
Algorithms in Bioinformatics: A
Practical Introduction

Genome Alignment

Complete genomes
 About 1000 bacterial genomes plus a few

dozen higher organisms are sequenced

 It is expected many genomes will be available
in the future.

 How can we study the similarities and
differences of two or more related genomes?

Can we compare two genomes using
Smith-Waterman (SW) algorithm?
 SW algorithm is designed for comparing two genes or

two proteins.

 SW algorithm is too slow for comparing genomes

 Also, SW algorithm just reports locally similar regions
(conserved regions) between two genomes. It cannot
report the overall similarity.

 We need better solutions for comparing genomes.

Existing tools for comparing
genomes
 MUMmer, Mutation Sensitive Alignment,

SSAHA, AVID, MGA, BLASTZ, and LAGAN

 All existing genome alignment methods
assume the two genomes should share some
conserved regions.

 They align the conserved regions first; then,
they extend the alignment to cover the non-
conserved regions.

General Framework
 Phase 1: Identifies potential anchors

(highly similar regions).

 Phase 2: Identify a set of co-linear
anchors, which forms the basis of
the alignment (conserved regions).

 Phase 3: Close the gaps between
the anchors to obtain the final
alignment.

Agenda
 MUMmer (Versions 1 to 3)
 Mutation Sensitive Alignment

MUMmer 1
 Phase 1: Identifying anchors based on

Maximal Unique Match (MUM).

 Phase 2: Identify a set of co-linear
MUMs based on longest common
subsequence.

 Phase 3: Fill-in the gaps

PHASE 1:
IDENTIFYING ANCHORS (MUM)

What is an anchor?
 Although conserved regions rarely contain the same entire

sequence, they usually share some short common substrings
which are unique in the two genomes.

 For example, consider below two regions.
 GCTA is a common substring that is unique.
 GCTAC is a maximal common substring that is unique
 TAC is a common substring that is not unique.
 GCTACT is not a common substring.

Genome1: ACGACTCAGCTACTGGTCAGCTATTACTTACCGC
Genome2: ACTTCTCTGCTACGGTCAGCTATTCACTTACCGC

Maximal Unique Match (MUM)
 In this lecture, we discuss MUM, a type of anchor.
 MUM is a common substring of two genomes of

length at least some threshold d such that
 The common substring is maximal, that is, the substring

cannot be extended on either end without incurring a
mismatch

 The common substring is unique in both sequences

 For instance, almost all conserved genes share some
short common substrings which are unique since
they need to preserve functionality.

In our experiment, we set d=20.

Examples of finding MUMs
 S=acgactcagctactggtcagctattacttaccgc#
 T=acttctctgctacggtcagctattcacttaccgc$
 There are four MUMs: ctc, gctac, ggtcagctatt,

acttaccgc.

 Consider S=acgat#, T=cgta$
 There are two MUMs: cg and t

How to find MUMs?
 Brute-force approach:

Input: Two genome sequences S[1..m1] and T[1..m2]
 For every position i in S

 For every position j in T
 Find the longest common prefix P of S[i..m1] and

T[j..m2]
 Check whether |P|≥d and whether P is unique in

both genomes. If yes, report it as a MUM.

 This solution requires at least O(m1m2) time.
Too slow!

Finding MUMs by suffix tree!
 MUMs can be found in O(m1+m2) time by suffix tree!

1. Build a generalized suffix tree for S and T
2. Mark all the internal nodes that have exactly two

leaf children, which represent both suffixes of S and
T.

3. For each marked node, WLOG, suppose it
represents the i-th suffix Si of S and the j-th suffix
Tj of T. We check whether S[i-1]=T[j-1]. If not, the
path label of this marked node is an MUM.

Example of finding MUMs (I)
 Consider S=acgat#, T=cgta$
 Step 1: Build the generalized suffix tree

for S and T.

a c gg t

a
t t a tc

41 2 1 3 2 3

ta a $$#
g t

#

5

#
#

56

$

$
a

a

4

$
#
t

Example of finding MUMs (II)
 Step 2: Mark all the internal nodes that have

exactly two leaf children, which represent
both suffixes of S and T.

a c gg t

a
t t a tc

41 2 1 3 2 3

ta a $$#
g t

#

5

#
#

56

$

$
a

a

4

$ t
#

Example of finding MUMs (III)
 Step 3: For each marked node, WLOG, suppose it

represents the i-th suffix Si of S and the j-th suffix
Tj of T. We check whether S[i-1]=T[j-1]. If not, the
path label of this marked node is an MUM.

a c gg t

a
t t a tc

41 2 1 3 2 3

ta a $$#
g t

#

5

#
#

56

$

$
a

a

4

$
#

Output:

cg, t

S=acgat#,
T=cgta$

t

Phase 1: Time analysis
 Step 1: Building suffix tree takes

O(m1+m2) time.
 Step 2: Mark internal nodes takes

O(m1+m2) time.
 Step 3: Extracting MUM also takes

O(m1+m2) time.

