
Algorithms in Bioinformatics: A
Practical Introduction

Sequence Similarity

Earliest Researches in
Sequence Comparison
 Doolittle et al. (Science, July 1983) searched for

platelet-derived growth factor (PDGF) in his own DB.
He found that PDGF is similar to v-sis onc gene.
 PDGF-2 1 SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34

p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

 Riordan et al. (Science, Sept 1989) wanted to
understand the cystic fibrosis gene:

Why we need to compare
sequences?
 Biology has the following conjecture

 Given two DNAs (or RNAs, or Proteins),
high similarity  similar function or similar
3D structure

 Thus, in bioinformatics, we always
compare the similarity of two biological
sequences.

Applications of sequence
comparison
 Inferring the biological function of gene (or RNA or protein)

 When two genes look similar, we conjecture that both genes have
similar function

 Finding the evolution distance between two species
 Evolution modifies the DNA of species. By measuring the similarity

of their genome, we know their evolution distance
 Helping genome assembly

 Based on the overlapping information of a huge amount of short
DNA pieces, Human genome project reconstructs the whole
genome. The overlapping information is done by sequence
comparison.

 Finding common subsequences in two genomes
 Finding repeats within a genome
 … many many other applications

Outline
 String alignment problem (Global alignment)

 Needleman-Wunsch algorithm
 Reduce time
 Reduce space

 Local alignment
 Smith-Waterman algorithm

 Semi-global alignment
 Gap penalty

 General gap function
 Affline gap function
 Convex gap function

 Scoring function

String Edit
 Given two strings A and B, edit A to B with

the minimum number of edit operations:
 Replace a letter with another letter
 Insert a letter
 Delete a letter

 E.g.
 A = interestingly _i__nterestingly
B = bioinformatics bioinformatics__

1011011011001111
 Edit distance = 11

String edit problem
 Instead of minimizing the number of edge operations,

we can associate a cost function to the operations
and minimize the total cost. Such cost is called edit
distance.

 For the previous example, the cost function is as
follows:
 A= _i__nterestingly
B= bioinformatics__

1011011011001111
 Edit distance = 11

_ A C G T
_ 1 1 1 1
A 1 0 1 1 1
C 1 1 0 1 1
G 1 1 1 0 1
T 1 1 1 1 0

String alignment problem
 Instead of using string edit, in computational biology,

people like to use string alignment.
 We use similarity function, instead of cost function,

to evaluate the goodness of the alignment.
 E.g. of similarity function: match – 2, mismatch,

insert, delete – -1.
_ A C G T

_ -1 -1 -1 -1
A -1 2 -1 -1 -1
C -1 -1 2 -1 -1
G -1 -1 -1 2 -1
T -1 -1 -1 -1 2

δ(C,G) = -1

String alignment
 Consider two strings ACAATCC and AGCATGC.
 One of their alignment is

A_CAATCC
AGCA_TGC

 In the above alignment,
 space (‘_’) is introduced to both strings
 There are 5 matches, 1 mismatch, 1 insert, and 1

delete.

match

mismatch

insert

delete

String alignment problem
 The alignment has similarity score 7

A_CAATCC
AGCA_TGC

 Note that the above alignment has the maximum
score.

 Such alignment is called optimal alignment.

 String alignment problem tries to find the alignment
with the maximum similarity score!

 String alignment problem is also called global
alignment problem

Similarity vs. Distance (II)
 Lemma: String alignment problem and

string edit distance are dual problems
 Proof: Exercise

 Below, we only study string alignment!

Needleman-Wunsch algorithm
(I)
 Consider two strings S[1..n] and T[1..m].
 Define V(i, j) be the score of the optimal

alignment between S[1..i] and T[1..j]
 Basis:

 V(0, 0) = 0
 V(0, j) = V(0, j-1) + δ(_, T[j])

 Insert j times

 V(i, 0) = V(i-1, 0) + δ(S[i], _)
 Delete i times

Needleman-Wunsch algorithm
(II)
 Recurrence: For i>0, j>0



 In the alignment, the last pair must be either
match/mismatch, delete, or insert.









