 1 mismatch (score=-1)

 This alignment can be used to find the common 
region of two overlapping sequences



How to compute semi-global 
alignment?
 In general, we can forgive spaces

 in the beginning or ending of S[1..n]
 in the beginning or ending of T[1..m]

 Semi-global alignment can be computed using the 
dynamic programming for global alignment with 
some small changes.

 Below table summaries the changes
Spaces that are not charged Action
Spaces in the beginning of S[1..n] Initialize first row with zeros

Spaces in the ending of S[1..n] Look for maximum in the last row

Spaces in the beginning of T[1..m] Initialize first column with zeros

Spaces in the ending of T[1..m] Look for maximum in the last column



Gaps
 A gap in an alignment is a maximal 

substring of contiguous spaces in either 
sequence of the alignment

A_CAACTCGCCTCC

AGCA_______TGC

This is a gap!

This is another gap!



Penalty for gaps
 Previous discussion assumes the penalty for 

insert/delete is proportional to the length of a 
gap!

 This assumption may not be valid in some 
applications, for examples:
 Mutation may cause insertion/deletion of a large 

substring. Such kind of mutation may be as likely 
as insertion/deletion of a single base.

 Recall that mRNA misses the introns. When 
aligning mRNA with its gene, the penalty should 
not be proportional to the length of the gaps.



General gap penalty (I)
 Definition: g(q) is denoted as the 

penalty of a gap of length q
 Global alignment of S[1..n] and T[1..m]:

 Denote V(i, j) be the score for global 
alignment between S[1..i] and T[1..j].

 Base cases:
 V(0, 0) = 0
 V(0, j) = -g(j)
 V(i, 0) = -g(i)



General gap penalty (II)
 Recurrence: for i>0 and j>0,


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Analysis
 We need to fill in all entries in the n×m 

table.
 Each entry can be computed in 

O(n+m) time.
 Time complexity = O(n2m + nm2)
 Space complexity = O(nm)



Affine gap model
 In this model, the penalty for a gap is 

divided into two parts:
 A penalty (h) for initiating the gap
 A penalty (s) depending on the length of 

the gap

 Consider a gap with q spaces,
 The penalty g(q) = h+qs



How to compute alignment 
using affline gap model?
 By the previous dynamic programming, 

the problem can be solved in 
O(n2m+nm2) time.

 Can we do faster?

 Yes!
 Idea: Have a refined dynamic 

programming!



Dynamic programming 
solution (I)
 Recall V(i, j) is the score of a global optimal 

alignment between S[1..i] and T[1..j]
 Decompose V(i,j) into three cases:

 G(i, j) is the score of a global optimal alignment between S[1..i] 
and T[1..j] with S[i] aligns with T[j]

 F(i, j) is the score of a global optimal alignment between S[1..i] 
and T[1..j] with S[i] aligns with a space

 E(i, j) is the score of a global optimal alignment between S[1..i] 
and T[1..j] with a space aligns with T[j]

xxx…xx      xxx…xx    xxx…x_
|           |         |

yyy…yy      yyy…y_    yyy…yy
G(i,j)                     F(i,j)                E(i,j)



Dynamic programming 
solution (II)
 Basis:

 V(0, 0) = 0
 V(i, 0) = -h-is; V(0, j) = -h-js
 E(i, 0) = -∞
 F(0, j) = -∞



Dynamic programming 
solution (III)

 Recurrence:
 V(i, j) = max { G(i, j), F(i, j), E(i, j) }

 G(i, j) = V(i-1, j-1) + δ(S[i], T[j])
xxx…xx

|
yyy…yy

G(i,j)

xxx…xx      xxx…xx    xxx…x_
|           |         |

yyy…yy      yyy…y_    yyy…yy
G(i,j)                     F(i,j)                E(i,j)



Dynamic programming 
solution (IV)

 Recurrence:
 F(i, j) = max { F(i-1, j)–s, V(i-1, j)–h–s }

xxx…xx      xxx…xx
|           |

yyy…__      yyy…y_
case1                     case2

xxx…xx
|

yyy…y_
F(i,j)



