
Algorithms in Bioinformatics: A
Practical Introduction

Database Search

Biological databases

 Biological data is double in size every
15 or 16 months

 Increasing in number of queries: 40,000
queries per day

 Therefore, we need to have some
efficient searching methods for genomic
databases

Problem definition
 Consider a database D of genomic

sequences (or protein sequences)
 Given a query string Q,

 we look for string S in D which is the
closest mach to the query string Q

 There are two meanings for closest match:
 S and Q has a semi-global alignment (forgive

the spaces on the two ends of Q)
 S and Q have a local alignment

Measurement of the goodness
of a search algorithm
 Sensitivity

 Ability to detect “true positive”.
 Sensitivity can be measured as the probability of

finding the match given the query and the
database sequence has only x% similarity.

 Specificity
 Ability to reject “false positive”
 Specificity is related to the efficiency of the

algorithm.
 A good search algorithm should be both

sensitive and specific

Different approaches
 This presentation covers only local alignment methods.

 Exhaustive approach
 Smith-Waterman Algorithm

 Heuristic methods
 FastA
 BLAST and BLAT
 PatternHunter

 Filter and refine approaches
 LSH
 QUASAR

 BWT-SW

Smith-Waterman Algorithm
 Input:

 the database D (total length: n) and
 the query Q (length: m)

 Output: all closest matches (based on local alignment)

Algorithm
 For every sequences S in the database,

 Use Smith-Waterman algorithm to compute the best local
alignment between S and Q

 Return all alignments with the best score

 Time: O(nm)
 This is a brute force algorithm. So, it is the most sensitive

algorithm.

What is FastA?
 Given a database and a query,

 FastA does local alignment with all sequences in
the database and return the good alignments

 Its assumption is that good local alignment should
have some exact match subsequences.

 History of FastA
 1983: Wilbur-Lipman algorithm
 1985: FastP
 1988: FastA

FastP (I)
 Step 1: Look for hot spots

 For every k-tuple (length-k substring) of the query and every
k-tuple of the database sequence,
 If they are the same, the pair is called a hot spot.

 The larger the value of k, the algorithm is faster but less
sensitivity
 Usually, k= 4-6 for DNA sequence and

 k= 1-2 for protein sequence.

Database

Query

FastP (II)
 Step 2: Find the 10 best diagonal runs for every

databse sequence
 Diagonal run is a sequence of nearby hot spots on the same

diagonal (spaces are allowed between hot spots)
 Each hot spot is assigned a positive score. Interspot space is

given a negative score that decrease with length.
 The score of a diagonal run is the sum of scores for hot

spots and interspot spaces
 This steps identifies the 10 highest scoring diagonal runs

Database
sequence

Query Diagonal runs

FastP (III)
 Step 3: Rescore the 10 best diagonal

runs for every database sequence
 Using the substitution matrix for amino

acid (or nucleotide), the diagonal runs are
rescored.

 Sub-region of each diagonal run whose
similarity score is maximum is determined.

 The score of the best of the 10 sub-regions
is called the init1 score.

FastP (IV)
 Step 4: Rank the sequences

 Step 3 assigns an init1 score for every
sequence in the database

 This step ranks the sequences based on
their init1 scores

FastA (I)
 FastA using the same first 3 steps of

FastP.
 Then, it executes 2 more steps

FastA (II)
 Step 4: Attempts to join the sub-regions by

allowing indels
 For the 10 sub-regions in Step 3, discard those

with scores smaller than a given threshold
 For the remaining sub-regions, attempts to join

them by allowing indels
 The score of the combined regions is the sum of

the scores of the sub-regions minus the penalty
for gaps

 The best score can be computed using dynamic
programming and it is called initn score.

FastA (III)
 Step 5: banded Smith-Waterman DP

 Sequences with initn smaller than a
threshold are discarded

 For the remaining sequences, apply
banded Smith-Waterman dynamic
programming to complete the score opt.

 Rank the sequences based on their opt
scores.

Conclusion for FlastA
 FlastA is much faster than Smith-

Waterman.
 It is less sensitive than

Smith-Waterman Algorithm.