+−
+−
+−−

=
])[(_,)1,(

_)],[(),1(
])[],[()1,1(

max),(
jTjiV

iSjiV
jTiSjiV

jiV
δ
δ
δ Match/mismatch

Delete

Insert

xxx…xx xxx…xx xxx…x_
| | |

yyy…yy yyy…y_ yyy…yy
match/mismatch delete insert

Example (I)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1
C -2
A -3
A -4
T -5
C -6
C -7

Example (II)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1 2 1 0 -1 -2 -3 -4
C -2 1 1 ?
A -3
A -4
T -5
C -6
C -7

3 2

Example (III)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1 2 1 0 -1 -2 -3 -4
C -2 1 1 3 2 1 0 -1
A -3 0 0 2 5 4 3 2
A -4 -1 -1 1 4 4 3 2
T -5 -2 -2 0 3 6 5 4
C -6 -3 -3 0 2 5 5 7
C -7 -4 -4 -1 1 4 4 7

A_CAATCC
AGCA_TGC

Analysis
 We need to fill in all entries in the table

with n×m matrix.
 Each entries can be computed in O(1)

time.
 Time complexity = O(nm)
 Space complexity = O(nm)

Problem on Speed (I)
 Aho, Hirschberg, Ullman 1976

 If we can only compare whether two symbols are equal or
not, the string alignment problem can be solved in Ω(nm)
time.

 Hirschberg 1978
 If symbols are ordered and can be compared, the string

alignment problem can be solved in Ω(n log n) time.

 Masek and Paterson 1980
 Based on Four-Russian’s paradigm, the string alignment

problem can be solved in O(nm/log2 n) time.

Problem on Speed (II)
 Let d be the total number of inserts and

deletes.
 0 ≤ d ≤ n+m

 If d is smaller than n+m, can we get a
better algorithm? Yes!

O(dn)-time algorithm
 Observe that the alignment should be inside the

2d+1 band.
 Thus, we don’t need to fill-in the lower and upper

triangle.
 Time complexity: O(dn).

2d+1

Example

 d=3
A_CAATCC

AGCA_TGC

_ A G C A T G C
_ 0 -1 -2 -3
A -1 2 1 0 -1
C -2 1 1 3 2 1
A -3 0 0 2 5 4 3
A -1 -1 1 4 4 3 2
T -2 0 3 6 5 4
C 0 2 5 5 7
C 1 4 4 7

Problem on Space
 Note that the dynamic programming

requires a lot of space O(mn).
 When we compare two very long

sequences, space may be the limiting
factor.

 Can we solve the string alignment
problem in linear space?

Suppose we don’t need to
recover the alignment
 In the pervious example, observe that

the table can be filled in row by row.
 Thus, if we did not need to backtrack,

space complexity = O(min(n, m))

Example

 Note: when we fill in row
4, it only depends on row
3! So, we don’t need to
keep rows 1 and 2!

 In general, we only need
to keep two rows.

_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7

A -1 2 1 0 -1 -2 -3 -4

C -2 1 1 3 2 1 0 -1

A -3 0 0 2 5 4 3 2

A -4 -1 -1 1 4 4 3 2

T -5 -2 -2 0 3 6 5 4

C -6 -3 -3 0 2 5 5 7

C -7 -4 -4 -1 1 4 4 7

Can we recover the alignment
given O(n+m) space?
 Yes. Idea: By recursion!

1. Based on the cost-only algorithm, find the mid-
point of the alignment!

2. Divide the problem into two halves.
3. Recursively deduce the alignments for the two

halves.

n/2 n/2 n/2

3n/4

n/4

mid-point

How to find the mid-point
Note:

1. Do cost-only dynamic programming for the first half.
 Then, we find V(S[1..n/2], T[1..j]) for all j

2. Do cost-only dynamic programming for the reverse
of the second half.
 Then, we find V(S[n/2+1..n], T[j+1..m]) for all j

3. Determine j which maximizes the above sum!

{ }])..1[],..1[(])..1[],..1[(max
])..1[],..1[(

220
mjTnSVjTSV

mTnSV
nn

mj
+++

=

≤≤

Example (Step 1)
_ A G C A T G C _

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1 2 1 0 -1 -2 -3 -4
C -2 1 1 3 2 1 0 -1
A -3 0 0 2 5 4 3 2
A -4 -1 -1 1 4 4 3 2
T
C
C
_

Example (Step 2)
_ A G C A T G C _

_
A
C
A
A -4 -1 -1 1 4 4 3 2
T -1 0 1 2 3 0 0 -3
C -2 -1 1 -1 0 1 1 -2
C -4 -3 -2 -1 0 1 2 -1
_ -7 -6 -5 -4 -3 -2 -1 0

Example (Step 3)
_ A G C A T G C _

_
A
C
A
A -4 -1 -1 1 4 4 3 2
T -1 0 1 2 3 0 0 -3
C
C
_

Example (Recursively solve
the two subproblems)

_ A G C A T G C _
_
A
C
A
A
T
C
C
_

Time Analysis
 Time for finding mid-point:

 Step 1 takes O(n/2 m) time
 Step 2 takes O(n/2 m) time
 Step 3 takes O(m) time.
 In total, O(nm) time.