Dynamic programming 
solution (V)

 Recurrence:
 E(i, j) = max { E(i, j-1)–s, V(i, j-1)–h–s }

xxx…__      xxx…x_
|           |

yyy…yy      yyy…yy
case1                    case2

xxx…x_
|

yyy…yy
E(i,j)



Summary of the recurrences
 Basis:

 V(0, 0) = 0
 V(i, 0) = -h-is; V(0, j) = -h-js
 E(i, 0) = -∞
 F(0, j) = -∞

 Recurrence:
 V(i, j) = max { G(i, j), F(i, j), E(i, j) }
 G(i, j) = V(i-1, j-1) + δ(S[i], T[j])
 F(i, j) = max { F(i-1, j)–s, V(i-1, j)–h–s }
 E(i, j) = max { E(i, j-1)–s, V(i, j-1)–h–s }



Analysis
 We need to fill in 4 tables, each is of 

size n×m.
 Each entry can be computed in O(1) 

time.
 Time complexity = O(nm)
 Space complexity = O(nm)



Is affine gap penalty good?
 Affine gap penalty fails to approximate some real 

biological mechanisms.
 For example, affine gap penalty is not in favor of long gaps.

 People suggested other non-affine gap penalty 
functions. All those functions try to ensure:
 The penalty incurred by additional space in a gap decrease 

as the gap gets longer.
 Example: the logarithmic gap penalty g(q) = a log q + b



Convex gap penalty function
 A convex gap penalty function g(q) is a non-negative 

increasing function such that
g(q+1) – g(q) ≤ g(q) – g(q-1) for all q ≥ 1

q

g(q)



Alignment with convex gap 
penalty
 By dynamic programming, the alignment can 

be found in O(nm2+n2m) time.

 If the gap penalty function g() is convex, can 
we improve the running time? 

)}(),({max),(
10

kjgkiVjiA
jk

−−=
−≤≤

)}(),({max),(
10

kigjkVjiB
ik

−−=
−≤≤







 +−−
=

),(
),(

])[],[()1,1(
max),(

jiB
jiA

jTiSjiV
jiV

δ



Alignment with Convex gap 
penalty
 Given A() and B(), V(i,j) can be computed in 

O(nm) time.

 Below, for convex gap penalty, we show that 
 A(i, 1), …, A(i, m) can be computed in O(m log m) 

time.
 Similarly, B(1, j), …, B(n, j) can be computed in 

O(n log n) time.

 In total, all entries V(i, j) can be filled in 
O(nm log(nm)) time.



Subproblem
 For a fixed i, let

 E(j) = A(i, j) and Ck(j) = V(i,k) – g(j-k).
 Recurrence of A(i, j) can be rewritten as

 By dynamic programming, E(1), …, E(m) 
can be computed in O(m2) time.

 We show that E(1), …, E(m) can be 
computed in O(m log m) time.
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Properties of Ck(j)
 Ck(j) is a decreasing function.
 As j increases, the decreasing rate of Ck(j) is 

getting slower and slower.

jk+1 m

)( jCk



Lemma
 For any k1 < k2, let
 We have

 j < h(k1, k2) if and only if                    . 

 h(k1, k2) can be found in O(log m) time by binary 
search.

Note: for a fixed k, Ck(j’) 
is a decreasing function

)(
1

jCk
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The two curves 
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Proof of the lemma
1. If k2 < j < h(k1, k2), by definition, Ck1(j) < 

Ck2(j).
2. Otherwise, we show that Ck1(j) ≥ Ck2(j) for 

h(k1, k2) ≤ j ≤ m by induction.
 When j=h(k1,k2), by definition, Ck1(j) ≥ Ck2(j).
 Suppose Ck1(j) ≥ Ck2(j) for some j. Then,



j

C0(j)
C2(j)

C3(j)

j=5 m

C1(j)

C4(j)