What is BLAST?
 BLAST = Basic Local Alignment Search Tool
 Input:

 A database D of sequences
 A sequence s

 Aim of BLAST:
 Compare s against all sequences in D in an

reasonable time based on heuristics. Faster than
FastA

 Disadvantage of BLAST:
 To be fast, it scarifies the accuracy. Thus, less

sensitive

History of BLAST
 1990: Birth of BLAST1

 It is very fast and dedicate to the search of local similarities
without gaps

 Altschul et al, Basic local alignment search tool. J. Mol. Biol.,
215(3):403-410, 1990.

 The most highly cited paper in 1990 and the third most
highly cited paper in the past 20 years (1983-2002).

 1996-1997: Birth of BLAST2
 BLAST2 allows insertion of gaps
 BLAST2 have two versions. Developed by two groups of

authors independently
 1997: NCBI-BLAST2 (National Center for Biotechnology

Information)
 1996: WU-BLAST2 (Washington University)

BLAST1
 A heuristic method which searches for

local similarity without gap
 It can be divided into four steps:

 Step 1: Query preprocessing
 Step 2: Scan the database for hits
 Step 3: Extension of hits

Step 1: Query preprocessing
 For every position p of the query, find

the list of w-tuples (length-w strings)
scoring more than a threshold T when
paired with the word of the query
starting at position p. This list of
w-tuples are called neighbors.
 For DNA, w=11(default)

Step 2: Generation of hits
 Scan the database DB.

 For each position p of the query, if there is
an exact match between the neighbors of
p and a w-tuple in DB, a hit is made.

 A hit is characterized by the positions in
both query and DB sequences.

Step 3: Extension of hits (I)
 For every hit, extend it in both directions,

without gaps.
 The extension is stopped as soon as the score

decreases by more than X(parameter of the
program) from the highest value reached so
far. p of query

q of DB

Step 3: Extension of hits (II)
 If the extended segment pair has score better

than or equal to S(parameter of the program),
it is called an HSP (High scoring segment
pair). Then, they will be reported.

 For every sequence in the database, the best
scoring HSP is called the MSP (Maximal
segment pair).

NCBI-Blast2
 Allows local alignment with gaps.

 The first 2 steps are the same as
BLAST1.

 Two major differences:
 Two-hits requirement (implemented for

protein)
 Gapped extension

Step 3: Two-hits requirement
 To extend a hit, we require that there is

another hit on the same diagonal within
a distance smaller than A

 By default, A=40

A

Step 4: Gapped extension (I)
 For hits satisfying the two-hits

requirement, extend them similar to
Step 3 of BLAST1

 Among the generated HSP, we perform
gapped extension for those with score
> some threshold

Step 4: Gapped extension (II)
 Gapped extension is a modified

Smith-Waterman algorithm
 Explore the dynamic programming starting from

the middle of the hit
 When the alignment score drops off by more than

Xg, stop

BLAST1 vs. NCBI-BLAST2
 BLAST1 spends 90% of its time on

extension
 For NCBI-BLAST2, due to the two-hits

requirement, the number of extensions
is reduced.
 NCBI-BLAST2 is about 3 times faster than

BLAST1.

BLAST program options

Statistics for local alignment
 A local alignment without gaps consists simply of a pair of equal

length segments.
 BLAST and FASTA find the local alignments whose score cannot

be improved by extension. In BLAST, such local alignments are
called high-scoring segment pairs or HSPs.

 To determine the significant of the local alignments, BLAST and
FASTA show E-value and bit score. Below, we give a brief
discussion on them.

 Assumption: We required the expected score for aligning a
random pair of residues/bases to be negative.
 Otherwise, the longer the alignment, the higher is the score

independent of whether the segments aligned are related or not.

E-value
 E-value is the expected number of alignments having raw score > S

totally at random.

 Let m and n be the lengths of the query sequence and the database
sequence.

 When both m and n are sufficiently long,
 the expected number E of HSPs with score at least S follows the extreme

distribution (Gumbel distribution). We have
 E = K m n e-λS

for some parameters K and λ which depends on the scoring matrix δ and the
expected frequencies of the residues/bases.