 Let T(n, m) be the time needed to recover the
alignment.

 T(n, m)
= time for finding mid-point + time for solving the
two subproblems
= O(nm) + T(n/2, j) + T(n/2, m-j)

 Thus, time complexity = T(n, m) = O(nm)

Space analysis
 Working memory for finding mid-point takes

O(m) space
 Once we find the mid-point, we can free the

working memory
 Thus, in each recursive call, we only need to

store the alignment path
 Observe that the alignment subpaths are

disjoint, the total space required is O(n+m).

More for string alignment
problem
 Two special cases:

 Longest common subsequence (LCS)
 Score for mismatch is negative infinity
 Score for insert/delete=0, Score for match=1

 Hamming distance
 Score for insert/delete is negative infinity
 Score for match=1, Score for mismatch=0

Local alignment

 Given two long DNAs, both of them contain
the same gene or closely related gene.
 Can we identify the gene?

 Local alignment problem:
Given two strings S[1..n] and T[1..m],

among all substrings of S and T,
find substrings A of S and B of T whose global alignment

has the highest score

Brute-force solution
 Algorithm:

For every substring A=S[i’..i] of S,
For every substring B=T[j’..j] of T,

Compute the global alignment of A and B
Return the pair (A, B) with the highest score

 Time:
 There are n2/2 choices of A and m2/2 choices of B.
 The global alignment of A and B can be computed

in O(nm) time.
 In total, time complexity = O(n3m3)

 Can we do better?

Some background
 X is a suffix of S[1..n] if X=S[k..n] for

some k≥1
 X is a prefix of S[1..n] if X=S[1..k] for

some k≤n
 E.g.

 Consider S[1..7] = ACCGATT
 ACC is a prefix of S, GATT is a suffix of S
 Empty string is both prefix and suffix of S

Dynamic programming for
local alignment problem
 Define V(i, j) be the maximum score of the

global alignment of A and B over
 all suffixes A of S[1..i] and
 all suffixes B of T[1..j]

 Note:
 all suffixes of S[1..i] = all substrings in S end at i
 {all suffixes of S[1..i]|i=1,2,…,n} = all substrings

of S
 Then, score of local alignment is

 maxi,j V(i ,j)

Smith-Waterman algorithm
 Basis:

 V(i, 0) = V(0, j) = 0

 Recursion for i>0 and j>0:













+−
+−
+−−

=

])[(_,)1,(
_)],[(),1(

])[],[()1,1(
0

max),(

jTjiV
iSjiV

jTiSjiV
jiV

δ
δ
δ Match/mismatch

Delete

Insert

Align empty strings

Example (I)
 Score for

match = 2
 Score for

insert, delete,
mismatch = -1

_ C T C A T G C
_ 0 0 0 0 0 0 0 0
A 0
C 0
A 0
A 0
T 0
C 0
G 0

Example (II)
 Score for

match = 2
 Score for

insert, delete,
mismatch = -1

_ C T C A T G C
_ 0 0 0 0 0 0 0 0
A 0 0 0 0 2 1 0 0
C 0 2 1 2 1 1 0 2
A 0 0 1 1 4 3 2 1
A 0 0 0 0 3 3 2 1
T 0 0 ?
C
G

1 22

Example (III)

CAATCG

C_AT_G

_ C T C A T G C
_ 0 0 0 0 0 0 0 0
A 0 0 0 0 2 1 0 0
C 0 2 1 2 1 1 0 2
A 0 1 1 1 4 3 2 1
A 0 0 0 0 3 3 2 1
T 0 0 2 1 2 5 4 3
C 0 2 1 4 3 4 4 6
G 0 1 1 3 3 3 6 5

Analysis
 We need to fill in all entries in the table

with n×m matrix.
 Each entries can be computed in O(1)

time.
 Finally, finding the entry with the

maximum value.
 Time complexity = O(nm)
 Space complexity = O(nm)

More on local alignment
 Similar to global alignment,

 we can reduce the space requirement

 Exercise!