Frontier of all curves
 For a fixed j, consider curves Ck(j) for 

all k<l

Note: By 
Lemma, any 
two curves can 
only intersect at 
one point

This black curve 
represents E(5) 
= maxk<5 Ck(j)

Value of E(5)



Frontier of all curves
 Thus, for a fixed j, the black curve can be represented by

(ktop, htop), (ktop-1, htop-1), …, (k1, h1)
 Note that

k1 < … < ktop < j < htop <… < h1 (by default, h1 = m)
 In this algorithm, (kx, hx) are stored in a stack with (ktop, htop) at 

the top of the stack!

h2=
h(k1, k2)

j

Ck1(j)
Ck2(j)

Ck3(j)

h1=mh3=
h(k2, k3)



maxk<1 Ck(j)
 For l = 1,

 The set of curves {Ck(j) | k<l} contains only curve 
C0(j). Thus,
 maxk<l Ck(j) = C0(j).

 Thus, maxk<l Ck(j) can be represented by (k0=0, 
h0=m)

j

C0(j)

1 m



maxk<l Ck(j) for l >1

 For a particular j, suppose the curve 
maxk<l Ck(j) is represented by
(ktop, htop), …, (k0, h0).

 How can we get the curve 
maxk<l+1 Ck(j)?



Frontier for maxk<l+1 Ck(j)

C5(j’)

j

C0(j)
C2(j)

C3(j)

5 m

C1(j)

C4(j)

j

C0(j)
C2(j)

C3(j)

6 m

C1(j)

C4(j)

j

C0(j)
C2(j)

C3(j)

6 m

C1(j)

C4(j)



Frontier (case 1)
 If Cl(l+1)≤Cktop(l+1), 

 the curve Cl(j) cannot cross Cktop(j) and it must be below 
Cktop(j).

 Thus, the black curve for maxk<l+1Ck(j) is the same as 
that for maxk<l Ck(j)!

Cl(j)

h2=
h(k1, k2)

j

Ck0(j)
Ck1(j)

Ck2(j)

l +1 h1=m+1h3=
h(k2, k3)



Frontier (case 2)
 If C(j, j+1)>C(ktop, j+1), 

 the curve maxk<j+1 C(k, j’) is different from the curve 
maxk<j C(k, j’). We need to update it.

Cl(j)

h1=
h(k0, k1)

j’

Ck0(j)
Ck1(j)

Ck2(j)

l +1=6 m+1h2=
h(k1, k2)



Algorithm
Push (0, m) onto stack S.
E[1] = Cktop(1);
For l = 1 to m-1 {

if Cl(l+1) > Cktop(l+1) then {
While S≠Φ and Cl(htop-1) > Cktop(htop-1) do

Pop S;
if S= Φ then

Push (l, m+1) onto S
else

Push (l, h(ktop, l));
}
E[l] = Cktop(l);

}



Analysis
 For every l, we will push at most one pair 

onto the stack S.
 Thus, we push at most m pairs onto the stack S.
 Also, we can only pop at most m pairs out of the 

stack S

 The h value of each pair can be computed in 
O(log m) time by binary search.

 The total time is O(m log m).



Scoring function
 In the rest of this lecture, we discuss 

the scoring function for both DNA and 
Protein



Scoring function for DNA
 For DNA, since we only have 4 nucleotides, the score 

function is simple.
 BLAST matrix
 Transition Transversion matrix: give mild penalty for 

replacing purine by purine. Similar for replacing pyrimadine 
by pyrimadine!