 In total, O(m1+m2) time.

Validating MUMs
 Mouse and human are

closely related species. They
share a lot of gene pairs.

 Do those gene pairs share
MUMs?

 Good news!
 MUMs appear in nearly 100%

of the known conserved gene
pairs.

Data is extracted from http://www.ncbi.nlm.nih.gov/Homology

Mouse
Chr No.

Human
Chr No.

of Published
Gene Pairs

2 15 51

7 19 192

14 3 23

14 8 38

15 12 80

15 22 72

16 16 31

16 21 64

16 22 30

17 6 150

17 16 46

17 19 30

18 5 64

19 9 22

19 11 93

Are all MUMs correspond to
conserved regions?
 It seems that the answer is No!

Mouse
Chr No.

Human
Chr No.

of Published
Gene Pairs

of
MUMs

2 15 51 96,473

7 19 192 52,394

14 3 23 58,708

14 8 38 38,818

15 12 80 88,305

15 22 72 71,613

16 16 31 66,536

16 21 64 51,009

16 22 30 61,200

17 6 150 94,095

17 16 46 29,001

17 19 30 56,536

18 5 64 131,850

19 9 22 62,296

19 11 93 29,814

No. of MUMs >> no. of gene pairs!
There are many noise!

How can we extract the right MUMs?

PHASE 2:
IDENTIFYING CO-LINEAR MUMS

Why identify co-linear MUMs ?
 Two related species should preserve the ordering of

most conserved genes!
 Example:

 Conserved genes in Mouse Chromosome 16 and Human
Chromosome 16

How to identify co-linear MUMs?

 Instead of reporting all MUMs,
 we compute the longest common

subsequence (LCS) of all MUMs.

 We report only the MUMs on the LCS.

 Hopefully, this approach will not report
a lot of noise.

Example of LCS

12345678
41325768

12345678
41325768

The longest common
subsequence (LCS) problem
 Suppose there are n MUMs.
 Input: two sequences A[1..n]=a1a2…an

and B[1..n]=b1b2…bn of n distinct
characters.

 Output: the longest common
subsequence.

How to find LCS in O(n2) time?
 Let Ci[j] be the length of the longest common

subsequence of A[1..i] and B[1..j].
 Let δ(i) be the index of the character in B such that ai

= bδ(i)

 Note that Ci[0]=C0[j]=0 for all 0≤j≤n; and

 Note that the length of the LCS(A,B) = Cn[n].
 By dynamic programming, the problem is solved in

O(n2) time.

≥−+
=

−

−

)(]1)([1
][

max][
1

1

ijifiC
jC

jC
i

i
i δδ

Example (I)
 A[1..8]=12345678
 B[1..8]=41325768

C 0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

Example (II)
 A[1..8]=12345678
 B[1..8]=41325768

 Base cases:
 Ci[0]=0 and C0[j]=0

C 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

Example (III)
 A[1..8]=12345678
 B[1..8]=41325768

 Fill the table row by row with
the recursive formula:

C 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1
2 0 0 1 1
3 0
4 0
5 0
6 0
7 0
8 0

≥−+
=

−

−

)(]1)([1
][

max][
1

1

ijifiC
jC

jC
i

i
i δδ

C2[4]=LCS(A[1..2],B[1..4]).

By the recursive formula,
C2[4]=max{C1[4],
1+C1[3]}=2
(Note: δ(2)=4)

Example (IV)
 A[1..8]=12345678
 B[1..8]=41325768

 Fill the table row by row with
the recursive formula:

C 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1
2 0 0 1 1 2 2 2 2 2
3 0 0 1 2 2 2 2 2 2
4 0 1 1 2 2 2 2 2 2
5 0 1 1 2 2 3 3 3 3
6 0 1 1 2 2 3 3 4 4
7 0 1 1 2 2 3 4 4 4
8 0 1 1 2 2 3 4 4 5

≥−+
=

−

−

)(]1)([1
][

max][
1

1

ijifiC
jC

jC
i

i
i δδ

LCS(A,B)=C8[8]=5.