Semi-global alignment
 Semi-global alignment ignores some end

spaces
 Example 1: ignoring beginning and ending

spaces of the second sequence.
 ATCCGAA_CATCCAATCGAAGC
______AGCATGCAAT______

 The score of below alignment is 14
 8 matches (score=16), 1 delete (score=-1), 1 mismatch

(score=-1)
 This alignment can be used to locate gene in a

prokaryotic genome

Semi-global alignment
 Example 2: ignoring beginning spaces of the

1st sequence and ending spaces of the 2nd

sequence
 _________ACCTCACGATCCGA
TCAACGATCACCGCA________

 The score of above alignment is 9
 5 matches (score=10), 1 mismatch (score=-1)

 This alignment can be used to find the common
region of two overlapping sequences

How to compute semi-global
alignment?
 In general, we can forgive spaces

 in the beginning or ending of S[1..n]
 in the beginning or ending of T[1..m]

 Semi-global alignment can be computed using the
dynamic programming for global alignment with
some small changes.

 Below table summaries the changes
Spaces that are not charged Action
Spaces in the beginning of S[1..n] Initialize first row with zeros

Spaces in the ending of S[1..n] Look for maximum in the last row

Spaces in the beginning of T[1..m] Initialize first column with zeros

Spaces in the ending of T[1..m] Look for maximum in the last column

Gaps
 A gap in an alignment is a maximal

substring of contiguous spaces in either
sequence of the alignment

A_CAACTCGCCTCC

AGCA_______TGC

This is a gap!

This is another gap!

Penalty for gaps
 Previous discussion assumes the penalty for

insert/delete is proportional to the length of a
gap!

 This assumption may not be valid in some
applications, for examples:
 Mutation may cause insertion/deletion of a large

substring. Such kind of mutation may be as likely
as insertion/deletion of a single base.

 Recall that mRNA misses the introns. When
aligning mRNA with its gene, the penalty should
not be proportional to the length of the gaps.

General gap penalty (I)
 Definition: g(q) is denoted as the

penalty of a gap of length q
 Global alignment of S[1..n] and T[1..m]:

 Denote V(i, j) be the score for global
alignment between S[1..i] and T[1..j].

 Base cases:
 V(0, 0) = 0
 V(0, j) = -g(j)
 V(i, 0) = -g(i)

General gap penalty (II)
 Recurrence: for i>0 and j>0,













−−

−−
+−−

=

−≤≤

−≤≤

)}(),({max

)}(),({max
])[],[()1,1(

max),(

10

10

kigjkV

kjgkiV
jTiSjiV

jiV

ik

jk

δ Match/mismatch

Insert T[k+1..j]

Delete S[k+1..i]

Analysis
 We need to fill in all entries in the n×m

table.
 Each entry can be computed in

O(n+m) time.
 Time complexity = O(n2m + nm2)
 Space complexity = O(nm)

Affine gap model
 In this model, the penalty for a gap is

divided into two parts:
 A penalty (h) for initiating the gap
 A penalty (s) depending on the length of

the gap

 Consider a gap with q spaces,
 The penalty g(q) = h+qs

How to compute alignment
using affline gap model?
 By the previous dynamic programming,

the problem can be solved in
O(n2m+nm2) time.

 Can we do faster?

 Yes!
 Idea: Have a refined dynamic

programming!

Dynamic programming
solution (I)
 Recall V(i, j) is the score of a global optimal

alignment between S[1..i] and T[1..j]
 Decompose V(i,j) into three cases:

 G(i, j) is the score of a global optimal alignment between S[1..i]
and T[1..j] with S[i] aligns with T[j]

 F(i, j) is the score of a global optimal alignment between S[1..i]
and T[1..j] with S[i] aligns with a space

 E(i, j) is the score of a global optimal alignment between S[1..i]
and T[1..j] with a space aligns with T[j]

xxx…xx xxx…xx xxx…x_
| | |

yyy…yy yyy…y_ yyy…yy
G(i,j) F(i,j) E(i,j)

Dynamic programming
solution (II)
 Basis:

 V(0, 0) = 0
 V(i, 0) = -h-is; V(0, j) = -h-js
 E(i, 0) = -∞
 F(0, j) = -∞

Dynamic programming
solution (III)

 Recurrence:
 V(i, j) = max { G(i, j), F(i, j), E(i, j) }

 G(i, j) = V(i-1, j-1) + δ(S[i], T[j])
xxx…xx

|
yyy…yy

G(i,j)

xxx…xx xxx…xx xxx…x_
| | |

yyy…yy yyy…y_ yyy…yy
G(i,j) F(i,j) E(i,j)

Dynamic programming
solution (IV)

 Recurrence:
 F(i, j) = max { F(i-1, j)–s, V(i-1, j)–h–s }

xxx…xx xxx…xx
| |

yyy…__ yyy…y_
case1 case2

xxx…xx
|

yyy…y_
F(i,j)

Dynamic programming
solution (V)