 The formula is reasonable since:
 Double the length of either sequence will double the expected number of

HSPs.
 Double the score S will exponentially reduce the expected number of HSPs.

 Hence, when E-value is small, the HSP is significant.

Bit score
 The raw score S of an alignment depends on the

scoring system.
 Without knowing the scoring system, the raw score is

meaningless.

 The bit score is defined to normalize the raw score,
which is defined as follows.

 Note that E = m n e-S’.
 Hence, when S’ is big, the HSP is significant.

2ln
ln' KSS −

=
λ

P-value
 The number of random HSPs with score ≥ S follows a Poisson

distribution.
 Pr(exactly x HSPs with score ≥ S) =

 e-E Ex / x!
 where E = K m n e-λS is the E-score

 Hence, p-value = Pr(at least 1 HSPs with score ≥ S) =
 1 – e-E.

 Note:
 when E increases, p-value is approaching 1.
 When E=3, p-value is 1-e-3 = 0.95.
 When E=10, p-value is 1-e-10 = 0.99995
 when E<0.01, 1-e-E≈E.

 Hence, in BLAST, p-value is not shown since we expect p-value and E-
value are approximately the same when E<0.01 while p-value is almost
1 when E>10.

Local alignment with gaps
 There is no solid theoretical foundation

for local alignment with gaps.
 Moreover, experimental results

suggested that the theory for ungapped
local alignment can be applied to the
gapped local alignment as well.

Variation of BLAST
 MegaBLAST
 BLAT
 PatternHunter
 PSI-BLAST

MegaBLAST
 Only for DNA
 For DNA, in BLAST, w = 11 by default.
 To improve efficiency, MegaBLAST uses

longer w-tuples (by default, w=28).
 The cost is the reduction in sensitivity.

BLAT
 BLAT is also for DNA only.
 It improves the efficient by a lot.
 The main trick is to put the index in the main

memory
 For DNA, by default, they use two-hit and

w=11.
 Note that BLAT is less sensitive than BLAST,

but more sensitive than MegaBLAST.

PatternHunter
 PatternHunter can only apply to DNA
 PatternHunter is similar to BLAST. Moreover,

it uses gapped w-tuple.
 For w=11, they use 111010010100110111
 Example,

111010010100110111
ACTCCGATATGCGGTAAC
|||-|--|-|--||-|||
ACTTCACTGTGAGGCAAC

 They found that gapped w-tuple can increase
the sensitivity while increase the efficiency.

Advantage of gapped w-tuple
(I)
 Increase sensitivity

 Gapped w-tuples are more independent.
 Examples:

 Two adjacent ungapped 11-tuples share 10 symbols
 11111111111

11111111111

 Two adjacent gapped 11-tuples share 5 symbols
 111010010100110111

111010010100110111

 If the w-tuples are more independent, the
probability of having at least one hit in a
homologous region is higher.

Advantage of gapped w-tuple
(II)
 Reduce the number of hits.

 For the same query length (says, 64),
 It covers by 54 ungapped 11-tuples
 It covers by 47 gapped 11-tuples

 So, the number of hits is smaller.

 Thus, the efficiency is increased!

More for PatternHunter
 To further improve the efficiency,

 PatternHunter uses a variety of advanced data structures
including priority queues, a variation of red-black tree,
queues, hash tables.

 PatternHunter also uses a new method of sequence
alignment.

 To further improve the accuracy,
 PatternHunter suggested to use multiple gapped seeds.
 They show that the accuracy can approach smith-waterman

algorithm while the speed 3000 times faster than smith-
waterman.

 PatternHunter is both faster and sensitive than
BLAST, MegaBLAST.

PSI-BLAST (Position Specific
Iterated BLAST)

 PSI-BLAST is an implementation of BLAST
for finding protein families. It allows us to
detect distant homology.

 Input: a protein sequence
 Using BLAST, we get a set of sequences that

align with the query protein with E-score
below a threshold, 0.01 (by default).

 Align the selected sequences
 Generate a PSSM profile from the multiple

alignment
 Iterate until no significant alignment found,

 Using a modified BLAST, search the database
with the PSSM profile.

 Align the selected sequences
 Generate a PSSM from the multiple alignment

 This version automatically combines
statistically significant alignments produced
by BLAST into a position-specific score
matrix.