A C G T
A 5 -4 -4 -4
C -4 5 -4 -4
G -4 -4 5 -4
T -4 -4 -4 5

A C G T
A 1 -5 -1 -5
C -5 1 -5 -1
G -1 -5 1 -5
T -5 -1 -5 1

BLAST Matrix Transition Transversion Matrix



Scoring function for Protein
 Commonly, it is devised based on two 

criteria:
 Chemical/physical similarity
 Observed substitution frequencies



Scoring function for protein using 
physical/chemical properties
 Idea: an amino acid is more likely to be 

substituted by another if they have similar 
property

 See Karlin and Ghandour (1985, PNAS 
82:8597) 

 The score matrices can be derived based on 
hydrophobicity, charge, electronegativity, and 
size

 E.g. we give higher score for substituting 
nonpolar amino acid to another nonpolar 
amino acid



Scoring function for protein 
based on statistical model
 Most often used approaches

 Two popular matrices:
 Point Accepted Mutation (PAM) matrix
 BLOSUM

 Both methods define the score as the log-
odds ratio between the observed substitution 
rate and the actual substitution rate



Point Accepted Mutation (PAM)
 PAM was developed by Dayhoff (1978).

 A point mutation means substituting one residue by 
another. 

 It is called an accepted point mutation if the mutation 
does not change the protein’s function or is not fatal.

 Two sequence S1 and S2 are said to be 1 PAM
diverged if a series of accepted point mutation can 
convert S1 to S2 with an average of 1 accepted  point 
mutation per 100 residues



PAM matrix by example (I)
 Ungapped alignment is constructed for high similarity 

amino acid sequences (usually >85%)
 Below is a simplified global multiple alignment of 

some highly similar amino acid sequences (without 
gap):
 IACGCTAFK
IGCGCTAFK
LACGCTAFK
IGCGCTGFK
IGCGCTLFK
LASGCTAFK
LACACTAFK



PAM matrix by example (II)
 Build the phylogenetic tree for the 

sequences

IACGCTAFK

IGCGCTAFK LACGCTAFK

LACACTAFKLASGCTAFKIGCGCTLFKIGCGCTGFK

AG IL

AG AL CS GA



PAM-1 matrix

where Oa,b and Ea,b are the observed frequency and the expected 
frequency.

 Since PAM-1 assume 1 mutation per 100 residues, 
 Oa,a = 99/100.

 For a≠b, 
 Oa,b = Fa,b / (100 ΣxΣy Fx,y) where Fa,b is the frequency Fa,b of substituting a 

by b or b by a.
 Ea,b = fa * fb where fa is the no. of a divided by total residues

 E.g., FA,G = 3, FA,L=1. fA = fG = 10/63.
 OA,G = 3/(100*2*6) = 0.0025
 EA,G = (10/63)(10/63) = 0.0252
 δ(A,G) = log (0.0025 / 0.0252) = log (0.09925) = -1.0034

ba,

ba,
10 E

O
log),( =baδ



PAM-2 matrix
 Let Ma,b be the probability that a is mutated to b, 

which equals Oa,b / fa.

 PAM-2 matrix is created by extrapolate PAM-1 matrix.
 M2(a,b) = ∑x M(a,x)M(x,b) is the probability that a is 

mutated to b after 2 mutations.

 Then, (a,b) entry of the PAM-2 matrix is
log(fa M2(a,b)/fa fb) = log(M2(a,b)/fb)



PAM-n matrix
 Let Ma,b be the probability that a is mutated to b, 

which equals Oa,b / fa.

 In general, PAM-n matrix is created by extrapolate 
PAM-1 matrix.

 Mn(a,b) is the probability that a is mutated to b after 
n mutations.

 Then, (a,b) entry of the PAM-n matrix is
log(fa Mn(a,b)/fa fb) = log(Mn(a,b)/fb)



BLOSUM (BLOck SUbstition Matrix)

 PAM did not work well for aligning 
evolutionarily divergent sequences since the 
matrix is generated by extrapolation. 

 Henikoff and Henikoff (1992) proposed 
BLOSUM.

 Unlike PAM, BLOSUM matrix is constructed 
directly from the observed alignment (instead 
of extrapolation)



Generating conserved blocks
 In BLOSUM, the input is the set of 

multiple alignments for nonredundant 
groups of protein families.

 Based on PROTOMAT, blocks of 
nongapped local aligments are derived.

 Each block represents a conserved 
region of a protein family.