We can extract more information

 As a side-product, we can retrieve
LCS(A[1..i], B[1..j]), where 1 ≤ i,j ≤ n,
in O(1) time.

Sparsification
 Observation:

 Ci[1]≤Ci[2]≤…≤Ci[n]

 Instead of storing Ci[0..n] explicitly, we can store
only the boundaries at which the values change.

 Precisely, we store (j,Ci[j]) for all j such that
Ci[j]>Ci[j-1].

 Example: suppose Ci[0..9]=0001122233.
 We store (3,1), (5,2), (8,3).

 We can store all the tuples (j,Ci[j]) in a binary search
tree Ti. Then, every search, insert, delete operation
takes O(log n) time.

 Given Ti-1, we can compute Ci [j] in
O(log n) time as follows.

≥−+
=

−

−

)(]1)([1
][

max][
1

1

ijifiC
jC

jC
i

i
i δδ

Lemma
 Let j’ be the smallest integer greater than δ(i) such

that Ci-1[δ(i)-1]+1 < Ci-1[j’]. We have

 Proof:
 When j<δ(i), by definition, Ci[j]=Ci-1[j].
 When δ(i)≤j<j’, by definition, Ci-1[δ(i)-1]+1 ≥ Ci-1[j’] ≥ Ci-1[j],

hence,
 Ci[j]=max{Ci-1[j], Ci-1[δ(i)-1]+1}= Ci-1 [δ(i)-1]+1.

 When j> j’, by definition, Ci-1[δ(i)-1]+1 < Ci-1[j’] ≤ Ci-1[j],
hence,
 Ci[j]=max{Ci-1[j], Ci[δ(i)-1]+1}=Ci-1[j].

 −≤≤+−

=
−

−

otherwise][
1')(if1]1)([

][
1

1

jC
jjiiC

jC
i

i
i

δδ

Algorithm

Construct Ti from Ti-1

Example: Transform T7 to T8
123456789

A=123456789
B=245831697
 δ(1)=6, δ(2)=1, δ(3)=5, δ(4)=2, δ(5)=3, δ(6)=7, δ(7)=9,

δ(8)=4, δ(9)=8.

 C7[0..9]=0123333445 T7=(1,1),(2,2),(3,3),(7,4),(9,5)

 Note that C7[δ(8)-1]+1=4
 T7 remove (7,4), insert (4,4) T8

 C8[0..9]=0123444445 T8=(1,1),(2,2),(3,3),(4,4),(9,5)

Time analysis
 To build Ti from Ti-1, suppose we need to

delete αi tuples.
 Then, Ti can be constructed in

O((αi+1)log n) time.
 In total, Tn can be constructed in

O((n+α1+α2+…+αn) log n) time.
 Since we can delete at most n tuples, Tn can

be constructed in O(n log n) time.

We can extract more information

 As a side-product, we can retrieve
LCS(A[1..i], B[1..j]), where 1 ≤ i,j ≤ n,
in O(log n) time.
 Idea: By searching the tuple (j’, Ci [j’]) in

Ti such that j’ is just smaller than j.
 Then, we report Ci[j’].
 Searching in Ti takes O(log n) time.

Analysis
 In conclusion, LCS can be computed in

O(n log n) time.

PHASE 3:
FILLING THE GAPS

Phase 3: Filling the gaps
 Using Smith-Waterman alignment, gaps are filled to

identify
 Large inserts,
 Repeats,
 Small mutated regions,
 Tandem repeats, and
 SNPs.

 Combing the three phases, we have MUMmer1.

Problem of this approach
 This approach assumes there exist a

single long alignment. Moreover, such
assumption may not be always true.

 Therefore, for many cases, LCS can
only discover few genes.

Common genes in Mouse
Chromosome 16 and Human
Chromosome 3

Observation 3
 A pair of conserved genes are likely

corresponding to a sequence of MUMs that
are consecutive and close in both genomes
and have sufficient length.

 The set of such substrings is called a cluster.

2 3 4 5 6 7

7 1 2 345 6

1

Solution 3
 Based on Observation 3, MUMmer2 and

MUMmer3 try to identify maximal
clusters in the genomes.

 This approach is quite good. In our
experiment, MUMmer3 can identify
~76.6% of the published gene pairs.

Can we further improve?
 Yes. We propose the Similar

Subsequence Problem.
 In our experiment, we can identify

~91.3% of the published gene pairs.