 It is much more sensitive to weak but
biologically relevant sequence similarities

Input: Protein sequence

BLAST

Set of high
similarity sequences

PSSM of the
aligned sequences

Multiple alignment
And

Compute PSSM

Find a set of sequences similar to
the query

 Using BLAST 2.0, we get a set of
sequences that align with the query
protein with E-score below a threshold,
0.01 (by default).

 Keep one copy of the selected
sequences which are >98% identical.

Multiple sequence alignment of
the selected sequences
 Using the query sequence as the template, we

aligned the selected sequences.
 All gap characters inserted into the query sequence

are ignored.
 Note:

 the length of the alignment is the same as the query
sequence.

 Some columns of the multiple sequence alignment may
include nothing except the query.

query

Generate a PSSM profile from the
alignment
 Given the multiple alignment of length n,

 We generate the position-specific score matrix
(PSSM) profile, which is a 20xn matrix.

 For each column and each residue a in the profile,
we generate a log-odds score log(Oia/Pa).
 where Oia is the observed frequency of residue a at

position i and Pa is the expected frequency respectively
of the residue a.

 Since number of sequences may be small,
data-dependent pseudo frequency is added to
Oia.

Find a set of sequences similar to
the PSSM profile

 We apply a modified BLAST to the
PSSM profile.
 Basically, when we compare a position of

the PSSM and a residue in the database,
we use the corresponding log-odds score
in that position.

QUASAR
 QUASAR stands for Q-gram Alignment based

on Suffix ARrays
 It is a good searching tool for identifying

strong similar strings.
 Problem:

 Input: a database D, a query S, k, w
 Output: a set of (x, y) where

 x and y are length-w substring in D and S, respectively
 edit_dist(x, y) ≤ k

Observation
Lemma:

Given two length-w sequences X and Y, if they have edit
distance ≤ k, then they share at least t common q-grams
(length-q substrings) where t = w+1-(k+1)q.

Proof:
 Suppose X and Y has r differences.
 X has (w+1-q) q-grams
 Note that a q-gram in X overlaps with some difference iff X and Y

does not share that q-gram
 For each difference, there are at most q q-grams overlap with the

difference. In total, rq q-grams overlap with the r differences
 Thus, X and Y share (w+1-q – rq) q-grams, which is bigger than

w+1-(k+1)q.

 We make use of this observation to do filtering!

gcagactgctac
gccgacagccac

k=3
w=12
q=3
t=w+1-(k+1)q
=12+1-(3+1)3
=1

Algorithm for finding potential
approximate matches of S in D
 For every X = S[i..i+w-1] of the query where i=1, 2, …

 For every length-w substring Y in D, associate a counter
with it and initialize it to zero

 For each q-gram Q in X,
 Find the hitlist, that is, the list of positions in D so that Q

occurs
 Increment the counter for every length-w substring Y

which contains Q
 For every length-w substring Y in D with counter > t, X and

Y are potential approximate match. We check it using an
alignment algorithm!

Illustration of the algorithm

c1
c2

c3
c4

c5
c6

c7 ……

X

c100

How to get the hitlist?
 Based on the data-structures

 A suffix array SA of the database D is the lexicographically
ordered sequence of all suffixes in D.

 An auxiliary array idx where for each q-gram Q, idx[Q] is the
start of the hitlist for Q!

1 2 3 4 5 6 7

Database D = C A G C A C T
i SA[i]
1 5 ACT
2 2 AGCACT
3 4 CACT
4 1 CAGCACT
5 6 CT
6 3 GCACT
7 7 T

idx(AC)

idx(AG)

idx(CA)

idx(CT)

idx(GC)

Speedup Feature 1:
Window shifting
 In the previuos algorithm, building the counters list

for S[i..w+i-1] is time consuming!
 Suppose the counters list for S[1..w] is given, can we

determine the counters list for S[2..w+1] easily?
 Idea: For every length-w string Y in D,

 Decrement counter for Y if it contains q-gram S[1..q]
 Increment counter for Y if it contains q-gram S[w-q+2..w+1]

 The window shifting idea reduce the time complexity.