 Recurrence:
 E(i, j) = max { E(i, j-1)–s, V(i, j-1)–h–s }

xxx…__ xxx…x_
| |

yyy…yy yyy…yy
case1 case2

xxx…x_
|

yyy…yy
E(i,j)

Summary of the recurrences
 Basis:

 V(0, 0) = 0
 V(i, 0) = -h-is; V(0, j) = -h-js
 E(i, 0) = -∞
 F(0, j) = -∞

 Recurrence:
 V(i, j) = max { G(i, j), F(i, j), E(i, j) }
 G(i, j) = V(i-1, j-1) + δ(S[i], T[j])
 F(i, j) = max { F(i-1, j)–s, V(i-1, j)–h–s }
 E(i, j) = max { E(i, j-1)–s, V(i, j-1)–h–s }

Analysis
 We need to fill in 4 tables, each is of

size n×m.
 Each entry can be computed in O(1)

time.
 Time complexity = O(nm)
 Space complexity = O(nm)

Is affine gap penalty good?
 Affine gap penalty fails to approximate some real

biological mechanisms.
 For example, affine gap penalty is not in favor of long gaps.

 People suggested other non-affine gap penalty
functions. All those functions try to ensure:
 The penalty incurred by additional space in a gap decrease

as the gap gets longer.
 Example: the logarithmic gap penalty g(q) = a log q + b

Convex gap penalty function
 A convex gap penalty function g(q) is a non-negative

increasing function such that
g(q+1) – g(q) ≤ g(q) – g(q-1) for all q ≥ 1

q

g(q)

Alignment with convex gap
penalty
 By dynamic programming, the alignment can

be found in O(nm2+n2m) time.

 If the gap penalty function g() is convex, can
we improve the running time?

)}(),({max),(
10

kjgkiVjiA
jk

−−=
−≤≤

)}(),({max),(
10

kigjkVjiB
ik

−−=
−≤≤







 +−−
=

),(
),(

])[],[()1,1(
max),(

jiB
jiA

jTiSjiV
jiV

δ

Alignment with Convex gap
penalty
 Given A() and B(), V(i,j) can be computed in

O(nm) time.

 Below, for convex gap penalty, we show that
 A(i, 1), …, A(i, m) can be computed in O(m log m)

time.
 Similarly, B(1, j), …, B(n, j) can be computed in

O(n log n) time.

 In total, all entries V(i, j) can be filled in
O(nm log(nm)) time.

Subproblem
 For a fixed i, let

 E(j) = A(i, j) and Ck(j) = V(i,k) – g(j-k).
 Recurrence of A(i, j) can be rewritten as

 By dynamic programming, E(1), …, E(m)
can be computed in O(m2) time.

 We show that E(1), …, E(m) can be
computed in O(m log m) time.

)}({max)(
0

jCjE kjk<≤
=

Properties of Ck(j)
 Ck(j) is a decreasing function.
 As j increases, the decreasing rate of Ck(j) is

getting slower and slower.

jk+1 m

)(jCk

Lemma
 For any k1 < k2, let
 We have

 j < h(k1, k2) if and only if .

 h(k1, k2) can be found in O(log m) time by binary
search.

Note: for a fixed k, Ck(j’)
is a decreasing function

)(
1

jCk

jh(k1, k2)k2+1 m

)(
2

jCk

)}()({minarg),(
21221 jCjCkkh kkmjk ≥= ≤<

The two curves
intersect at most one!

)()(
21

jCjC kk <

Proof of the lemma
1. If k2 < j < h(k1, k2), by definition, Ck1(j) <

Ck2(j).
2. Otherwise, we show that Ck1(j) ≥ Ck2(j) for

h(k1, k2) ≤ j ≤ m by induction.
 When j=h(k1,k2), by definition, Ck1(j) ≥ Ck2(j).
 Suppose Ck1(j) ≥ Ck2(j) for some j. Then,

j

C0(j)
C2(j)

C3(j)

j=5 m

C1(j)

C4(j)

Frontier of all curves
 For a fixed j, consider curves Ck(j) for

all k<l

Note: By
Lemma, any
two curves can
only intersect at
one point

This black curve
represents E(5)
= maxk<5 Ck(j)

Value of E(5)

Frontier of all curves
 Thus, for a fixed j, the black curve can be represented by

(ktop, htop), (ktop-1, htop-1), …, (k1, h1)
 Note that

k1 < … < ktop < j < htop <… < h1 (by default, h1 = m)
 In this algorithm, (kx, hx) are stored in a stack with (ktop, htop) at

the top of the stack!

h2=
h(k1, k2)

j

Ck1(j)
Ck2(j)

Ck3(j)

h1=mh3=
h(k2, k3)

maxk<1 Ck(j)
 For l = 1,

 The set of curves {Ck(j) | k<l} contains only curve
C0(j). Thus,
 maxk<l Ck(j) = C0(j).