Mutation Sensitive Alignment
(MSA) Algorithm

Observation 4
 If two genomes are closely related, they

can be transformed from each other
using a few transpositions/reversals.

Example
 By two transposition/reversal operations,

we can transform Mouse Chr 16 to
Human Chr 16.

Input
 Given two genomes S and T. Assume

we already know the n MUMs.
 Let A=(a1,a2,…,an) and B=(b1,b2,…,bn),

respectively, be the order of the n
MUMs in S and T.
a1=1 a2=2 a3=3 a4=4 a5=5 a6=6 a7=7

b2=6 b3=5 b4=4 b5=7 b6=2 b7=3 b8=8

a8=8

b1=1

S

T

Common subsequence
 A sequence C=(c1,c2,…,cm) is a common subsequence of A and

B if C is a subsequence of both A and B
 For example, C=(1,2,3,8) is a common subsequence of A and B.
 The weight of a common subsequence is the total weight of the

MUMs
 A maximum weight common subsequence (MWCS) of A and B is

a subsequence with the heaviest weight.

a1=1 a2=2 a3=3 a4=4 a5=5 a6=6 a7=7

b2=6 b3=5 b4=4 b5=7 b6=2 b7=3 b8=8

a8=8

b1=1

S

T

Maximum weight common
subsequence (MWCS) problem

 Given A[1..n] and B[1..n],
 we can compute an MWCS of A and B in

O(n log n) time.
 Idea: similar to the computation of LCS.

 Remark: as a side-product, we can
retrieve MWCS of A[1..i] and B[1..j],
where 1 ≤ i,j ≤ n, in O(log n) time.

Similar Subsequence
 A k-similar subsequence consists of k blocks and a backbone.

 The backbone is a common subsequence with k blocks inserted
into it.

 Each block is a common subsequence or reversed common
subsequence while all of them are disjoint.

 Below is an example of 2-similar subsequence.
 In some sense, k-similar subsequence models k

transpositions/reversals.

a1=1 a2=2 a3=3 a4=4 a5=5 a6=6 a7=7

b2=6 b3=5 b4=4 b5=7 b6=2 b7=3 b8=8

a8=8

b1=1

S

T

Similar Subsequence Problem
 Given two sequences A and B and a

parameter k,
 the Similar Subsequence Problem finds a k-

similar subsequence with the heaviest weight.

 This problem is NP-complete in general.
 For a constant k, we can solve the problem in

O(n2k+1 log n) time.
 We devise a heuristic algorithm to solve it in

O(n2(log n + k)) time.

Heuristic algorithm: idea
1. Find the backbone first.
2. For every interval i..j, compute the

score of inserting such subsequence
into the backbone.

3. Find k non-overlapping intervals which
maximizes the total score.

Heuristic algorithm: Step 1
 Find the MWCS of A and B. Treat this as

the backbone.
 O(n log n) time

Heuristic algorithm: Step 2
 This step compute the score for

inserting one block A[i..j] to B[δ(i)..δ(j)]
 Example: Moving A[1..3] to B[8..5]

 Note: This is a transposition and reversal
 A = 123456789
 B = 476932518

 This step consists of two substeps.

Heuristic algorithm: Step 2.1
 Compute MWCS(A[i..j], B[δ(i)..δ(j)]) for all 1
≤ i,j ≤ n.
 Brute force: O(n3 log n) time
 Better algorithm: O(n2 log n) time

 For each i,
 Find the MWCS for A[i..n] and B[δ(i)..n] in O(n log n)

time
 Find the MWCS for A[i..n] and reverse of B[1..δ(i)] in

O(n log n) time
 Retrieve MWCS(A[i..j], B[δ(i)..δ(j)]) in O(log n) time

for every j≥i

Heuristic algorithm: Step 2.2
 For every interval i..j,

 Define Score(i..j) to be
 MWCS(A[i..j], B[δ(i)..δ(j)]) –
 the total weight of chracters in the backbone

that fall into A[i..j] or B[δ(i)..δ(j)]

Example
 A[1..8]=12345678
 B[1..8]=41325768

 Backbone is 12568
 A[1..8]=12345678
 B[1..8]=41325768

 Consider mutating A[3..4] to B[δ(3)..δ(4)])=B[3..1].
 A[1..8]=12345678
 B[1..8]=41325768

 After mutation, we have
 A[1..8]=12345678
 B[1..8]=41325768

Note:
MWCS(A[3..4],B[δ(3)..δ(4)])=2
‘1’ falls in B[1..3].
So, Score(3..4)=2-1=1

Heuristic algorithm: Step 3
 Among all intervals,

 Find k intervals i1..j1, i2..j2, …, ik..jk such
that they are mutually disjoint and
maximize the sum of their scores, that
is,Σp=1,2,…,kScore(ip..jp).