S[1..w]

S[2..w+1]

Q-gram S[1..q]

Q-gram S[w-q+2..w+1]

Speedup Feature 2:
Block addressing
 Another problem: too many counters
 Solution (Block addressing scheme):

 Instead of associate a counter for every length-w substring
Y in D

 The database D is divided into blocks of size b (b ≥ 2w).
Each block is associating a counter.

 If a block contains more than t q-grams, this block has to be
checked for approximate matches using an alignment
algorithm

D

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

Weakness of QUASAR
 Extensive memory requirement

 Construction phase:
 Memory space = 9n (where n is DB size)

 Query phase:
 Memory space = 5n

 Not suitable for distant homologous
sequences

Locality-Sensitive Hashing
(LSH)
LSH-ALL-PAIRS
 Input: biosequence database D
 Aim: find pairs of w-mers that differ by

at most d substitutions (ungapped local
alignment) in a collection of
biosequences D.

Locality-sensitive hash
function
 Consider an w-mers s,

 choose k indices i1, i2, …, ik uniformly from
the set {1, 2, …, w}

 Define π(s) = (s[i1], s[i2], …, s[ik]). This
function is called the locality-sensitive hash
function

s
i1 i2 ik…

Property of locality-sensitive
hash function (I)
 Consider two w-mers s1 and s2,

 the more similar are they, the higher probability
that π(s1) = π(s2).

 More precisely, if the hamming distance of s1
and s2 = d,
 Pr[π(s1) = π(s2)] = Πj=1,…,k Pr[s1[ij]=s2[ij]]

= (1 – d/w)k

s1

i1 i2 ik…

s2

Pr(same value)
= 1 - d/w

Property of locality-sensitive
hash function (II)
 Hence, s1 and s2 are similar if

 π(s1) = π(s2)

 However, we may have false positive and false
negative
 False positive: s1 and s2 are dissimilar but π(s1) = π(s2).

 False positive can be distinguished from true positive by
computing hamming distance between s1 and s2

 False negative: s1 and s2 are similar but π(s1) ≠ π(s2).
 We cannot detect false negative.
 We can only reduce the number of false negative by repeating

the test using different π() functions

LSH-ALL-PAIRS
Algorithm:

1. Generate m random locality-sensitive
hash functions π1(), π2(), …, πm().

2. For every w-mer s in the database,
compute πj(s) for 1 ≤ j ≤ m.

3. For every pair of w-mers s and t such
that πj(s) = πj(t) for some j,
 If hamming distance(s, t) < d, report (s, t)-

pair.

Local alignment
 In the sequence alignment lecture,

 We say local alignment is very time consuming to compute.
 For example,

 It takes more than 15 hours to align 1000 nucleotides with
the human genome.

 Hence,
 Many heuristic solutions like BLAST, BLAT, Pattern Hunter

have been proposed.
 However, they cannot guarantee to find the optimal local

alignment.

 Question: Can we compute optimal local alignment
within reasonable time?

Aligning pattern to suffixes
 Given a text S and a pattern Q

 Finding the best local alignment can be
rephrased as

 finding the best global alignment between any
substring of Q and any prefix of S[k..n]

 among all suffix-k S[k..n] of S.

Detail of the alignment
computation
 Consider a particular suffix-k S’ of S, we apply dynamic

programming to find the best alignment between any substring
of Q and any prefix of S’.

 Let V(i,j) be the optimal alignment score between any substring
of Q[1..i] and S’[1..j].

 Our aim is to compute max1≤i≤m,1≤j≤n{V(i,j)}

 Base case(i=0 or j=0):
 V(i,0)=0
 V(0,j)=-j

 Recursive case (i>0 and j>0):
 V(i,j) = max{ V(i-1,j-1)+δ(Q[i],S’[j]), V(i,j-1)-1, V(i-1,j)-1 }

Detail of the alignment
computation
 Example: Assuming match=2, mismatch/insert/delete=-1.
 S = acacag, Q = ctc
 Below is an example for finding the best alignment between any

substring of Q and any prefix of S[1..n].