 Thus, maxk<l Ck(j) can be represented by (k0=0,
h0=m)

j

C0(j)

1 m

maxk<l Ck(j) for l >1

 For a particular j, suppose the curve
maxk<l Ck(j) is represented by
(ktop, htop), …, (k0, h0).

 How can we get the curve
maxk<l+1 Ck(j)?

Frontier for maxk<l+1 Ck(j)

C5(j’)

j

C0(j)
C2(j)

C3(j)

5 m

C1(j)

C4(j)

j

C0(j)
C2(j)

C3(j)

6 m

C1(j)

C4(j)

j

C0(j)
C2(j)

C3(j)

6 m

C1(j)

C4(j)

Frontier (case 1)
 If Cl(l+1)≤Cktop(l+1),

 the curve Cl(j) cannot cross Cktop(j) and it must be below
Cktop(j).

 Thus, the black curve for maxk<l+1Ck(j) is the same as
that for maxk<l Ck(j)!

Cl(j)

h2=
h(k1, k2)

j

Ck0(j)
Ck1(j)

Ck2(j)

l +1 h1=m+1h3=
h(k2, k3)

Frontier (case 2)
 If C(j, j+1)>C(ktop, j+1),

 the curve maxk<j+1 C(k, j’) is different from the curve
maxk<j C(k, j’). We need to update it.

Cl(j)

h1=
h(k0, k1)

j’

Ck0(j)
Ck1(j)

Ck2(j)

l +1=6 m+1h2=
h(k1, k2)

Algorithm
Push (0, m) onto stack S.
E[1] = Cktop(1);
For l = 1 to m-1 {

if Cl(l+1) > Cktop(l+1) then {
While S≠Φ and Cl(htop-1) > Cktop(htop-1) do

Pop S;
if S= Φ then

Push (l, m+1) onto S
else

Push (l, h(ktop, l));
}
E[l] = Cktop(l);

}

Analysis
 For every l, we will push at most one pair

onto the stack S.
 Thus, we push at most m pairs onto the stack S.
 Also, we can only pop at most m pairs out of the

stack S

 The h value of each pair can be computed in
O(log m) time by binary search.

 The total time is O(m log m).

Scoring function
 In the rest of this lecture, we discuss

the scoring function for both DNA and
Protein

Scoring function for DNA
 For DNA, since we only have 4 nucleotides, the score

function is simple.
 BLAST matrix
 Transition Transversion matrix: give mild penalty for

replacing purine by purine. Similar for replacing pyrimadine
by pyrimadine!

A C G T
A 5 -4 -4 -4
C -4 5 -4 -4
G -4 -4 5 -4
T -4 -4 -4 5

A C G T
A 1 -5 -1 -5
C -5 1 -5 -1
G -1 -5 1 -5
T -5 -1 -5 1

BLAST Matrix Transition Transversion Matrix

Scoring function for Protein
 Commonly, it is devised based on two

criteria:
 Chemical/physical similarity
 Observed substitution frequencies

Scoring function for protein using
physical/chemical properties
 Idea: an amino acid is more likely to be

substituted by another if they have similar
property

 See Karlin and Ghandour (1985, PNAS
82:8597)

 The score matrices can be derived based on
hydrophobicity, charge, electronegativity, and
size

 E.g. we give higher score for substituting
nonpolar amino acid to another nonpolar
amino acid

Scoring function for protein
based on statistical model
 Most often used approaches

 Two popular matrices:
 Point Accepted Mutation (PAM) matrix
 BLOSUM

 Both methods define the score as the log-
odds ratio between the observed substitution
rate and the actual substitution rate

Point Accepted Mutation (PAM)
 PAM was developed by Dayhoff (1978).

 A point mutation means substituting one residue by
another.

 It is called an accepted point mutation if the mutation
does not change the protein’s function or is not fatal.

 Two sequence S1 and S2 are said to be 1 PAM
diverged if a series of accepted point mutation can
convert S1 to S2 with an average of 1 accepted point
mutation per 100 residues

PAM matrix by example (I)
 Ungapped alignment is constructed for high similarity

amino acid sequences (usually >85%)
 Below is a simplified global multiple alignment of

some highly similar amino acid sequences (without
gap):
 IACGCTAFK
IGCGCTAFK
LACGCTAFK
IGCGCTGFK
IGCGCTLFK
LASGCTAFK
LACACTAFK

PAM matrix by example (II)
 Build the phylogenetic tree for the

sequences

IACGCTAFK

IGCGCTAFK LACGCTAFK

LACACTAFKLASGCTAFKIGCGCTLFKIGCGCTGFK

AG IL

AG AL CS GA

PAM-1 matrix

where Oa,b and Ea,b are the observed frequency and the expected
frequency.