 This step can be done in O(k n2) time
by dynamic programming. [Exercise]

Heuristic algorithm: Step 4
 Refine the k intervals i..j so that B[δ(i)..δ(j)]

are disjoint.

 While there exists δ(i)..δ(j) and δ(i’)..δ(j’)
that are overlapping,
 We examine all possible ways to shrink the

intervals i..j and i’..j’ so that the score is maximize
and δ(i)..δ(j) and δ(i’)..δ(j’) are not overlap.

 O(k2) time

Heuristic algorithm: summery
 The total time is O(n2(log n + k)).

Solution 4
 Given two genomes S and T,

Mutation Sensitive Alignment (MSA) Algorithm
1. Find all the MUMs
2. Solve the similar subsequence problem
3. Report all the MUMs on the k-similar

subsequence.

Example

a2=2 a3=3 a4=4 a5=5 a6=6 a7=7 a8=8

b3=7
b4=6

b5=5 b6=8 b7=3 b8=4 b9=9

a9=9

b1=2

S

T b2=1

a1=1

a2=2 a3=3 a4=4 a5=5 a6=6 a7=7 a8=8

b3=7
b4=6

b5=5 b6=8 b7=3 b8=4 b9=9

a9=9

b1=2

S

T b2=1

a1=1

Experiment on human and mouse

 We apply MUMmer3 and MSA to the
following 15 pairs of chromosomes.

Mouse
Chr No.

Human
Chr No.

of Published
Gene Pairs

of
MUMs

2 15 51 96,473

7 19 192 52,394

14 3 23 58,708

14 8 38 38,818

15 12 80 88,305

15 22 72 71,613

16 16 31 66,536

16 21 64 51,009

16 22 30 61,200

17 6 150 94,095

17 16 46 29,001

17 19 30 56,536

18 5 64 131,850

19 9 22 62,296

19 11 93 29,814

For MSA, we set
k=4!

Experiment on human and mouse

 Coverage: % of
published genes
covered

 Preciseness: % of
MUMs reside in
some published
gene pairs.

Exp. No. MUMmer MSA MUMmer MSA
1 76.50% 92.20% 21.70% 22.70%

2 71.40% 91.70% 21.30% 25.10%

3 87.00% 100.00% 24.80% 25.50%

4 76.30% 94.70% 27.40% 26.70%

5 92.50% 96.30% 32.50% 32.00%

6 72.20% 95.80% 31.20% 32.90%

7 67.70% 87.10% 13.50% 17.80%

8 78.10% 90.60% 37.20% 36.70%

9 80.00% 86.70% 40.70% 49.70%

10 82.00% 92.00% 30.90% 32.10%

11 65.20% 89.10% 30.50% 36.00%

12 60.00% 80.00% 27.50% 41.90%

13 89.10% 95.30% 18.20% 18.40%

14 72.70% 86.40% 10.40% 12.60%

15 78.50% 91.40% 30.00% 29.70%

average 76.60% 91.30% 26.50% 29.30%

Coverage Preciseness

Experiment result on Baculoviridae
genomes that are in the same genus

 We apply MUMmer3
and MSA to the
following 15 pairs
of viruses.

 MUM pairs of length
at least three amino
acids

 For MSS, k=20

Experiment Virus Virus Length
of

MUMs

of
Conserve
d Genes

1 AcMNPV BmNPV 133K*128K 35,166 134
2 AcMNPV HaSNPV 133K*131K 64,291 98
3 AcMNPV LdMNPV 133K*161K 65,227 95
4 AcMNPV OpMNPV 133K*131K 59,949 126
5 AcMNPV SeMNPV 133K*135K 66,898 100
6 BmNPV HaSNPV 128K*131K 63,939 98
7 BmNPV LdMNPV 128K*161K 63,086 93
8 BmNPV OpMNPV 128K*131K 58,657 122
9 BmNPV SeMNPV 128K*135K 66,448 99

10 HaSNPV LdMNPV 131K*161K 57,618 92
11 HaSNPV OpMNPV 131K*131K 59,125 95
12 HaSNPV SeMNPV 131K*135K 64,980 101
13 LdMNPV OpMNPV 161K*131K 75,906 98
14 LdMNPV SeMNPV 161K*135K 62,545 102
15 OpMNPV SeMNPV 131K*135K 63,261 101
16 CpGV PxGV 123K*100K 59,733 97
17 CpGV XcGV 123K*178K 63,258 107
18 PxGV XcGV 100K*178K 81,020 99

Experiment result on Baculoviridae
genomes that are in the same genus

 Coverage: % of
published genes
covered

 Preciseness: %
of MUMs reside
in some
published gene
pairs.