_ a c a c a g
_ 0 -1 -2 -3 -4 -5 -6
c 0 -1 1 0 -1 -2 -3
t 0 -1 0 0 -1 -2 -3
c 0 -1 1 0 2 1 0

Hence, we have
acac
-ctc

Getting alignment between
pattern Q and suffixes of S

 Example: Assuming match=2,
mismatch/insert/delete=-1.

 S = acacag
 Q = ctc

 All suffixes of S:
 acacag, cacag, acag, cag, ag, g

 Suffix 1: (score=2)
 acac
 -ctc

 Suffix 2: (score=3)
 cac
 ctc

 Suffix 3: (score=1)
 ac
 -c

 Suffix 4: (score=2)
 c
 c

 Suffix 5: (score=0)
 -
 -

 Suffix 6: (score=0)
 -
 -

 Best local alignment score is 3.

Aligning pattern to suffix tree
 Note that every suffix of S

corresponds to a path in the suffix
tree.

 Suffix tree helps to avoid
redundant table filling if two
suffixes share a common prefix.

 For example, for suffix-1 and
suffix-3, they share the common
prefix aca. By suffix tree, we only
need to fill-in the 3 columns for aca
once.

0

0

0

0

$ a c
a

g

ca
g

c
g

c g

7

1 3

5
2 4

6

ag
g$ $

$

$

$$a

-1

-1

-1

-1

-3

0

0

0

-2

1

0

1

How deep should we go when we
align a pattern to a suffix tree?
 The depth of the suffix tree is n (since suffix-1 is of

length n). Do we need to go to depth-n?
 No!

 If the pattern is of length m,
 we only need to go down the tree by at most cm characters

 for some constant c depending on the scoring matrix.
 For our scoring matrix, we need to go down to at

most 3m.
 Reason: In the alignment,

 No. of match/mismatch positions x ≤ m
 No. of spaces = y
 The alignment score ≤ 2x-y ≤ 2m-y
 Since the alignment score must be non-zero, we have 2m-x≥0.
 Hence, we need to go down at most x+y characters, which is

smaller than 3m.

Algorithm for local alignment
using suffix tree
 Input:

 the suffix tree T of the text S
 the pattern Q of length m

 Algorithm:
 Traverse the suffix trie up to depth cm in DFS

order.
 When we go down the tree T by one character, we fill-in

one additional column of the DP table.
 When we go up the tree T by one character, we undo

one column of the DP table.

Time analysis
 Let L be the number of paths in T with depth = cm.
 Note that L = min{ n, σcm}.
 The number of nodes in those paths is at most cmL.
 For each node, we compute a column of size m.
 Hence, the worst case running time is cm2L=

O(min{ cm2n, cm2σcm }) time.

 When m is small, the worst case running time is
faster than O(nm).

 When m is big, the worst case running time is bad.
 Moreover, in practice, the running time is ok.

Can we do better?
 In the rest of this discussion,

 we proposed another concept called
meaningful alignment which enable
effective pruning.

 Hence, we can improve the running
time by a lot in practice.

Meaningful alignment
 Consider an alignment A of a substring X of S

and a substring Y of the pattern Q.

 If the alignment score of some prefix X’ of X
and some prefix Y’ of Y is less than or equal
to zero,
 We say A is a meaningless alignment;
 Otherwise, A is a meaningful alignment.

Example of Meaningless
alignment
 Below is an example alignment A between Q[1..3] and S[1..4].

acac

-ctc

 Note that the aligment between Q[1..2] and S[1..3] has score
zero. Hence, A is meaningless.

_ a c a c a g
_ 0 -1 -2 -3 -4 -5 -6
c 0 -1 1 0 -1 -2 -3
t 0 -1 0 0 -1 -2 -3
c 0 -1 1 0 2 1 0

Lemma
 Lemma: Consider an alignment A of substring

S[h..i] and substring Q[k..j]. If A is
meaningless and has score C,
 then there exists a meaningful alignment of

X’=S[s..i] and Y’=Q[t..j] with score at least C.

 Corollary: The optimal local alignment
between S and Q is the optimal meaningful
alignment between any substring of S and
any substring of Q.

Example of Meaningless
alignment
 Consider the meaningless alignment A between S[1..4] and Q[1..3].