Extract frequencies from blocks
 From all blocks, we count the frequency fa for each amino acid residue 

a.
 For any two amino acid residues a and b, we count the frequency pab

of aligned pair of a and b.

 For example,
 ACGCTAFKI

GCGCTAFKI
ACGCTAFKL
GCGCTGFKI
GCGCTLFKI
ASGCTAFKL
ACACTAFKL

 There are 7*9=63 residues, including 9’s A and 10’s G. Hence, fA = 
10/63, fG = 10/63.

 There are           aligned residue pairs, including 23 (A,G) pairs. Hence, 
OAG = 23 / 189.

189
2
7

9 =










The scoring function of BLOSUM

 For each pair of aligned residues a and 
b, the alignment score δ(a,b) = 1/λ ln 
Oab/(fafb)
 where Oab is the probability that a and b 

are observed to align together. fa and fb
are the frequency of residues a and b 
respectively. λ is a normalization constant.

 Example: fA=10/63, fG=10/63, OAG = 
23/189. With λ=0.347, δ(A,L)=4.54.



What is BLOSUM 62?
 To reduce multiple contributions to amino acid pair frequencies from the most 

closely related members of a family, similar sequences are merged within block.
 BLOSUM p matrix is created by merging sequences with no less than p% 

similarity.
 For example,

 AVAAA
AVAAA
AVAAA
AVLAA
VVAAL

 Note that the first 4 sequences have at least 80% similarity. The similarity of the 
last sequence with the other 4 sequences is less than 62%.

 For BLOSUM 62, we group the first 4 sequeneces and we get
 AV[A0.75L0.25]AA

VVAAL
 Then, OAV = 1 / 5 and OAL = (0.25 + 1)/5.



Relationship between BLOSUM 
and PAM

 Relationship between BLOSUM and PAM
 BLOSUM 80 ≈ PAM 1
 BLOSUM 62 ≈ PAM 120
 BLOSUM 45 ≈ PAM 250

 BLOSUM 62 is the default matrix for 
BLAST 2.0



BLOSUM 62
C S T P A G N D E Q H R K M I L V F Y W

C 9 -1 -1 -3 0 -3 -3 -3 -4 -3 -3 -3 -3 -1 -1 -1 -1 -2 -2 -2
S -1 4 1 -1 1 0 1 0 0 0 -1 -1 0 -1 -2 -2 -2 -2 -2 -3
T -1 1 4 1 -1 1 0 1 0 0 0 -1 0 -1 -2 -2 -2 -2 -2 -3
P -3 -1 1 7 -1 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -4 -3 -4
A 0 1 -1 -1 4 0 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -2 -2 -2 -3
G -3 0 1 -2 0 6 -2 -1 -2 -2 -2 -2 -2 -3 -4 -4 0 -3 -3 -2
N -3 1 0 -2 -2 0 6 1 0 0 -1 0 0 -2 -3 -3 -3 -3 -2 -4
D -3 0 1 -1 -2 -1 1 6 2 0 -1 -2 -1 -3 -3 -4 -3 -3 -3 -4
E -4 0 0 -1 -1 -2 0 2 5 2 0 0 1 -2 -3 -3 -3 -3 -2 -3
Q -3 0 0 -1 -1 -2 0 0 2 5 0 1 1 0 -3 -2 -2 -3 -1 -2
H -3 -1 0 -2 -2 -2 1 1 0 0 8 0 -1 -2 -3 -3 -2 -1 2 -2
R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5 2 -1 -3 -2 -3 -3 -2 -3
K -3 0 0 -1 -1 -2 0 -1 1 1 -1 2 5 -1 -3 -2 -3 -3 -2 -3
M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5 1 2 -2 0 -1 -1
I -1 -2 -2 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4 2 1 0 -1 -3
L -1 -2 -2 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4 3 0 -1 -2
V -1 -2 -2 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4 -1 -1 -3
F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6 3 1
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7 2

W -2 -3 -3 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11
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