 Since PAM-1 assume 1 mutation per 100 residues,
 Oa,a = 99/100.

 For a≠b,
 Oa,b = Fa,b / (100 ΣxΣy Fx,y) where Fa,b is the frequency Fa,b of substituting a

by b or b by a.
 Ea,b = fa * fb where fa is the no. of a divided by total residues

 E.g., FA,G = 3, FA,L=1. fA = fG = 10/63.
 OA,G = 3/(100*2*6) = 0.0025
 EA,G = (10/63)(10/63) = 0.0252
 δ(A,G) = log (0.0025 / 0.0252) = log (0.09925) = -1.0034

ba,

ba,
10 E

O
log),(=baδ

PAM-2 matrix
 Let Ma,b be the probability that a is mutated to b,

which equals Oa,b / fa.

 PAM-2 matrix is created by extrapolate PAM-1 matrix.
 M2(a,b) = ∑x M(a,x)M(x,b) is the probability that a is

mutated to b after 2 mutations.

 Then, (a,b) entry of the PAM-2 matrix is
log(fa M2(a,b)/fa fb) = log(M2(a,b)/fb)

PAM-n matrix
 Let Ma,b be the probability that a is mutated to b,

which equals Oa,b / fa.

 In general, PAM-n matrix is created by extrapolate
PAM-1 matrix.

 Mn(a,b) is the probability that a is mutated to b after
n mutations.

 Then, (a,b) entry of the PAM-n matrix is
log(fa Mn(a,b)/fa fb) = log(Mn(a,b)/fb)

BLOSUM (BLOck SUbstition Matrix)

 PAM did not work well for aligning
evolutionarily divergent sequences since the
matrix is generated by extrapolation.

 Henikoff and Henikoff (1992) proposed
BLOSUM.

 Unlike PAM, BLOSUM matrix is constructed
directly from the observed alignment (instead
of extrapolation)

Generating conserved blocks
 In BLOSUM, the input is the set of

multiple alignments for nonredundant
groups of protein families.

 Based on PROTOMAT, blocks of
nongapped local aligments are derived.

 Each block represents a conserved
region of a protein family.

Extract frequencies from blocks
 From all blocks, we count the frequency fa for each amino acid residue

a.
 For any two amino acid residues a and b, we count the frequency pab

of aligned pair of a and b.

 For example,
 ACGCTAFKI

GCGCTAFKI
ACGCTAFKL
GCGCTGFKI
GCGCTLFKI
ASGCTAFKL
ACACTAFKL

 There are 7*9=63 residues, including 9’s A and 10’s G. Hence, fA =
10/63, fG = 10/63.

 There are aligned residue pairs, including 23 (A,G) pairs. Hence,
OAG = 23 / 189.

189
2
7

9 =








The scoring function of BLOSUM

 For each pair of aligned residues a and
b, the alignment score δ(a,b) = 1/λ ln
Oab/(fafb)
 where Oab is the probability that a and b

are observed to align together. fa and fb
are the frequency of residues a and b
respectively. λ is a normalization constant.

 Example: fA=10/63, fG=10/63, OAG =
23/189. With λ=0.347, δ(A,L)=4.54.

What is BLOSUM 62?
 To reduce multiple contributions to amino acid pair frequencies from the most

closely related members of a family, similar sequences are merged within block.
 BLOSUM p matrix is created by merging sequences with no less than p%

similarity.
 For example,

 AVAAA
AVAAA
AVAAA
AVLAA
VVAAL

 Note that the first 4 sequences have at least 80% similarity. The similarity of the
last sequence with the other 4 sequences is less than 62%.

 For BLOSUM 62, we group the first 4 sequeneces and we get
 AV[A0.75L0.25]AA

VVAAL
 Then, OAV = 1 / 5 and OAL = (0.25 + 1)/5.