(The score of A is 2.)
acac

-ctc

 The prefixes S[4..4] and Q[3..3] form a meaningful alignment and has
score 2.

_ a c a c a g
_ 0 -1 -2 -3 -4 -5 -6
c 0 -1 1 0 -1 -2 -3
t 0 -1 0 0 -1 -2 -3
c 0 -1 1 0 2 1 0

How to find the best
meaningful alignment?
 For any suffix-k S’ of S,

 we apply dynamic programming to find the best meaningful alignment
between any substring of Q and any prefix of S’.

 Let V(i,j) be the best meaningful alignment score between any suffix of
Q[1..i] and S’[1..j].

 Our aim is to compute max1≤i≤m,1≤j≤n{V(i,j)}
 Base case(i=0 or j=0):

 V(i,0)=0
 V(0,j)=-∞

 Recursive case (i>0 and j>0):
 If V(i-1,j-1)>0, V1(i,j)=V(i-1,j-1)+δ(Q[i],S’[j]); V1(i,j)=-∞, otherwise
 If V(i,j-1)>0, V2(i,j)=V(i,j-1)-1; V2(i,j)=-∞, otherwise
 If V(i-1,j)>0, V3(i,j)=V(i-1,j)-1; V3(i,j)=-∞, otherwise
 V(i,j)=max{ V1(i,j), V2(i,j), V3(i,j) }

Example of Meaningless
alignment
 Below is an example meaningful alignment A

between S[2..4] and Q[1..3].
cac

ctc

_ c a c a g
_ 0 -∞ -∞ -∞ -∞ -∞
c 0 2 1 0 -∞ -∞
t 0 -∞ 1 0 -∞ -∞
c 0 -∞ -∞ 3 2 1

Getting meaningful alignment
between pattern Q and suffixes of S

 Example: Assuming match=2,
mismatch/insert/delete=-1.

 S = acacag
 Q = ctc

 All suffixes of S:
 acacag, cacag, acag, cag, ag, g

 Suffix 1: (score=0)
 -
 -

 Suffix 2: (score=3)
 cac
 Ctc

 Suffix 3: (score=0)
 -
 -

 Suffix 4: (score=2)
 c
 c

 Suffix 5: (score=0)
 -
 -

 Suffix 6: (score=0)
 -
 -

 Best local alignment score is 3.

Observation
 First, we can find meaningful alignments on

suffix tree T of S. This avoid redundant
computations.

 Second, in practice, most of the entries in the
dynamic programming are either zero or -∞.

 This allows us to have two pruning strategies.

Pruning strategy 1
 For a particular

node, if all entries
in the column are
non-positive, we
can prune the
whole subtree.

 Example:
 S = acacag
 Q = ctc

0

0

0

0

$ a c
a

g

ca
g

c
g

c g

7

1 3

5
2 4

6

ag
g$ $

$

$

$$a

-∞

-∞

-∞

-∞

Pruning strategy 2
 When we go down

the tree, we don’t
need O(m) time to
compute a column
when the column
has many non-
positive entries.

0

0

0

0

$ a c
a

g

ca
g

c
g

c g

7

1 3

5
2 4

6

ag
g$ $

$

$

$$a

-∞

2

-∞

-∞

-∞

1

1

-∞

How about gap penalty?
 The algorithm can be extended to

handle affline gap penalty.

 Not discuss!

Suffix tree is too big!
 For human genome, we need to put the suffix tree in

disk which slowed down the dynamic programming.

 Simulating suffix trie using BWT.
 We reverse the sequence S.
 Then, we simulate the suffix trie using backward search.

 Hence, we can store the suffix trie for human
genome using less than 4G RAM.

 We can traverse the suffix trie in DFS order using the
same time complexity since backward search takes
O(1) time.

Experimental result
 Based on the above discussion, BWT-SW is developed to find optimal local

alignment.
 Using a Pentinum D 3.0GHz PC with 4G RAM, the running time of BTW-SW

to align a pattern with the human genome is summarized as follows.
 Note that Smith-Waterman algorithm takes more than 15 hours to align a

pattern of length 1K against the human genome.