MUMmer MSS MUMmer MSS
1 100% (134) 100% (134) 44% 91%
2 58% (57) 80% (78) 80% 85%
3 58% (55) 69% (66) 64% 80%
4 83% (105) 95% (120) 91% 94%
5 61% (61) 68% (68) 70% 85%
6 59% (58) 73% (72) 78% 87%
7 58% (54) 69% (64) 47% 79%
8 83% (101) 94% (115) 86% 94%
9 63% (62) 69% (68) 65% 86%

10 75% (69) 85% (78) 75% 85%
11 53% (50) 68% (65) 77% 83%
12 75% (76) 87% (88) 71% 93%
13 60% (59) 67% (66) 52% 89%
14 74% (75) 75% (77) 65% 90%
15 52% (53) 63% (64) 66% 82%
16 61% (59) 85% (82) 83% 89%
17 58% (62) 74% (79) 83% 84%
18 61% (60) 76% (75) 76% 86%

average 66% 78% 71% 87%

PrecisenessExperiment Coverage

Reference
 A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White,

and S.L. Salzberg. Alignment of whole genomes, Nucleic Acids
Research, 27(11):2369-2376, 1999. (MUMmer1)

 A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast
algorithms for large-scale genome alignment and comparison,
Nucleic Acids Research, Nuclei Acids Research, 30(11):2478-
2483, 2002. (MUMmer2)

 T.W. Lam, N. Lu, H.F. Ting, W.H. Wong, and S.M. Yiu. Efficient
Algorithms for Optimizing Whole Genome Alignment with Noise,
ISAAC, 2003.

 H.L. Chan, T.W. Lam, W.K. Sung, W.H. Wong, S.M. Yiu, and X.
Fan. The Mutated Subsequence Problem and Locating
Conserved Genes, Bioinformatics, 2005.

	Algorithms in Bioinformatics: A Practical Introduction
	Complete genomes
	Can we compare two genomes using Smith-Waterman (SW) algorithm?
	Existing tools for comparing genomes
	General Framework
	Agenda
	MUMmer 1
	Phase 1:�Identifying anchors (MUM)
	What is an anchor?
	Maximal Unique Match (MUM)
	Examples of finding MUMs
	How to find MUMs?
	Finding MUMs by suffix tree!
	Example of finding MUMs (I)
	Example of finding MUMs (II)
	Example of finding MUMs (III)
	Phase 1: Time analysis
	Validating MUMs
	Are all MUMs correspond to conserved regions?
	Phase 2: �Identifying co-linear MUMs
	Why identify co-linear MUMs ?
	How to identify co-linear MUMs?
	Example of LCS
	The longest common subsequence (LCS) problem
	How to find LCS in O(n2) time?
	Example (I)
	Example (II)
	Example (III)
	Example (IV)
	We can extract more information
	Sparsification
	Slide Number 32
	Lemma
	Algorithm
	Example: Transform T7 to T8
	Time analysis
	We can extract more information
	Analysis
	Phase 3:�Filling the GAPs
	Phase 3: Filling the gaps
	Problem of this approach
	Common genes in Mouse Chromosome 16 and Human Chromosome 3
	Observation 3
	Solution 3
	Can we further improve?
	Mutation Sensitive Alignment (MSA) Algorithm
	Observation 4
	Example
	Input
	Common subsequence
	Maximum weight common subsequence (MWCS) problem
	Similar Subsequence
	Similar Subsequence Problem
	Heuristic algorithm: idea
	Heuristic algorithm: Step 1
	Heuristic algorithm: Step 2
	Heuristic algorithm: Step 2.1
	Heuristic algorithm: Step 2.2
	Example
	Heuristic algorithm: Step 3
	Heuristic algorithm: Step 4
	Heuristic algorithm: summery
	Solution 4
	Example
	Experiment on human and mouse
	Experiment on human and mouse
	Experiment result on Baculoviridae genomes that are in the same genus
	Experiment result on Baculoviridae genomes that are in the same genus
	Reference