Relationship between BLOSUM
and PAM

 Relationship between BLOSUM and PAM
 BLOSUM 80 ≈ PAM 1
 BLOSUM 62 ≈ PAM 120
 BLOSUM 45 ≈ PAM 250

 BLOSUM 62 is the default matrix for
BLAST 2.0

BLOSUM 62
C S T P A G N D E Q H R K M I L V F Y W

C 9 -1 -1 -3 0 -3 -3 -3 -4 -3 -3 -3 -3 -1 -1 -1 -1 -2 -2 -2
S -1 4 1 -1 1 0 1 0 0 0 -1 -1 0 -1 -2 -2 -2 -2 -2 -3
T -1 1 4 1 -1 1 0 1 0 0 0 -1 0 -1 -2 -2 -2 -2 -2 -3
P -3 -1 1 7 -1 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -4 -3 -4
A 0 1 -1 -1 4 0 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -2 -2 -2 -3
G -3 0 1 -2 0 6 -2 -1 -2 -2 -2 -2 -2 -3 -4 -4 0 -3 -3 -2
N -3 1 0 -2 -2 0 6 1 0 0 -1 0 0 -2 -3 -3 -3 -3 -2 -4
D -3 0 1 -1 -2 -1 1 6 2 0 -1 -2 -1 -3 -3 -4 -3 -3 -3 -4
E -4 0 0 -1 -1 -2 0 2 5 2 0 0 1 -2 -3 -3 -3 -3 -2 -3
Q -3 0 0 -1 -1 -2 0 0 2 5 0 1 1 0 -3 -2 -2 -3 -1 -2
H -3 -1 0 -2 -2 -2 1 1 0 0 8 0 -1 -2 -3 -3 -2 -1 2 -2
R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5 2 -1 -3 -2 -3 -3 -2 -3
K -3 0 0 -1 -1 -2 0 -1 1 1 -1 2 5 -1 -3 -2 -3 -3 -2 -3
M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5 1 2 -2 0 -1 -1
I -1 -2 -2 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4 2 1 0 -1 -3
L -1 -2 -2 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4 3 0 -1 -2
V -1 -2 -2 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4 -1 -1 -3
F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6 3 1
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7 2

W -2 -3 -3 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11

	Algorithms in Bioinformatics: A Practical Introduction
	Earliest Researches in Sequence Comparison
	Why we need to compare sequences?
	Applications of sequence comparison
	Outline
	String Edit
	String edit problem
	String alignment problem
	String alignment
	String alignment problem
	Similarity vs. Distance (II)
	Needleman-Wunsch algorithm (I)
	Needleman-Wunsch algorithm (II)
	Example (I)
	Example (II)
	Example (III)
	Analysis
	Problem on Speed (I)
	Problem on Speed (II)
	O(dn)-time algorithm
	Example
	Problem on Space
	Suppose we don’t need to recover the alignment
	Example
	Can we recover the alignment given O(n+m) space?
	How to find the mid-point
	Example (Step 1)
	Example (Step 2)
	Example (Step 3)
	Example (Recursively solve the two subproblems)
	Time Analysis
	Space analysis
	More for string alignment problem
	Local alignment
	Brute-force solution
	Some background
	Dynamic programming for local alignment problem
	Smith-Waterman algorithm
	Example (I)
	Example (II)
	Example (III)
	Analysis
	More on local alignment
	Semi-global alignment
	Semi-global alignment
	How to compute semi-global alignment?
	Gaps
	Penalty for gaps
	General gap penalty (I)
	General gap penalty (II)
	Analysis
	Affine gap model
	How to compute alignment using affline gap model?
	Dynamic programming solution (I)
	Dynamic programming solution (II)
	Dynamic programming solution (III)
	Dynamic programming solution (IV)
	Dynamic programming solution (V)
	Summary of the recurrences
	Analysis
	Is affine gap penalty good?
	Convex gap penalty function
	Alignment with convex gap penalty
	Alignment with Convex gap penalty
	Subproblem
	Properties of Ck(j)
	Lemma
	Proof of the lemma
	Frontier of all curves
	Frontier of all curves
	maxk<1 Ck(j)
	maxk<l Ck(j) for l >1
	Frontier for maxk<l+1 Ck(j)
	Frontier (case 1)
	Frontier (case 2)
	Algorithm
	Analysis
	Scoring function
	Scoring function for DNA
	Scoring function for Protein
	Scoring function for protein using physical/chemical properties
	Scoring function for protein based on statistical model
	Point Accepted Mutation (PAM)
	PAM matrix by example (I)
	PAM matrix by example (II)
	PAM-1 matrix
	PAM-2 matrix
	PAM-n matrix
	BLOSUM (BLOck SUbstition Matrix)
	Generating conserved blocks
	Extract frequencies from blocks
	The scoring function of BLOSUM
	What is BLOSUM 62?
	Relationship between BLOSUM and PAM
	BLOSUM 62