Query length 100 200 500 1K 2K 5K
Average time
(seconds)

1.91 4.02 9.89 18.86 35.93 81.60

Query length 10K 100K 1M 10M 100M
Average time
(seconds)

161.04 1.4K 8.9K 34.4K 218.2K

Completeness of BLAST (I)
 BLAST is the most popular solution for finding local

alignments. It is well-known that BLAST is heuristics
and it will miss solution.

 Since BWT-SW can find all optimal local alignments,
we would like to check how many good alignments
are missed by BLAST.

 We extracted 2000 mRNA sequences from each of
the 4 different species. We aligned them on human
genome. Then, we checked how many significant
alignments are missed by BLAST.

Completeness of BLAST (II)

 BLAST only missed
0.06% of those 8000
queries (with E-value
smaller than 1.0x10-
10).

 In conclusion, BLAST
is accurate enough in
most cases, yet the
few alignments
missed could be
critical for biological
research.

Conclusion
 This presentation discusses some

database searching methods.
 Due to the advance in short tag

sequencing, a number of new methods
are proposed. For examples:
 BWA, Bowtie, RMAP, SOAP2

More information
 The list of database used by blast

 http://www.ncbi.nlm.nih.gov/blast/blast_d
atabases.shtml

 ftp://ftp.ncbi.nlm.nih.gov/blast/db/

http://www.ncbi.nlm.nih.gov/blast/blast_databases.shtml�
http://www.ncbi.nlm.nih.gov/blast/blast_databases.shtml�

	Algorithms in Bioinformatics: A Practical Introduction
	Biological databases
	Problem definition
	Measurement of the goodness of a search algorithm
	Different approaches
	Smith-Waterman Algorithm
	What is FastA?
	FastP (I)
	FastP (II)
	FastP (III)
	FastP (IV)
	FastA (I)
	FastA (II)
	FastA (III)
	Conclusion for FlastA
	What is BLAST?
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	History of BLAST
	BLAST1
	Step 1: Query preprocessing
	Step 2: Generation of hits
	Step 3: Extension of hits (I)
	Step 3: Extension of hits (II)
	NCBI-Blast2
	Step 3: Two-hits requirement
	Step 4: Gapped extension (I)
	Step 4: Gapped extension (II)
	BLAST1 vs. NCBI-BLAST2
	BLAST program options
	Statistics for local alignment
	E-value
	Bit score
	P-value
	Local alignment with gaps
	Variation of BLAST
	MegaBLAST
	BLAT
	PatternHunter
	Advantage of gapped w-tuple (I)
	Advantage of gapped w-tuple (II)
	More for PatternHunter
	PSI-BLAST (Position Specific Iterated BLAST)
	Find a set of sequences similar to the query
	Multiple sequence alignment of the selected sequences
	Generate a PSSM profile from the alignment
	Find a set of sequences similar to the PSSM profile
	QUASAR
	Observation
	Algorithm for finding potential approximate matches of S in D
	Illustration of the algorithm
	How to get the hitlist?
	Speedup Feature 1:�Window shifting
	Speedup Feature 2:�Block addressing
	Weakness of QUASAR
	Locality-Sensitive Hashing (LSH)
	Locality-sensitive hash function
	Property of locality-sensitive hash function (I)
	Property of locality-sensitive hash function (II)
	LSH-ALL-PAIRS
	Local alignment
	Aligning pattern to suffixes
	Detail of the alignment computation
	Detail of the alignment computation
	Getting alignment between pattern Q and suffixes of S
	Aligning pattern to suffix tree
	How deep should we go when we align a pattern to a suffix tree?
	Algorithm for local alignment using suffix tree
	Time analysis
	Can we do better?
	Meaningful alignment
	Example of Meaningless alignment
	Lemma
	Example of Meaningless alignment
	How to find the best meaningful alignment?
	Example of Meaningless alignment
	Getting meaningful alignment between pattern Q and suffixes of S
	Observation
	Pruning strategy 1
	Pruning strategy 2
	How about gap penalty?
	Suffix tree is too big!
	Experimental result
	Completeness of BLAST (I)
	Completeness of BLAST (II)
	Conclusion
	More information

